ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

フォン・ノイマン正則環

索引 フォン・ノイマン正則環

数学において、フォン・ノイマン正則環(von Neumann regular ring)とは、環 R であって、任意の a ∈ R に対してある x ∈ R が存在し、a.

31 関係: 半原始環半単純加群半単純環単位行列可換体可換環論完全系列平坦加群ネーター環ブール代数プリンストン大学出版局デデキント無限フォン・ノイマン環クルル次元ジャコブソン根基環 (数学)環の局所化環のスペクトル環上の加群特異部分加群遺伝環被約環自己準同型環極大イデアル正則局所環正則環正則行列正方行列斜体 (数学)数学整域

半原始環

代数学において、半原始環(semiprimitive ring)またはジャコブソン半単純環 (Jacobson semisimple ring)、または短くして J-半単純環 (J-semisimple ring) とは、ジャコブソン根基が 0 であるような環のことである。これは半単純環よりも一般的なタイプの環であるが、単純加群はなお環についての十分な情報を与えてくれる。有理整数環のような環は半原始環であり、アルティン的半原始環はちょうど半単純環である。半原始環は原始環のとして理解することができ、それはによって述べられている。.

新しい!!: フォン・ノイマン正則環と半原始環 · 続きを見る »

半単純加群

数学、とくに加群論という抽象代数学の分野において、半単純加群(はんたんじゅんかぐん、semisimple module)または完全可約加群(かんぜんかやくかぐん、completely reducible module)はその既約部分加群から容易に理解できるようなタイプの加群である。自分自身の上で半単純加群であるような環はアルティン的半単純環として知られている。有限群の標数0の体上の群環のようないくつかの重要な環は半単純環である。アルティン環ははじめはその最大の半単純商を通じて理解される。アルティン的半単純環の構造はアルティン・ウェダーバーンの定理によってよく理解される。これはこれらの環を行列環の有限個の直積として表示するものである。.

新しい!!: フォン・ノイマン正則環と半単純加群 · 続きを見る »

半単純環

数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。.

新しい!!: フォン・ノイマン正則環と半単純環 · 続きを見る »

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: フォン・ノイマン正則環と単位行列 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: フォン・ノイマン正則環と可換体 · 続きを見る »

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: フォン・ノイマン正則環と可換環論 · 続きを見る »

完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

新しい!!: フォン・ノイマン正則環と完全系列 · 続きを見る »

平坦加群

数学において、平坦加群(へいたんかぐん、flat module)とは、テンソル積をとる関手 が完全となる加群 のことである。 ホモロジー代数学および代数幾何学における基本的な概念のひとつ。ジャン=ピエール・セールによって導入された。.

新しい!!: フォン・ノイマン正則環と平坦加群 · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: フォン・ノイマン正則環とネーター環 · 続きを見る »

ブール代数

ブール代数(ブールだいすう、boolean algebra)またはブール束(ブールそく、boolean lattice)とは、ジョージ・ブールが19世紀中頃に考案した代数系の一つである。ブール代数の研究は束の理論が築かれるひとつの契機ともなった。ブール論理の演算はブール代数の一例であり、現実の応用例としては、組み合わせ回路(論理回路#組み合わせ回路)はブール代数の式で表現できる。.

新しい!!: フォン・ノイマン正則環とブール代数 · 続きを見る »

プリンストン大学出版局

プリンストン大学出版局(Princeton University Press)とは、独立系の出版社でプリンストン大学と近い関係を持っている。広大なや社会においてスカラーシップを広めることを目的にしている。 1905年にホイットニー・ダローによって設立された。その際にプリンストンコミュニティに印刷機を納品する形でチャールズ・スクリブナーが金融面で支援した。最初に出版した本はジョン・ウィザースプーン著「Lectures on Moral Philosophy」の新たな1912年版だった。.

新しい!!: フォン・ノイマン正則環とプリンストン大学出版局 · 続きを見る »

デデキント無限

数学において、集合A がデデキント無限(Dedekind-infinite、ドイツ人数学者リヒャルト・デデキントにちなんでつけられた)である、またはデデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。それはつまり、A とA の真部分集合B の間に全単射が存在するということである。集合 Aがデデキント有限であるとは、デデキント無限でないということである。 デデキント無限は、自然数を用いないような最初の無限の定義である。選択公理を除いたツェルメロ・フレンケルの公理系は、任意のデデキント有限集合は有限個の元を持つという意味での有限である、ということを証明するだけの強さを持たない。選択公理を用いないその他の有限集合や無限集合の定義が存在する。.

新しい!!: フォン・ノイマン正則環とデデキント無限 · 続きを見る »

フォン・ノイマン環

フォン・ノイマン環(ふぉんのいまんかん、von Neumann algebra)とは、ヒルベルト空間上の有界線型作用素たちのなす C*-環のうちで恒等作用素を含み作用素の弱収束位相について閉じているもののことである。一般の C*-環と並ぶ作用素環論の主要な研究対象であり、理論の創始者の一人ジョン・フォン・ノイマンにちなんでこの名前がついている。可換なフォン・ノイマン環の重要な例として、σ-有限な測度空間 X 上の L∞ 級関数全体のなす環があげられる。.

新しい!!: フォン・ノイマン正則環とフォン・ノイマン環 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: フォン・ノイマン正則環とクルル次元 · 続きを見る »

ジャコブソン根基

数学、より詳しくは抽象代数学の一分野である環論において、環 R のジャコブソン根基あるいはヤコブソン根基(Jacobson radical)とは、すべての単純右 R-加群を零化する R の元からなるイデアルである。定義において「右」の代わりに「左」としても同じイデアルが得られるので、この概念は左右対称的である。環のジャコブソン根基は頻繁に J(R) や rad(R) と表記される。しかしながら、他の環の根基との混乱を避けるため、この記事では前者の表記を使うのがよいであろう。ジャコブソン根基はにちなんで名づけられた。彼は初めてそれを任意の環についてで研究した人である. 環のジャコブソン根基はたくさんの内部的な特徴づけをもっており、単位元をもたない環に対してこの概念をうまく拡張するいくつかの定義も含んでいる。加群の根基はジャコブソン根基の定義を加群を含むように拡張する。ジャコブソン根基は多くの環や加群の理論の結果、例えば中山の補題において、際立った役割を果たす。 Isaacs, Corollary 13.3, p. 180 Somewhat remarkable is that this also equals the intersection of all maximal left ideals of R. Although the Jacobson radical is indeed an ideal, this is not entirely obvious from the previous two characterizations and hence other characterizations are preferred.

新しい!!: フォン・ノイマン正則環とジャコブソン根基 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: フォン・ノイマン正則環と環 (数学) · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: フォン・ノイマン正則環と環の局所化 · 続きを見る »

環のスペクトル

抽象代数学と代数幾何学において,可換環 のスペクトル とは, のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる..

新しい!!: フォン・ノイマン正則環と環のスペクトル · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: フォン・ノイマン正則環と環上の加群 · 続きを見る »

特異部分加群

論および加群論という抽象代数学の分野において、各右(resp.

新しい!!: フォン・ノイマン正則環と特異部分加群 · 続きを見る »

遺伝環

数学、とくに加群論として知られている抽象代数学の分野において、環 R は、R 上の射影加群のすべての部分加群が再び射影加群になるとき、遺伝環(いでんかん、hereditary ring)と呼ばれる。この条件が有限生成部分加群についてのみ要求されるときは、半遺伝環(はんいでんかん、semihereditary ring)と呼ばれる。 非可換環 R に対しては、左右の区別が必要であり、左遺伝的、左半遺伝的および左を右にした用語が使われる。左(半)遺伝的であるためには、射影左 R-加群のすべての(有限生成)部分加群が射影的でなければならないし、右(半)遺伝的であるためには、射影右 R-加群のすべての(有限生成)部分加群が射影的でなければならない。環が左(半)遺伝的だが右(半)遺伝的でないことはあり、左右を逆にしても同様である。.

新しい!!: フォン・ノイマン正則環と遺伝環 · 続きを見る »

被約環

論において、被約環(ひやくかん、reduced ring)とは、0でないベキ零元をもたない環のことである。(ベキ零元とは何乗かすると0になる元のことである。)被約環は数学の分野である可換環論や代数幾何学で役割を果たす。被約スキームとは茎が被約なスキームである。可換環上の可換多元環は環として被約なとき被約多元環と呼ばれる。 この記事は可換環論に関するものである。とくに、環は単位元をもち可換なものを考える。環準同型は単位元を単位元に写す。詳細は可換環論を見られたい。.

新しい!!: フォン・ノイマン正則環と被約環 · 続きを見る »

自己準同型環

抽象代数学において、アーベル群 X の自己準同型環(endomorphism ring) は、X からそれ自身への準同型写像( 上の自己準同型)すべてからなる集合である。加法は(後述)で定義され、積は写像の合成で定義される。 自己準同型環の元となる「準同型」が何を指すものかは文脈によって異なり、これは考えている対象の圏に依存する。その結果、自己準同型環は対象のいくつかの内在的な性質を受け継いでいる。自己準同型環はしばしばある環上の多元環(代数)であり、自己準同型多元環(endomorphism algebra; 自己準同型代数)とも呼ばれる。.

新しい!!: フォン・ノイマン正則環と自己準同型環 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: フォン・ノイマン正則環と極大イデアル · 続きを見る »

正則局所環

可換環論において、正則局所環(せいそくきょくしょかん、regular local ring)とは、ネーター局所環 (A, \mathfrak) であって、剰余体 k.

新しい!!: フォン・ノイマン正則環と正則局所環 · 続きを見る »

正則環

可換環論において、正則環 (regular ring) は可換ネーター環であって任意の素イデアルにおける局所化が正則局所環であるようなものである。つまり、すべてのそのような局所化は、その極大イデアルの生成元の最小個数がクルル次元と等しいという性質をもつ。 Jean-Pierre Serre は正則環を大域ホモロジー次元が有限の可換ネーター環として定義し、これは上記の定義と同値であることを示す。正則環のクルル次元は大域ホモロジー次元と一致する。 正則環の例は(次元0である)体やデデキント整域を含む。A が正則であれば A も正則であり、次元が1だけ増える。 正則環は被約であるが整域である必要はない。例えば、2つの正則整域の積は正則だが整域でない。.

新しい!!: フォン・ノイマン正則環と正則環 · 続きを見る »

正則行列

正則行列(せいそくぎょうれつ、regular matrix)、非特異行列(ひとくいぎょうれつ、non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、invertible matrix)とは行列の通常の積に関する逆元を持つ正方行列のこと、言い換えると逆行列が存在する行列のことである。 ある体上の同じサイズの正則行列の全体は一般線型群と呼ばれる群を成す。多項式の根として定められる部分群はあるいは行列群と呼ばれる代数群の一種で、その表現論が代数的整数論などに広い応用を持つ幾何学的対象である。.

新しい!!: フォン・ノイマン正則環と正則行列 · 続きを見る »

正方行列

正方行列(せいほうぎょうれつ、square matrix)とは、行要素の数と列要素の数が一致する行列である。サイズが n × n つまり、n 行 n 列であるとき、n 次正方行列という。 \end.

新しい!!: フォン・ノイマン正則環と正方行列 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: フォン・ノイマン正則環と斜体 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: フォン・ノイマン正則環と数学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: フォン・ノイマン正則環と整域 · 続きを見る »

ここにリダイレクトされます:

フォン・ノイマン正則フォン・ノイマン正則元強フォン・ノイマン正則強フォン・ノイマン正則環強正則環絶対平坦絶対平坦環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »