ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

完全系列

索引 完全系列

ホモロジー代数における完全系列(かんぜんけいれつ、exact sequence)あるいは完全列(かんぜんれつ)とは、環上の加群や群などの系列で各射の像空間が次の射の核空間と正確に合致するという意味で完全であるものをいう。.

14 関係: 始対象と終対象完全関手モニック射ホモロジー代数学アーベル圏エピ射群 (数学)群の中心群の拡大環上の加群Ext函手鎖複体蛇の補題指数層系列

始対象と終対象

数学の抽象的な分野である圏論において、圏 の始対象(したいしょう、initial object, coterminal object)とは、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。圏 の終対象(しゅうたいしょう、final object, terminal object)とは、始対象の双対概念であり、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。 始対象でも終対象でもあるような対象は零対象(れいたいしょう、ゼロたいしょう、zero object, null object)と呼ばれる。点付き圏 とは零対象を持つ圏を言う。.

新しい!!: 完全系列と始対象と終対象 · 続きを見る »

完全関手

ホモロジー代数において、完全関手とは完全列を保存する関手のことをいう。完全関手は対象の表現にそのまま適用できるため便利である。ホモロジー代数の多くの研究は、完全関手にはならないがその不完全さを制御できる関手を扱うためのものである。.

新しい!!: 完全系列と完全関手 · 続きを見る »

モニック射

数学の圏論において、モニック射あるいはモノ射、単射 (monomorphism, monic morphism) とは、左簡約可能な射のことである。つまり、射 がモニックであるとは、任意の射 に対して、 が成り立つということである。 これは集合間の写像の意味での単射の抽象化であり、射が写像であり集合論的単射であれば圏論的単射であるが、逆は必ずしも成り立たない。しかしながら、集合の圏や群の圏、環上の加群の圏などでは、圏論の意味での単射は集合論の意味での単射と一致する。.

新しい!!: 完全系列とモニック射 · 続きを見る »

ホモロジー代数学

ホモロジー代数学(homological algebra)は、一般の代数的な設定のもとでホモロジーを研究する数学の分野である。それは比較的新しい分野であり、その起源は19世紀の終わりの、(代数トポロジーの前身)と抽象代数学(加群や の理論)の、主にアンリ・ポワンカレとダフィット・ヒルベルトによる研究にまでさかのぼる。 ホモロジー代数学の発展は圏論の出現と密接に結びついている。概して、ホモロジー代数はホモロジー的関手とそれから必然的に生じる複雑な代数的構造の研究である。数学においてきわめて有用で遍在する概念の1つはチェイン複体 (chain complex) の概念であり、これはそのホモロジーとコホモロジーの両方を通じて研究できる。ホモロジー代数は、これらの複体に含まれる情報を得、それを環、加群、位相空間や、他の 'tangible' な数学的対象のホモロジー的不変量の形で描写する手段を提供してくれる。これをするための強力な手法はによって与えられる。 まさにその起源から、ホモロジー代数学は代数トポロジーにおいて非常に多くの役割を果たしている。その影響の範囲は徐々に拡大しており現在では可換環論、代数幾何学、代数的整数論、表現論、数理物理学、作用素環論、複素解析、そして偏微分方程式論を含む。K-理論はホモロジー代数学の手法を利用する独立した分野であり、アラン・コンヌの非可換幾何もそうである。.

新しい!!: 完全系列とホモロジー代数学 · 続きを見る »

アーベル圏

アーベル圏(アーベルけん、Abelian category)とはアレクサンドル・グロタンディークによって考案された、ホモロジー代数が展開できるよういくつかの公理を満たす圏である。元来、層係数のコホモロジー理論(層コホモロジー)と定数係数のコホモロジー理論は、定義および構成方法がまったくといっていいほど異なるにもかかわらず、理論の構造は酷似していた。そのため両者を統一的な観点から記述するために考案された。しかしながら知られているすべてのコホモロジー理論がアーベル圏上で展開できるわけではない。.

新しい!!: 完全系列とアーベル圏 · 続きを見る »

エピ射

数学の圏論において、エピ射あるいは全射 (epimorphism, epic morphism) とは、右簡約可能な射のことである。つまり、射 がエピであるとは、任意の射 に対して、 が成り立つということである。 これは集合間の写像の意味での全射の抽象化であり、射が写像であり集合論的全射であれば圏論的全射であるが、逆は必ずしも成り立たない。例えば可換環の圏における整数環から有理数体への包含写像 が反例となる。しかしながら、集合の圏や群の圏、環上の加群の圏などでは、圏論の意味での全射は集合論の意味での全射と一致する。.

新しい!!: 完全系列とエピ射 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: 完全系列と群 (数学) · 続きを見る »

群の中心

代数学における群 の核心または中心(ちゅうしん、center)この記法の Z はドイツ語で中心という意味の Zentrum に由来する。英語の center から のような記法が使われることも在るが、中心化群などと紛らわしい。 は の全ての元と可換となるような元全体の成す集合 である。 の中心は の部分群であり、定義からアーベル群(可換群)である。部分群としては、常に正規であり、特性的であるが必ずしも完全特性的 (fully characteristic) ではない。剰余群 は の内部自己同型群に同型である。 群 がアーベル群となることと となることとは同値である。これと正反対に、 が自明(つまり単位元のみからなる)ならば群 は中心を持たない (centerless) という。 中心に属する元はしばしば中心的 (central) であるといわれる。.

新しい!!: 完全系列と群の中心 · 続きを見る »

群の拡大

数学において、群の拡大(ぐん-の-かくだい、group extension)は、一般に特定の正規部分群と剰余群を使って群を記述することを意味する。 および をふたつの群とするとき、 が による の拡大 (extension) であるとは短完全列 1\to N\to G\to Q\to 1 が存在することを言う。 が による の拡大(これとあべこべに " が の による拡大である" と書く文献もある)ならば は群であり、 は の正規部分群で剰余群 は群 に同型となる。群の拡大は、 と が既知の群であるとき、群 の性質を決定できるかという拡大の問題 (extension problem)の文脈で現れる。任意の有限群 は極大正規部分群 と単純剰余群 を持つから、任意の有限群は有限単純群の列として構成することができる。この事実があるため、有限単純群の分類の完成は動機付けられたのであった。 部分群 が群 の中心に含まれるような拡大は、中心拡大 (central extension)と呼ばれる。.

新しい!!: 完全系列と群の拡大 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 完全系列と環上の加群 · 続きを見る »

Ext函手

数学では、ホモロジー代数の Ext函手(Ext functors)は、Hom函手の導来函手である。Ext函手は、最初代数幾何学で使われ、その後は数学の多くの分野で共通して使われている。名称の "Ext" は、函手とアーベル圏での拡大(Extension)との関係からきている。.

新しい!!: 完全系列とExt函手 · 続きを見る »

鎖複体

数学において、鎖複体あるいはチェイン複体 (chain complex) と双対鎖複体あるいは余鎖複体、コチェイン複体 (cochain complex) は、元来は代数トポロジーの分野で使われていた。(余)鎖複体は、位相空間の様々な次元の(コ)と(コ)バウンダリの間の関係を表す代数的な手段である。より一般的に、ホモロジー代数では、空間との関係を立ち去った抽象的な鎖複体の研究がされる。ホモロジー代数としての研究では、(余)鎖複体を公理的に代数的構造として扱う。 (余)鎖複体の応用は、通常、ホモロジー群(余鎖複体ではコホモロジー群)を定義し適用する。より抽象的な設定では、様々な同値関係(たとえば、のアイデアで始まるもの)が複体へ適用される。鎖複体は、アーベル圏で定義することも容易にできる。.

新しい!!: 完全系列と鎖複体 · 続きを見る »

蛇の補題

蛇の補題(snake lemma)、スネーク・レンマは数学、特にホモロジー代数において、長完全列を構成するために使われる道具である。蛇の補題はすべてのアーベル圏で有効であり、ホモロジー代数やその応用、例えば代数トポロジーにおいて、きわめて重要な道具である。補題の助けによって構成された準同型は一般に連結準同型 (connecting homomorphism) と呼ばれる。.

新しい!!: 完全系列と蛇の補題 · 続きを見る »

指数層系列

指数層系列(しすうそうけいれつ、exponential sheaf sequence)(指数完全系列とも言う)は、数学では複素幾何学で使われる層(コホモロジー)の基本的な短完全系列のことである。 M を複素多様体とし、M 上の正則函数の層を OM と記し、0 にならない正則函数からなる部分層を OM* と表すとする。これらは両方とも、アーベル群の層である。指数函数は層の準同型 をもたらす。正則函数 f に対し、exp(f) は 0 にならない正則函数であり、exp (f + g).

新しい!!: 完全系列と指数層系列 · 続きを見る »

ここにリダイレクトされます:

完全列短完全列長完全列長完全系列

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »