ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

確率微分方程式

索引 確率微分方程式

率微分方程式(かくりつびぶんほうていしき、stochastic differential equation)とは、一つ以上の項が確率過程である微分方程式であって、その結果、解自身も確率過程となるものである。一般的に、確率微分方程式はブラウン運動(ウィーナー過程)から派生すると考えられる白色雑音を組み込むが、不連続過程の様な他の無作為変動を用いることも可能である。.

25 関係: 完全加法族幾何ブラウン運動伊藤の補題伊藤清微分方程式マルコフ過程ポール・ランジュバンユークリッド空間ルベーグ積分ルイ・バシュリエブラック–ショールズ方程式ブラウン運動デリバティブホワイトノイズアルベルト・アインシュタインウィーナー過程カーダー・パリージ・ザン方程式確率変数確率空間確率過程確率測度金融工学次元測度論数理ファイナンス

完全加法族

数学における完全加法族(かんぜんかほうぞく、completely additive class)、可算加法族(かさんかほうぞく、countably additive class)あるいは (σ-)加法族、σ-集合代数(シグマしゅうごうだいすう、σ-algebra)、σ-集合体(シグマしゅうごうたい、σ-field)接頭辞 "σ" は「可算加法的」("completely additive") であることを示すのにしばしば用いられる。また、完全加法族では可算加法性と可算乗法性が補集合を取る操作を通じて同値になるので区別されないが、(乗法族における)積の可算性が δ- を用いることによって表される場合がある(δ-乗法族)。例えば、σ-集合環と δ-集合環など。''G''δ-集合と''F''σ-集合の項も参照。は、主な用途として測度を定義することに十分な特定の性質を満たす集合の集まりである。特に測度が定義される集合全体を集めた集合族は完全加法族になる。この概念は、解析学ではルベーグ積分に対する基礎付けとして重要であり、また確率論では確率の定義できる事象全体の成す族として解釈される。完全加法族を接頭辞「完全」を付けずに単に「加法族」と呼ぶことも多い(つまり、有限加法族の意味ならば接頭辞「有限」を省略しないのがふつう)ので注意が必要である。.

新しい!!: 確率微分方程式と完全加法族 · 続きを見る »

幾何ブラウン運動

幾何ブラウン運動 (きかぶらうんうんどう、英: geometric (fractional) Brownian motion (GBM)) は、対数変動が平均μ分散σのブラウン運動にしたがう連続時間の 確率過程で、金融市場に関するモデルや、金融工学におけるオプション価格のモデルでよく利用されている。GBMの増分が St に対する比として表されることから幾何(geometric)の名称がつけられている。.

新しい!!: 確率微分方程式と幾何ブラウン運動 · 続きを見る »

伊藤の補題

伊藤の補題(いとうのほだい、Itō's/Itô's lemma)は、確率微分方程式の確率過程に関する積分を簡便に計算するための方法である。伊藤清が考案した。.

新しい!!: 確率微分方程式と伊藤の補題 · 続きを見る »

伊藤清

伊藤 清(いとう きよし、1915年9月7日 - 2008年11月10日)は、日本の数学者。確率論における伊藤の補題(伊藤の定理)の考案者として知られる。第一回ガウス賞受賞者。.

新しい!!: 確率微分方程式と伊藤清 · 続きを見る »

微分方程式

微分方程式(びぶんほうていしき、differential equation)とは未知関数とその導関数の関係式として書かれている関数方程式である長倉三郎ほか編、『 』、岩波書店、1998年、項目「微分方程式」より。ISBN 4-00-080090-6。 物理法則を記述する基礎方程式は多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。微分方程式論は解析学の中心的な分野で、フーリエ変換、ラプラス変換等はもともと微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題、固有値問題である。 線型微分方程式の研究は歴史が長く。それに比して、非線型微分方程式の研究は歴史が浅く比較的簡単な方程式しか解析できていない。例えばナビエ-ストークス方程式は、流体の支配方程式として重要であるが、その解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。 その他有名な微分方程式については:Category:微分方程式を参照。.

新しい!!: 確率微分方程式と微分方程式 · 続きを見る »

マルコフ過程

マルコフ過程(マルコフかてい)とは、マルコフ性をもつ確率過程のことをいう。すなわち、未来の挙動が現在の値だけで決定され、過去の挙動と無関係であるという性質を持つ確率過程である。 このような過程は例えば、確率的にしか記述できない物理現象の時間発展の様子に見られる。なぜなら、粒子の将来の挙動は現在の挙動によってのみ決定されるが、この性質は系の粒子数が多くなり確率論的な解析を必要とする状態にも引き継がれるからである。 ロシア人数学者、アンドレイ・マルコフにちなんで命名されている。.

新しい!!: 確率微分方程式とマルコフ過程 · 続きを見る »

ポール・ランジュバン

ポール・ランジュヴァン (Paul Langevin、1872年1月23日 – 1946年12月19日)は、フランスの物理学者。.

新しい!!: 確率微分方程式とポール・ランジュバン · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 確率微分方程式とユークリッド空間 · 続きを見る »

ルベーグ積分

数学において、一変数の非負値関数の積分は、最も単純な場合には、その関数のグラフと 軸の間の面積と見なすことができる。ルベーグ積分(ルベーグせきぶん、Lebesgue integral)は、より多くの関数を積分できるように拡張したものである。ルベーグ積分においては、被積分関数は連続である必要はなく、至るところ不連続でもよいし、関数値として無限大をとることがあってもよい。さらに、関数の定義域も拡張され、測度空間と呼ばれる空間で定義された関数を被積分関数とすることもできる。 数学者は長い間、十分滑らかなグラフを持つ非負値関数、例えば有界閉区間上の連続関数、に対しては、「曲線の下部の面積」を積分と定義できると理解しており、多角形によって領域を近似する手法によってそれを計算した。しかしながら、より不規則な関数を考える必要が、例えば解析学や確率論において極限を考えるときに生じたため、より注意深い近似の手法が適切な積分を定義するために必要なことが明らかとなった。また、局所コンパクト群のような、実数直線よりも一般の空間上で積分をしたいことがある。ルベーグ積分はこの重要な仕事をするために必要な正しい抽象化を与える。例えば、フーリエ級数などの関数列の極限として表される関数に対して、積分と極限操作が可換となるかどうかをリーマン積分で考えると非常に繊細な議論が必要だが、ルベーグ積分では、積分と極限操作の交換が可能であるための簡単な十分条件が分かっている。 ルベーグ積分は実解析と呼ばれる数学の分野に属する確率論や、他の多くの数理科学分野において、重要な役割を果たす。ルベーグ積分という名前は、その積分を導入した数学者アンリ・ルベーグ (Henri Lebesgue, 1875–1941) に由来している。それはまたの中枢部でもある。 ルベーグ積分 (Lebesgue integration) という用語は、カラテオドリに始まる一般の測度に関する関数の積分の一般論を意味することもあるし、ルベーグ測度に関して実数直線の部分集合上定義された関数を積分するという特定の場合を意味することもある。.

新しい!!: 確率微分方程式とルベーグ積分 · 続きを見る »

ルイ・バシュリエ

ルイ・バシュリエ(Louis Jean-Baptiste Alphonse Bachelier、1870年3月11日 - 1946年4月28日)は、フランスの数学者。博士論文において、確率論を用いて株価変動を議論した。 オプション(株式買取選択権)価格の評価について、確率論の使用を論議した。彼の説は、金融学の研究において、高度の数学を使用する最初の論文である。 そのため、バシュリエは、財政の数学および確率過程の研究の先駆者と考えられている。 Category:フランスの数学者 Category:レジオンドヌール勲章受章者 Category:ル・アーヴル出身の人物 Category:1870年生 Category:1946年没 Category:数学に関する記事.

新しい!!: 確率微分方程式とルイ・バシュリエ · 続きを見る »

ブラック–ショールズ方程式

ブラック–ショールズ方程式(ブラック–ショールズほうていしき、Black–Scholes equation)とは、デリバティブの価格づけに現れる偏微分方程式(およびその境界値問題)のことである。様々なデリバティブに応用できるが、特にオプションに対しての適用が著名である。ブラック-ショールズ方程式はヨーロピアンオプションのオプション・プレミアムの値を解析的に計算できるが、アメリカンタイプのプット・オプションについては(解析的には)計算できない。ただし、ブラック-ショールズモデルにおけるアメリカンコールオプションの理論価格はヨーロピアンコールオプションの理論価格と一致する。 ブラック–ショールズ方程式は1973年にフィッシャー・ブラックとマイロン・ショールズによりオプションの価格付け問題についての研究の一環として発表された。後にロバート・マートンが彼らの方法に厳密な証明を与えた。.

新しい!!: 確率微分方程式とブラック–ショールズ方程式 · 続きを見る »

ブラウン運動

ブラウン運動(ブラウンうんどう、Brownian motion)とは、液体のような溶媒中媒質としては気体、固体もあり得る。に浮遊する微粒子(例:コロイド)が、不規則(ランダム)に運動する現象である。1827年、ロバート・ブラウンが、水の浸透圧で破裂した花粉から水中に流出し浮遊した微粒子を、顕微鏡下で観察中に発見し、論文「植物の花粉に含まれている微粒子について」で発表した。 この現象は長い間原因が不明のままであったが、1905年、アインシュタインにより、熱運動する媒質の分子の不規則な衝突によって引き起こされているという論文が発表された。この論文により当時不確かだった原子および分子の存在が、実験的に証明出来る可能性が示された。後にこれは実験的に検証され、原子や分子が確かに実在することが確認された。同じころ、グラスゴーの物理学者が1905年にアインシュタインと同じ式に到達し、ポーランドの物理学者も1906年に彼自身によるブラウン運動の理論を発表した。 数学のモデルとしては、フランス人のルイ・バシュリエは、株価変動の確率モデルとして1900年パリ大学に「投機の理論」と題する博士論文を提出した。今に言う、ランダムウォークのモデルで、ブラウン運動がそうである、という重要な論文であるが、当時のフランスの有力数学者たちに理解されず、出版は大幅に遅れた。 ブラウン運動と言う言葉はかなり広い意味で使用されることもあり、類似した現象として、電気回路における熱雑音(ランジュバン方程式)や、希薄な気体中に置かれた、微小な鏡の不規則な振動(気体分子による)などもブラウン運動の範疇として説明される。.

新しい!!: 確率微分方程式とブラウン運動 · 続きを見る »

デリバティブ

金融理論におけるデリバティブ(derivative)とは、より基本的な資産や商品などから派生した資産あるいは契約である。金融派生商品(financial derivative products)とも言われる。.

新しい!!: 確率微分方程式とデリバティブ · 続きを見る »

ホワイトノイズ

ホワイトノイズ (White noise)とは、ノイズの分類で、パワースペクトルで見ると対象となるそれなりに広い範囲で同程度の強度となっているノイズを指す。「ホワイト」とは、可視領域の広い範囲をまんべんなく含んだ光が白色であることから来ている形容である。派生語のようなものにピンクノイズがあり、周波数成分が右肩下がりの光がピンク色であることによる。よく聞くノイズの例で擬音語で表現するなら、「ザー」という音に聞こえる雑音がピンクノイズで、「シャー」と聞こえる音がホワイトノイズである。 0)とレッドノイズ(1/f2, ブラウニアンノイズともいう)の中間(1/f1であるから、という説明がなされている。Pink noise)-->.

新しい!!: 確率微分方程式とホワイトノイズ · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 確率微分方程式とアルベルト・アインシュタイン · 続きを見る »

ウィーナー過程

一次元ウィーナー過程の一例 数学におけるウィーナー過程(ウィーナーかてい、Wiener process)は、ノーバート・ウィーナーの名にちなんだ連続時間確率過程である。ウィーナー過程はブラウン運動の数理モデルであると考えられ、しばしばウィーナー過程自身をブラウン運動と呼ぶ。最もよく知られるレヴィ過程(右連続かつ定常な独立増分確率過程)の一つであり、純粋数学、応用数学、経済学、物理学などにおいてしばしば現れる。.

新しい!!: 確率微分方程式とウィーナー過程 · 続きを見る »

カーダー・パリージ・ザン方程式

ーダー・パリージ・ザン方程式(Kardar–Parisi–Zhang equation) は、、、イー・チャン・ジャン らによって提案された、ランジュバン型の非線形の確率偏微分方程式であり、結晶の界面成長を記述する。しばしば提案した三人の頭文字を取って、KPZ方程式と略記される。 \frac\left(\vec,t\right).

新しい!!: 確率微分方程式とカーダー・パリージ・ザン方程式 · 続きを見る »

確率変数

率変数(かくりつへんすう、random variable, aleatory variable, stochastic variable)とは、確率論ならびに統計学において、ランダムな実験により得られ得る全ての結果を指す変数である。 数学で言う変数は関数により一義的に決まるのに対し、確率変数は確率に従って定義域内の様々な値を取ることができる。.

新しい!!: 確率微分方程式と確率変数 · 続きを見る »

確率空間

率空間(かくりつくうかん、probability space)とは、可測空間 に確率測度 を入れた測度空間 を言う。アンドレイ・コルモゴロフによる確率論の公理的構成から、現代においては、確率論は確率空間における確率測度の理論として展開される。.

新しい!!: 確率微分方程式と確率空間 · 続きを見る »

確率過程

率論において、確率過程(かくりつかてい、stochastic process)は、時間とともに変化する確率変数のことである。 株価や為替の変動、ブラウン運動などの粒子のランダムな運動を数学的に記述する模型(モデル)として利用している。不規則過程(random process)とも言う。.

新しい!!: 確率微分方程式と確率過程 · 続きを見る »

確率測度

率測度(かくりつそくど、probability measure)とは、'''可算加法性'''のような測度の性質を満たすものの内、確率空間において事象の集合上で定義された実数値函数のことである。確率測度とより一般的な測度(面積や体積のような概念)との違いは、確率測度は全空間に対しては 1 を返さねばならないことである。 A course in mathematics for students of physics, Volume 2 by Paul Bamberg, Shlomo Sternberg 1991 ISBN 0-521-40650-1 The concept of probability in statistical physics by Yair M. Guttmann 1999 ISBN 0-521-62128-3 In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity.

新しい!!: 確率微分方程式と確率測度 · 続きを見る »

金融工学

金融工学(きんゆうこうがく、英語:financial engineering、computational finance)は、資産運用や取引、リスクヘッジ、リスクマネジメント、投資に関する意思決定などに関わる工学的研究全般を指す。.

新しい!!: 確率微分方程式と金融工学 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

新しい!!: 確率微分方程式と次元 · 続きを見る »

測度論

測度論(そくどろん、measure theory )は、数学の実解析における一分野で、測度とそれに関連する概念(完全加法族、可測関数、積分等)を研究する。 ここで測度(そくど、measure )とは面積、体積、個数といった「大きさ」に関する概念を精緻化・一般化したものである。 よく知られているように積分は面積と関係があるので、積分(厳密にはルベーグ積分)も測度論を基盤にして定式化・研究できる。 また、測度の概念は確率を数学的に定式化する際にも用いられるため(コルモゴロフの公理)、 確率論や統計学においても測度論は重要である。 たとえば「サイコロの目が偶数になる確率 」は目が 1,..., 6 になるという 6 つの事象の集合の中で、2, 4, 6 という 3 つ分の「大きさ」を持っている為、 測度の概念で記述できる。.

新しい!!: 確率微分方程式と測度論 · 続きを見る »

数理ファイナンス

数理ファイナンス(すうりファイナンス、mathematical finance)は、応用数学の一分野であり、証券市場に関する学問である。.

新しい!!: 確率微分方程式と数理ファイナンス · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »