ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

環の局所化

索引 環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

61 関係: 加群の局所化可逆元可換環可換環論同値同値類同値関係合成数多項式環始対象と終対象完備化 (環論)導来圏局所環差集合中国の剰余定理互いに素代数多様体代数幾何学代数的位相幾何学付値環微分方程式圏 (数学)圏論モノイドローラン級数フォン・ノイマン正則環分数クルル次元ザリスキー位相シュプリンガー・サイエンス・アンド・ビジネス・メディアサージ・ラング冪零元商体全単射全商環剰余環剰余類環積閉集合素イデアル素数環 (数学)環のスペクトル環準同型非可換環被約環調和解析超局所解析開集合零因子零環...Graduate Texts in Mathematics抽象代数学極大イデアル標数準同型有理数数論整域整数環普遍性2の冪 インデックスを展開 (11 もっと) »

加群の局所化

可換環論や代数幾何学において、加群の局所化 (localization of a module) は環上の加群に分母を導入する構成である。正確には、与えられた加群 M から を含む新しい加群 S−1M を構成する系統的な方法である。ここで分母の s は R のある与えられた部分集合 S を動く。 この技術は、特に代数幾何学において、加群と層論との関係のように、基本的となっている。加群の局所化は環の局所化を一般化する。.

新しい!!: 環の局所化と加群の局所化 · 続きを見る »

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: 環の局所化と可逆元 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 環の局所化と可換環 · 続きを見る »

可換環論

可換環論(かかんかんろん、英語:commutative algebra、commutative ring theory)は、その乗法が可換であるような環(これを可換環という)に関する理論の体系のこと、およびその研究を行う数学の一分野のことである。.

新しい!!: 環の局所化と可換環論 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 環の局所化と同値 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: 環の局所化と同値類 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: 環の局所化と同値関係 · 続きを見る »

合成数

合成数(ごうせいすう、Composite number)は、自然数で、1とその数自身以外の約数を持つ数である。2つ以上の素数の積で表すことのできる自然数と定義してもよい。たとえば15は1と15自身以外に3と5を約数に持つ(または 3×5 と素数の積で表される)ので合成数である。9や25など素数を2乗した数は1つしか素因数をもたないが、9.

新しい!!: 環の局所化と合成数 · 続きを見る »

多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

新しい!!: 環の局所化と多項式環 · 続きを見る »

始対象と終対象

数学の抽象的な分野である圏論において、圏 の始対象(したいしょう、initial object, coterminal object)とは、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。圏 の終対象(しゅうたいしょう、final object, terminal object)とは、始対象の双対概念であり、 の任意の対象 に対してちょうど一つの射 が存在するような の対象 のことを指す。 始対象でも終対象でもあるような対象は零対象(れいたいしょう、ゼロたいしょう、zero object, null object)と呼ばれる。点付き圏 とは零対象を持つ圏を言う。.

新しい!!: 環の局所化と始対象と終対象 · 続きを見る »

完備化 (環論)

抽象代数学において、完備化(かんびか、completion)とは、環や加群上の関手であって、完備な位相環や加群になるような任意のものである。完備化は局所化と類似しており、これらは可換環を解析する最も基本的な手法である。完備可換環は一般の環よりも単純な構造をもっており、が適用される。 \hat M defined in a way analogous to the completion of a metric space using Cauchy sequences.

新しい!!: 環の局所化と完備化 (環論) · 続きを見る »

導来圏

数学においてアーベル圏 \mathcal の導来圏(どうらいけん、Derived category、Catégorie dérivée) D(\mathcal) はホモロジー代数から構成されるもので、 \mathcal 上に定義された導来函手の理論を精密化するとともに、ある意味で単純化するべく導入された。その構成は基本的には次の様に進む:まず圏 D(\mathcal) の対象は \mathcal の双対鎖複体であり、次に2つのその様な双対鎖複体の間にチェイン写像が存在してコホモロジーを取った段階で同型を誘導する場合に同型であると考えるのである。このとき、導来函手は双対鎖複体に対して定義され、の考えを精密化したものとなる。これらの定義により、煩雑なを用いて(完全に忠実ではなく)記述されるよりほか無かった式は劇的に簡素化される。 導来圏の発展は、アレクサンドル・グロタンディークと彼の学生のにより1960年代初頭になされ、ホモロジー代数が長足の進歩を遂げた1950年代における爆発的な展開の一つの到達点であると現在ではみなされている。ヴェルディエによる理論の基本部分は博士論文に纏められたが、1996年になってようやくAstérisque(要約はずっと早くにに収録されていた)に出版された。その定式化には革新的な発想であるの概念が必要であり、その構成は環の局所化を一般化したに基づく。"導来"形式の展開への原動力となった欲求は、グロタンディークによるの理論のなんらかの意味での定式化を行うことであった。導来圏は以後、代数幾何学以外の領域に於いてさえ、たとえば、D-加群や超局所解析でも不可欠な概念となっている。さらに、近年は、ミラー対称性やD-ブレーンの定式化という物理学に近い領域でも、導来圏が重要な役割を果たすようになっている。.

新しい!!: 環の局所化と導来圏 · 続きを見る »

局所環

抽象代数学における局所環(きょくしょかん、local ring)は、1938年にヴォルフガンク・クルルによって導入された概念で、比較的簡単な構造を持つ環であり、代数多様体や可微分多様体上で定義される関数の、あるいは代数体を座や素点上の関数として見るときの「局所的な振る舞い」を記述すると考えられるものである。局所環およびその上の加群について研究する可換環論の一分野を局所環論と呼ぶ。.

新しい!!: 環の局所化と局所環 · 続きを見る »

差集合

差集合(さしゅうごう、set difference)とは、ある集合の中から別の集合に属する要素を取り去って得られる集合のことである。特に、全体集合 を固定して、 からその部分集合 の要素を取り去って得られる集合を の補集合という。.

新しい!!: 環の局所化と差集合 · 続きを見る »

中国の剰余定理

loc.

新しい!!: 環の局所化と中国の剰余定理 · 続きを見る »

互いに素

二つの整数 が互いに素(たがいにそ、coprime, co-prime, relatively prime, mutually prime)であるとは、 を共に割り切る正の整数が のみであることをいう。このことは の最大公約数 が であることと同値である。 が互いに素であることを、記号で と表すこともある。 例えば と を共に割り切る正の整数は に限られるから、これらは互いに素である。一方で と は共に で割り切れるから、これらは互いに素でない。 互いに素であることの判定は素因数分解を用いて行うこともできるが、二つの整数のうち少なくとも一方が巨大である場合など一般には困難である。素因数分解によって公約数を調べる方法よりも、ユークリッドの互除法によって最大公約数を調べる方法のほうが遥かに高速である。 正の整数 と互いに素となる( から の間の)整数の個数は、オイラー関数 によって与えられる。 三つの整数 が互いに素であるとは、 が成り立つことをいう。また、、、 がすべて に等しいとき、 は対ごとに素(pairwise coprime)またはどの二つも互いに素であるという。一般に、互いに素であるからといって対ごとに素であるとは限らない(例:)。一般の 個の整数についても同様に定義される。.

新しい!!: 環の局所化と互いに素 · 続きを見る »

代数多様体

代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。 本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。.

新しい!!: 環の局所化と代数多様体 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: 環の局所化と代数幾何学 · 続きを見る »

代数的位相幾何学

代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体、基本群、ホモトピー、ホモロジー、コホモロジー、ファイバー束などの、位相空間の不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する..

新しい!!: 環の局所化と代数的位相幾何学 · 続きを見る »

付値環

抽象代数学において、付値環(ふちかん、valuation ring)とは、整域 D であって、その分数体 F のすべての元 x に対して、x か x −1 の少なくとも一方が D に属するようなものである。 体 F が与えられたとき、D が F の部分環であって、F のすべての 0 でない元 x に対して x か x −1 が D に属しているとき、D を 体 F の付値環(a valuation ring for the field F)または座 (place of F) という。この場合 F は確かに D の分数体であるので、体の付値環は付値環である。体 F の付値環を特徴づける別の方法は、F の付値環 D は F をその分数体としてもち、そのイデアルは包含関係で全順序づけられている、あるいは同じことだが、その単項イデアルが包含関係で全順序付けられていることである。とくに、すべての付値環は局所環である。 体の付値環は支配(dominance)あるいは細分(refinement)によって順序を入れた体の局所部分環の集合の極大元である、ただし 体 K のすべての局所環は K のある付値環によって支配される。 任意の素イデアルにおける局所化が付値環であるような整域はプリューファー整域と呼ばれる。.

新しい!!: 環の局所化と付値環 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 環の局所化と微分方程式 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 環の局所化と圏 (数学) · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 環の局所化と圏論 · 続きを見る »

モノイド

数学、とくに抽象代数学における単系(たんけい、monoid; モノイド)はひとつの二項演算と単位元をもつ代数的構造である。モノイドは単位元をもつ半群(単位的半群)であるので、半群論の研究対象の範疇に属する。 モノイドの概念は数学のさまざまな分野に現れる。たとえば、モノイドはそれ自身が「ただひとつの対象をもつ圏」と見ることができ、したがって「集合上の写像とその合成」といった概念を捉えたものと考えることもできる。モノイドの概念は計算機科学の分野でも、その基礎付けや実用プログラミングの両面で広く用いられる。 モノイドの歴史や、モノイドに一般的な性質を付加した議論などは半群の項に譲る。.

新しい!!: 環の局所化とモノイド · 続きを見る »

ローラン級数

ーラン級数(ローランきゅうすう、Laurent series)とは負冪の項も含む形での冪級数としての関数の表示のことである。テイラー級数展開できない複素関数を表示する場合に利用される。ローラン級数の名は、最初の発表が1843年にピエール・アルフォンス・ローランによってなされたことに由来する。ローラン級数の概念自体はそれより先の1841年にカール・ワイエルシュトラスによって発見されていたが公表されなかった。 特定の点 ''c'' および閉曲線 γ に関して定義されたローラン級数。 積分路である γ は赤で塗ったアニュラスの内側に載っており、アニュラスの内側で ''f''(''z'') は正則である.

新しい!!: 環の局所化とローラン級数 · 続きを見る »

フォン・ノイマン正則環

数学において、フォン・ノイマン正則環(von Neumann regular ring)とは、環 R であって、任意の a ∈ R に対してある x ∈ R が存在し、a.

新しい!!: 環の局所化とフォン・ノイマン正則環 · 続きを見る »

分数

分数(ぶんすう、fraction)とは 2 つの数の比を用いた数の表現方法のひとつである。.

新しい!!: 環の局所化と分数 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: 環の局所化とクルル次元 · 続きを見る »

ザリスキー位相

代数幾何学と可換環論において、ザリスキ位相は代数多様体に定義される位相であり、最初はオスカー・ザリスキによって導入された。ザリスキ位相は可換環の素イデアル全体の集合に対しても定義され、その環のスペクトルと呼ばれる。 ザリスキ位相によって、基礎体が位相体でないときでさえ、代数多様体の研究に位相空間論の道具を使うことができるようになる。このような手法はスキーム論の基本的な考えの1つであり、多様体 (manifold) が局所座標系(実アファイン空間の開部分集合)を貼り合わせて構成されるのと同じように、一般の代数多様体はアファイン多様体を貼り合わせて構成される。 代数多様体のザリスキ位相は、多様体の代数的部分集合の全体を閉集合系とする位相である。複素数体上の代数多様体の場合には、ザリスキ位相は通常の位相よりも粗く、任意の代数的集合は通常の位相でも閉集合であるが、逆は一般には正しくない。 可換環の素イデアル全体の集合へのザリスキ位相の一般化は、代数閉体上定義されたアファイン多様体の点全体と多様体の正則関数環の極大イデアル全体との間の1:1対応を確立するヒルベルトの零点定理から従う。この定理より、可換環の極大イデアル全体の集合上のザリスキ位相は、ある与えられたイデアルを含む極大イデアルの全体を閉集合とし、かつそのような集合のみが閉集合である、と定めればよいことが示唆される。グロタンディークのスキーム論のもう1つの基本的な考えは、極大イデアルに対応する普通の点のみならず、すべての(既約)代数多様体、これは素イデアルに対応する、をも点として考えることである。したがって、可換環の素イデアル全体の集合(スペクトル)上のザリスキ位相は、ある固定されたイデアルを含むような素イデアル全体の集合の全体を閉集合系とする位相である。.

新しい!!: 環の局所化とザリスキー位相 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 環の局所化とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

サージ・ラング

ージ・ラング(Serge Lang, 1927年5月19日 - 2005年9月12日)は、フランスパリ生まれのアメリカの数学者。イェール大学名誉教授。10代の頃に家族でアメリカへ移住し、1946年カリフォルニア工科大学を卒業、1951年プリンストン大学にて博士号を取得。1955年からシカゴ大学教授、コロンビア大学教授、イェール大学教授を歴任した。整数論分野の仕事および多くの教科書の執筆者として知られる。ニコラ・ブルバキのメンバー。.

新しい!!: 環の局所化とサージ・ラング · 続きを見る »

冪零元

数学において、環 R の元 x はある正の整数 n が存在して xn.

新しい!!: 環の局所化と冪零元 · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: 環の局所化と商体 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: 環の局所化と全単射 · 続きを見る »

全商環

数学における全商環(ぜんしょうかん、total quotient ring)あるいは全分数の環 (total ring of fractionsMatsumura (1989), p. 21) は、整域に対する商体の構成を、零因子をもつ可換環に対して一般化するものである。この構成は、可換環に対して、その非零因子の「逆元」を付け加えて、より大きな環を作り出す操作になっている。零因子を可逆化することはできないa が R の零元と異なる零因子で、a が R の全商環 Q の中で単元となると仮定すると、R の零元でない元 b で ab.

新しい!!: 環の局所化と全商環 · 続きを見る »

剰余環

数学の一分野、環論における商環(しょうかん、quotient ring)、剰余環(じょうよかん、factor ring)あるいは剰余類環(じょうよるいかん、residue class ring)とは、群論における剰余群や線型代数学における商線型空間に類似した環の構成法およびその構成物である。すなわち、はじめに環 R とその両側イデアル I が与えられたとき、剰余環 R/I と呼ばれる新しい環が、I の全ての元が零元に潰れる(I による違いを「無視」するともいえる)ことで得られる。 注意: 剰余環は商環とも呼ばれるけれども、整域に対する商体(分数の体)と呼ばれる構成とは異なるし、全商環(商の環、これは環の局所化の一種)とも異なる。.

新しい!!: 環の局所化と剰余環 · 続きを見る »

剰余類環

数学において、自然数 を法とする合同類環(ごうどうるいかん)あるいは剰余(類)環(じょうよかん、n, n)は、整数を で割った「剰余」を抽象的な類別として捉えたものである。 本項は剰余類環 の代数的な定義と性質について述べる。合同類別に関するより平易な導入については整数の合同を参照のこと。.

新しい!!: 環の局所化と剰余類環 · 続きを見る »

積閉集合

抽象代数学における積閉集合(せきへいしゅうごう、multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。.

新しい!!: 環の局所化と積閉集合 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: 環の局所化と素イデアル · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: 環の局所化と素数 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 環の局所化と環 (数学) · 続きを見る »

環のスペクトル

抽象代数学と代数幾何学において,可換環 のスペクトル とは, のすべての素イデアルからなる集合である.通常ザリスキー位相と構造層をともに考え,それにより は局所環付き空間である.この形の局所環付き空間はアフィンスキームと呼ばれる..

新しい!!: 環の局所化と環のスペクトル · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 環の局所化と環準同型 · 続きを見る »

非可換環

数学、特に現代代数学と環論において、非可換環(ひかかんかん、noncommutative ring)とは乗法が可換ではない環である。つまり、 なる の元 が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。.

新しい!!: 環の局所化と非可換環 · 続きを見る »

被約環

論において、被約環(ひやくかん、reduced ring)とは、0でないベキ零元をもたない環のことである。(ベキ零元とは何乗かすると0になる元のことである。)被約環は数学の分野である可換環論や代数幾何学で役割を果たす。被約スキームとは茎が被約なスキームである。可換環上の可換多元環は環として被約なとき被約多元環と呼ばれる。 この記事は可換環論に関するものである。とくに、環は単位元をもち可換なものを考える。環準同型は単位元を単位元に写す。詳細は可換環論を見られたい。.

新しい!!: 環の局所化と被約環 · 続きを見る »

調和解析

数学の一分野としての調和解析(ちょうわかいせき、Harmonic analysis)は、関数や信号を基本波の重ね合わせとして表現することに関わるもので、フーリエ級数やフーリエ変換及びその一般化について研究する分野である。19世紀から20世紀を通じて、調和解析の扱う主題は広く、応用も信号処理、量子力学、神経科学など多岐にわたる。 「調和 (harmonic)」の語は、もとは物理的な固有値問題から来たもので、(楽器の弦における調和振動の周波数のように)周波数が他の周波数の整数倍となっているような波を意図したものであるが、現在ではその原義を超えて一般化した使い方をされる。 上の古典フーリエ変換は未だ活発な研究の成されている領域であり、特により一般の緩増加超関数などの対象についてのフーリエ変換に関心が持たれる。例えば、シュワルツ超関数 に適当な仮定を課すときに、それらの仮定を のフーリエ変換に関する仮定に翻訳することを考えることができる。はその一例である。ペイリー・ウィーナーの定理からすぐに従うことに、 がコンパクト台を持つ非零超関数(これにはコンパクト台を持つ関数ももちろん含まれる)ならばそのフーリエ変換がコンパクト台を持つことは起こりえない。これは調和解析的な設定のもとでの非常に初等的な形の不確定性原理と言うことができる(フーリエ級数の収束も参照)。 フーリエ級数はヒルベルト空間論の文脈でも有効に調べられており、調和解析と関数解析学とを結ぶものとなっている。.

新しい!!: 環の局所化と調和解析 · 続きを見る »

超局所解析

数学の解析学の分野における超局所解析(ちょうきょくしょかいせき、)とは、変数係数の線型および非線型偏微分方程式の研究に関するフーリエ変換に基づく、1950年代以後に発展した技術を伴う解析のことを言う。超函数や、擬微分作用素、、フーリエ積分作用素、振動積分作用素、パラ微分作用素の研究などが含まれる。 「超局所」(microlocal)という語は、空間内の位置についての局所化のみならず、ある与えられた点の余接空間方向についての局所化を意味する。このことは、次元が 1 よりも大きい多様体に対して、重要な意味を持つ。.

新しい!!: 環の局所化と超局所解析 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: 環の局所化と開集合 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 環の局所化と零因子 · 続きを見る »

零環

数学の分野である環論において、零環(the zero ring)または自明環 (trivial ring) は1つの元からなる(同型を除いて)唯一の環である。(あまり一般的ではないが、“零環 (zero ring)”という用語は任意の rng of square zero, すなわちすべての x と y に対して であるような rng を指すために使われることもある。この記事では1つの元からなる環の意味で使う。) 環の圏において、零環は終対象である。始対象は有理整数環 Z である。.

新しい!!: 環の局所化と零環 · 続きを見る »

Graduate Texts in Mathematics

Graduate Texts in Mathematics (Grad. Texts in Math., GTM) (ISSN 0072-5285) は、Springer-Verlag により出版されている数学の graduate-level(院レベル)のテキストのシリーズである。いくつかは和訳され丸善出版より出版されている。このシリーズの本は、 Springer-Verlag の他の数学のシリーズと同様、標準的なサイズの黄色い本である(ページ数は様々)。(原著の)GTM シリーズは本の上部が白くなっており容易に識別できる。 このシリーズの本は類似の Undergraduate Texts in Mathematics (UTM) シリーズよりも進んだ内容が書かれる傾向にあるが、この 2 つのシリーズは内容や難易度についてかなりかぶる部分もある。.

新しい!!: 環の局所化とGraduate Texts in Mathematics · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: 環の局所化と抽象代数学 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: 環の局所化と極大イデアル · 続きを見る »

標数

標数(ひょうすう、characteristic)は、環あるいは体の特徴を表す非負整数のひとつ。整域の標数は 0 または素数に限られる。.

新しい!!: 環の局所化と標数 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: 環の局所化と準同型 · 続きを見る »

有理数

有理数(ゆうりすう、rational number) とは、二つの整数 a, b (ただし b は 0 でない)をもちいて a/b という分数で表せる数のことをいう。b.

新しい!!: 環の局所化と有理数 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: 環の局所化と数論 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 環の局所化と整域 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: 環の局所化と整数環 · 続きを見る »

普遍性

数学の様々な分野において、ある特定の状況下にて一意に射を定めるような抽象的性質が、特定の構成を定義、あるいは特徴づけたりする事がしばしばある。このような性質を普遍性(universal property)と呼ぶ。普遍性は圏論を用いて抽象的に論考される。 結果として、我々は普遍性の一般的な扱い方を得ることになる。例えば、群の直積や直和、自由群、積位相, ストーン-チェックのコンパクト化, テンソル積, 逆極限 と 順極限, 核と余核, 引き戻し, 押し出し および イコライザ、など。.

新しい!!: 環の局所化と普遍性 · 続きを見る »

2の冪

2の冪(にのべき)は、適当な自然数 n を選べば、2 の n 乗 2n の形に表せる自然数の総称である。平たく言うと2の累乗数(にのるいじょうすう)である。.

新しい!!: 環の局所化と2の冪 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »