ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

理化学的年代

索引 理化学的年代

化学的年代(りかがくてきねんだい)とは、考古資料が物質としてもっている物理的・化学的な属性を分析することで得られる年代のことである。.

49 関係: 加速器型式半減期古地磁気学夏島貝塚太陽黒点年輪年輪年代学交差年代決定法代謝弥生時代土器地層地磁気化石化石人類ラジカル (化学)ルミネセンストリウム分光法イオンウランウラン238カキ (貝)ジルコン火山灰磁場磁性縄文時代絶対年代炭素14熱ルミネッセンス線量計相対年代遺物遺構鍾乳石貝殻黒曜石鉱物電子スピン共鳴考古資料暦年泥炭溶岩春成秀爾放射年代測定放射性同位体放射性炭素年代測定

加速器

加速器(かそくき、particle accelerator)とは、荷電粒子を加速する装置の総称。原子核/素粒子の実験による基礎科学研究のほか、癌治療、新素材開発といった実用にも使われる。 前者の原子核/素粒子の加速器実験では、最大で光速近くまで粒子を加速させることができる。粒子を固定標的に当てる「フィックスドターゲット実験」と、向かい合わせに加速した粒子を正面衝突させる「コライダー実験」がある。.

新しい!!: 理化学的年代と加速器 · 続きを見る »

型式

記載なし。

新しい!!: 理化学的年代と型式 · 続きを見る »

半減期

半減期(はんげんき、half-life)とは、ある放射性同位体が、放射性崩壊によってその内の半分が別の核種に変化するまでにかかる時間を言う。.

新しい!!: 理化学的年代と半減期 · 続きを見る »

古地磁気学

古地磁気学(こちじきがく、)とは、岩石などに残留磁化として記録されている過去の地球磁場(地磁気)を分析する地質学の一分野。火山岩や堆積岩には、それができた時のできた場所の磁場が記録されており、それを分析することで、地磁気の逆転や大陸移動の様子などを調べることができる。.

新しい!!: 理化学的年代と古地磁気学 · 続きを見る »

夏島貝塚

夏島貝塚(なつしまかいづか)は、神奈川県横須賀市夏島町に所在する縄文時代早期・初期に属する最古級の貝塚である。第一貝塚と第二貝塚に分かれ、1972年(昭和47年)1月27日、島全体が国の史跡に指定された。また、出土品についても1998年(平成10年)に国の重要文化財に指定された。.

新しい!!: 理化学的年代と夏島貝塚 · 続きを見る »

太陽黒点

2004年に現れた太陽黒点 太陽黒点(たいようこくてん、sunspot)とは、太陽表面を観測した時に黒い点のように見える部分のこと。単に黒点とも呼ぶ。実際には完全な黒ではなく、この部分も光を放っているが、周囲よりも弱い光なので黒く見える。太陽黒点は、約9.5年から12年ほどの周期で増減を繰り返している。 黒点が暗いのは、その温度が約4,000℃と普通の太陽表面(光球)温度(約6,000℃)に比べて低いためである。発生原因は太陽の磁場であると考えられている。 黒点は太陽の自転とともに東から西へ移動する。大きな黒点群の中には太陽の裏側を回って再び地球から見える側に出てきても消えていない、1ヶ月ほど存在する寿命の長いものがある。(太陽の東西という言葉は地球から観測した場合の地球上での方位を指す。その天体に立った場合の方位ではない).

新しい!!: 理化学的年代と太陽黒点 · 続きを見る »

年輪

年輪(ねんりん、growth ring)は、通常温帯から寒帯の木の断面に生じる同心円状の模様で、成長輪ともいう。成長輪のうち1年に一つずつ増加するものを年輪という。輪状に見えるのは、春期には幹の肥大成長が盛んで、夏期にはゆっくりになるためであり、色の濃い部分は細胞壁が密に、色の薄い部分は細胞壁が疎になっている。熱帯の樹木にはないことがあるが、乾季と雨季があれば乾季には成長が休止するために成長輪が形成される。 年輪を数えることで、その木の樹齢を知ることができる。また、年輪には大規模な旱魃や山火事、虫害などの痕跡が残されていることがある。この痕跡と様々な記録を比較することにより、その木の過去の生育環境を調査することができる。 広く知られている俗説に、「北半球では南側から日が当たる為、暖かい南側は発育が盛んで年輪の目が広く、北側は目が詰まっているので、切り株があれば大体の方位がわかる」という説があるが、これは誤りである。実際は、たとえば針葉樹が斜面に生えている場合に、木が谷側に傾かないように谷側がより盛んに成長する為、谷側の目が広く山側の目が詰まって育つので方角はあまり関係しない。この時に谷側に形成される材を圧縮あて材と呼ぶ。また広葉樹では針葉樹とは逆に山側に引っ張りあて材が形成される。このように材の成長には様々な要因が関係し、方角だけで決まるものではない。また、年輪を確認するためには切り口が滑らかである必要があるが、自然な原因で木が倒れる場合、根本からひっくり返るか、へし折れるようになる場合が多く、滑らかな面は作られないため、自然の森では年輪の見られる切り株は滅多にない。 なお、珊瑚、魚の鱗など樹木以外にも同様な年輪模様ができる。既製部分から外側に追加する形で成長するものにおいて、季節や時間によってその成長が変化するものではそのようなものが見られる。サンゴ等では昼夜の成長にも差があるため、日輪が見られる例もあり、それらによって、古代の一年の日数が分かった、という例もある。.

新しい!!: 理化学的年代と年輪 · 続きを見る »

年輪年代学

年輪年代学(ねんりんねんだいがく、英語:dendrochronology)とは、樹木の年輪パターンを分析することによって、年代を科学的に決定する方法である。アリゾナ大学のA・E・ダグラスによって、20世紀に発明・発展された。本法を適用することで樹木の年代は正確に暦年単位で決定することができる。.

新しい!!: 理化学的年代と年輪年代学 · 続きを見る »

交差年代決定法

交差年代決定法(こうさねんだいけっていほう、英語:Cross-dating)とは、遺構や遺物など考古資料の年代を決定する方法で相関年代法の別称がある。原理的には、相対年代を対応させていき、すでに暦年代(実年代)がわかっている地域の編年に連結させていく方法である。 交差年代決定法は、異なる地域間での同時期型式を、型式相互の比較や出土の共伴関係の比較から検討していく方法であり、これは単に暦年代を算出する手だてであるというだけではない。型式の網の目をどこまでも広げていく作業にみえて、そこからは年代的な接点だけではなく、さまざまなレベルで展開される文化の動態を明らかにすることも可能である。そういう意味で、考古学研究の常道であり、根幹をなす研究法だといえる。 なお、年輪年代学の領域でもクロスデイティング(交差年代決定法)の手法が採られる。.

新しい!!: 理化学的年代と交差年代決定法 · 続きを見る »

代謝

代謝(たいしゃ、metabolism)とは、生命の維持のために有機体が行う、外界から取り入れた無機物や有機化合物を素材として行う一連の合成や化学反応のことであり、新陳代謝の略称である生化学辞典第2版、p.776-777 【代謝】。これらの経路によって有機体はその成長と生殖を可能にし、その体系を維持している。代謝は大きく異化 (catabolism) と同化 (anabolism) の2つに区分される。異化は物質を分解することによってエネルギーを得る過程であり、例えば細胞呼吸がある。同化はエネルギーを使って物質を合成する過程であり、例えばタンパク質・核酸・多糖・脂質の合成がある。 代謝の化学反応は代謝経路によって体系づけられ、1つの化学物質は他の化学物質から酵素によって変換される。酵素は触媒として、熱力学的に不利な反応を有利に進めるため極めて重要な存在である。また、酵素は、細胞の環境もしくは他の細胞からの信号(シグナル伝達)の変化に反応することにより代謝経路の調節も行う。 有機体の代謝はその物質の栄養価の高さがどれだけか、また、毒性の高さがどれだけかを決定する。例えば、いくつかの原核生物は硫化水素を使って栄養を得ているが、この気体は動物にとっては毒であることが知られている。また、代謝速度はその有機体がどれだけの食物を必要としているかに影響を与える。.

新しい!!: 理化学的年代と代謝 · 続きを見る »

弥生時代

弥生時代(やよいじだい)は、日本列島における時代区分の一つであり、紀元前10世紀頃から、紀元後3世紀中頃までにあたる時代の名称。採集経済の縄文時代の後、水稲農耕を主とした生産経済の時代である。縄文時代晩期にはすでに水稲農耕は行われているが、多様な生業の一つとして行われており弥生時代の定義からは外れる。 2003年に国立歴史民俗博物館(歴博)が、放射性炭素年代測定により行った弥生土器付着の炭化米の測定結果を発表し、弥生時代は紀元前10世紀に始まることを明らかにした。当時、弥生時代は紀元前5世紀に始まるとされており、歴博の新見解はこの認識を約500年もさかのぼるものであった。当初歴博の新見解について研究者の間でも賛否両論があった。しかし、その後研究がすすめられた結果、この見解はおおむね妥当とされ、多くの研究者が弥生時代の開始年代をさかのぼらせるようになってきている。 弥生時代後期後半の紀元1世紀頃、東海、北陸を含む西日本各地で広域地域勢力が形成され、2世紀末畿内に倭国が成立。3世紀中頃古墳時代に移行した。.

新しい!!: 理化学的年代と弥生時代 · 続きを見る »

土器

中国の仰韶文化期の土器 土器(どき)は、土を練り固めて成形し、焼き固めることで仕上げた器である。.

新しい!!: 理化学的年代と土器 · 続きを見る »

地層

アルゼンチン サルタ州 サンカルロスに見られる地層 ポーランド南東部のカルパティア山脈に見られる地層 本記事では地層(ちそう、英:単数形 stratum、複数形 strata)について解説する。.

新しい!!: 理化学的年代と地層 · 続きを見る »

地磁気

地磁気(ちじき、、)は、地球が持つ磁性(磁気)である。及び、地磁気は、地球により生じる磁場(磁界)である。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)である。地磁気の大きさの単位は、SI単位系の磁束密度の単位であるテスラ(T)である。通常、地球の磁場はとても弱いので、「nT(ナノテスラ)」が用いられる。地球物理学で地磁気の磁束密度を表すのに使用されたガンマ (γ) は、10テスラ.

新しい!!: 理化学的年代と地磁気 · 続きを見る »

化石

化石(かせき、ドイツ語、英語:Fossil)とは、地質時代に生息していた生物が死骸となって永く残っていたもの、もしくはその活動の痕跡を指す。 多くは、古い地層の中の堆積岩において発見される。化石の存在によって知られる生物のことを古生物といい、化石を素材として、過去の生物のことを研究する学問分野を古生物学という。なお、考古学において地層中に埋蔵した生物遺骸は「植物遺体」「動物遺体」など「遺体・遺存体」と呼称される。 資料としての化石は、1.古生物として、2.

新しい!!: 理化学的年代と化石 · 続きを見る »

化石人類

化石人類(かせきじんるい、fossil hominidまたはfossil man)は、現在ではすでに化石化してその人骨が発見される過去の人類阿部(1997)p.156大塚・戸沢(1996)p.56。人類の進化を考察していくうえで重要な化石資料となる。資料そのものは化石人骨(かせきじんこつ)とも称する。また、主に第四紀更新世(洪積世)の地層で発見されるので更新世人類ないし洪積世人類とも称する。.

新しい!!: 理化学的年代と化石人類 · 続きを見る »

ラジカル (化学)

ラジカル (radical) は、不対電子をもつ原子や分子、あるいはイオンのことを指す。フリーラジカルまたは遊離基(ゆうりき)とも呼ばれる。 また最近の傾向としては、C2, C3, CH2 など、不対電子を持たないがいわゆるオクテット則を満たさず、活性で短寿命の中間化学種一般の総称として「ラジカル(フリーラジカル)」と使う場合もある。 通常、原子や分子の軌道電子は2つずつ対になって存在し、安定な物質やイオンを形成する。ここに熱や光などの形でエネルギーが加えられると、電子が励起されて移動したり、あるいは化学結合が二者に均一に解裂(ホモリティック解裂)することによって不対電子ができ、ラジカルが発生する。 ラジカルは通常、反応性が高いために、生成するとすぐに他の原子や分子との間で酸化還元反応を起こし安定な分子やイオンとなる。ただし、1,1-ジフェニル-2-ピクリルヒドラジル (DPPH) など、特殊な構造を持つ分子は安定なラジカルを形成することが知られている。 多くのラジカルは電子対を作らない電子を持つため、磁性など電子スピンに由来する特有の性質を示す。このため、ラジカルは電子スピン共鳴による分析が可能である。さらに、結晶制御により分子間でスピンをうまく整列させ、極低温であるが強磁性が報告されたラジカルも存在する。1991年、木下らにより報告されたp-Nitrophenyl nitronylnitroxide (NPNN)が、最初の有機強磁性体の例である (Tc.

新しい!!: 理化学的年代とラジカル (化学) · 続きを見る »

ルミネセンス

ルミネセンス(luminescence)またはルミネッセンスとは、物質が電磁波の照射や電場の印加、電子の衝突などによってエネルギーを受け取って励起し、低いエネルギー状態の分布数に対する高いエネルギー状態の分布数の比が熱平衡状態のときと比較して大きい状態にされたときに起きる自然放出による発光現象およびその光を指す。.

新しい!!: 理化学的年代とルミネセンス · 続きを見る »

トリウム

トリウム (thorium 、漢字:釷) は原子番号90の元素で、元素記号は Th である。アクチノイド元素の一つで、銀白色の金属。 1828年、スウェーデンのイェンス・ベルセリウスによってトール石 (thorite、ThSiO4) から発見され、その名の由来である北欧神話の雷神トールに因んで命名された。 モナザイト砂に多く含まれ、多いもので10 %に達する。モナザイト砂は希土類元素(セリウム、ランタン、ネオジム)資源であり、その副生産物として得られる。主な産地はオーストラリア、インド、ブラジル、マレーシア、タイ。 天然に存在する同位体は放射性のトリウム232一種類だけで、安定同位体はない。しかし、半減期が140.5億年と非常に長く、地殻中にもかなり豊富(10 ppm前後)に存在する。水に溶けにくく海水中には少ない。 トリウム系列の親核種であり、放射能を持つ(アルファ崩壊)ことは、1898年にマリ・キュリーらによって発見された。 トリウム232が中性子を吸収するとトリウム233となり、これがベータ崩壊して、プロトアクチニウム233となる。これが更にベータ崩壊してウラン233となる。ウラン233は核燃料であるため、その原料となるトリウムも核燃料として扱われる。.

新しい!!: 理化学的年代とトリウム · 続きを見る »

分光法

プリズムによる光線の波長分割 分光法(ぶんこうほう、spectroscopy)とは、物理的観測量の強度を周波数、エネルギー、時間などの関数として示すことで、対象物の定性・定量あるいは物性を調べる科学的手法である。 spectroscopy の語は、元々は光をプリズムあるいは回折格子でその波長に応じて展開したものをスペクトル (spectrum) と呼んだことに由来する。18世紀から19世紀の物理学において、スペクトルを研究する分野として分光学が確立し、その原理に基づく測定法も分光法 (spectroscopy) と呼ばれた。 もともとは、可視光の放出あるいは吸収を研究する分野であったが、光(可視光)が電磁波の一種であることが判明した19世紀以降は、ラジオ波からガンマ線(γ線)まで、広く電磁波の放出あるいは吸収を測定する方法を分光法と呼ぶようになった。また、光の発生または吸収スペクトルは、物質固有のパターンと物質量に比例したピーク強度を示すために物質の定性あるいは定量に、分析化学から天文学まで広く応用され利用されている。 また光子の吸収または放出は量子力学に基づいて発現し、スペクトルは離散的なエネルギー状態(エネルギー準位)と対応することが広く知られるようになった。そうすると、本来の意味の「スペクトル」とは全く異なる、「質量スペクトル」や「音響スペクトル」など離散的なエネルギー状態を表現した測定チャートもスペクトルとよばれるようになった。また「質量スペクトル」などは物質の定性に使われることから、今日では広義の分光法は「スペクトル」を使用して物性を測定あるいは物質を同定・定量する技法一般の総称となっている。.

新しい!!: 理化学的年代と分光法 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: 理化学的年代とイオン · 続きを見る »

ウラン

ウラン(Uran, uranium )とは、原子番号92の元素。元素記号は U。ウラニウムの名でも知られるが、これは金属元素を意味するラテン語の派生名詞中性語尾 -ium を付けた形である。なお、ウランという名称は、同時期に発見された天王星 (Uranus) の名に由来している。.

新しい!!: 理化学的年代とウラン · 続きを見る »

ウラン238

ウラン238(uranium-238、U)とはウランの同位体の一つ。ウラン238は中性子が衝突するとウラン239となる。ウラン239は不安定でβ-崩壊しネプツニウム239になり、さらにβ-崩壊(半減期2.355日)しプルトニウム239となる。 天然のウランの99.284%がウラン238である。半減期は4.468 × 109年(44億6800万年)。劣化ウランはほとんどがウラン238である。濃縮ウランは天然ウランを濃縮して、よりウラン235の濃度を高めたものである。 ウラン238は核兵器や原子力発電と関係がある。.

新しい!!: 理化学的年代とウラン238 · 続きを見る »

カキ (貝)

イワガキの殻の例 イワガキ(三重県志摩産)非養殖物 殻を開いたところ カキ(牡蛎、蛎、牡蠣、蠣、牡蠇、蠇)は、ウグイスガイ目イタボガキ科とベッコウガキ科に属する二枚貝の総称、あるいはカキ目もしくはカキ上科に属する種の総称。海の岩から「かきおとす」ことから「カキ」と言う名がついたといわれる。古くから、世界各地の沿岸地域で食用、薬品や化粧品、建材(貝殻)として利用されている。 なお英語でカキを指す“oyster”という語は、日本語の「カキ」よりも広義に使われ、岩などに着生する二枚貝のうち形がやや不定形で表面が滑らかでないものであれば全てが含まれる。日本ではカキとは呼ばないアコヤガイ類を pearl oyster と言うほか、ウミギク科やかなり縁遠いキクザル科の貝類も oyster と呼ばれることがあるため、必ずしも oyster=カキではない。.

新しい!!: 理化学的年代とカキ (貝) · 続きを見る »

ジルコン

ルコンサンド ジルコン()は、ケイ酸塩鉱物(ネソケイ酸塩鉱物)の一種。化学組成は ZrSiO4、結晶系は正方晶系。風信子(ヒヤシンス)鉱、ヒヤシンス鉱、風信子(ヒヤシンス)石ともいう。.

新しい!!: 理化学的年代とジルコン · 続きを見る »

火山灰

NASA, public domain 火山灰(かざんばい、)とは、火山の噴出物(火山砕屑物)の一つで、主にマグマが発泡してできる細かい破片のこと。木や紙などを燃やしてできる灰とは成分も性質も異なる。.

新しい!!: 理化学的年代と火山灰 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 理化学的年代と磁場 · 続きを見る »

磁性

物理学において、磁性(じせい、magnetism)とは、物質が原子あるいは原子よりも小さいレベルで磁場に反応する性質であり、他の物質に対して引力や斥力を及ぼす性質の一つである。磁気(じき)とも言う。.

新しい!!: 理化学的年代と磁性 · 続きを見る »

縄文時代

縄文時代(じょうもんじだい)は、約1万5,000年前(紀元前131世紀頃)から約2,300年前(紀元前4世紀頃)、地質年代では更新世末期から完新世にかけて日本列島で発展した時代であり、世界史では中石器時代ないしは、新石器時代に相当する時代である。旧石器時代と縄文時代の違いは、土器の出現や竪穴住居の普及、貝塚の形式などがあげられる。 縄文時代の終わりについては、地域差が大きいものの、定型的な水田耕作を特徴とする弥生文化の登場を契機とするが、その年代については紀元前数世紀から紀元前10世紀頃までで、多くの議論がある。 なお、沖縄県では貝塚時代前期に区分される。次の時代は同地域では貝塚時代後期となり、貝塚文化と呼ばれる。また東北北部から北海道では縄文時代の生活様式が継承されるため、続縄文時代と呼ばれる。.

新しい!!: 理化学的年代と縄文時代 · 続きを見る »

絶対年代

絶対年代(ぜったいねんだい、absolute age)とは、主として考古学分野において、「前○○世紀頃」とか「今からおよそ△△年前」というふうに具体的な数字で出される年代をさす大塚・戸沢(1996)p.182。数値年代(numerical age)とも称する。.

新しい!!: 理化学的年代と絶対年代 · 続きを見る »

炭(すみ、Charcoal)とは、狭義には、有機物が蒸し焼きになり炭化することで得られる、炭素を主成分とする可燃物である。製品である、木炭、竹炭、ヤシガラ炭などは、燃料などに使われる。 広義には炭素を主成分とする燃料全般を意味し、石炭、泥炭などや、石炭製品の練炭、コークスなども含む。 ここでは主に狭義の炭について述べる。.

新しい!!: 理化学的年代と炭 · 続きを見る »

炭素14

炭素14(たんそ14、Carbon-14、14C)は、炭素の放射性同位体。.

新しい!!: 理化学的年代と炭素14 · 続きを見る »

熱ルミネッセンス線量計

熱ルミネッセンス線量計(ねつるみねっせんすせんりょうけい、熱蛍光線量計、Thermoluminescent Dosimeter、TLD)は、検知器の内部の結晶が加熱されたときにそこから放射される可視光の量を測定することにより、放射線の被曝量を測定するための小さな器具である。.

新しい!!: 理化学的年代と熱ルミネッセンス線量計 · 続きを見る »

相対年代

対年代(そうたいねんだい、relative age)とは、考古学や地質学において、AはBよりも古いというように相対的な新旧関係で表記される年代大塚・戸沢(1996)p.190。「絶対年代」(地質学では「数値年代」「放射年代」)の対語。.

新しい!!: 理化学的年代と相対年代 · 続きを見る »

遺物

八幡山城出土香炉 筒井城の出土毬杖毬 伏見城の金箔瓦 勝瑞城の出土かわらけ 遺物(いぶつ)とは、過去の人類が残した土器や石器などの動産的なもの(動かすことのできるもの)の総称である。遺物には人工遺物と自然的遺物がある。さまざまな道具や装飾品のうち、過去より伝わり、現在は使われなくなったもの。.

新しい!!: 理化学的年代と遺物 · 続きを見る »

遺構

遺構(いこう)は、過去の建築物、工作物、土木構造物などが後世に残された状態、言い換えれば過去の人類の活動の痕跡のうちの不動産的なものを指す。現在まで残存している部分のみを言ったり、かつての建造物の構造の痕跡が確認される全体を指したりする。英語で言うところのが、日本語の遺構に近い概念だが、一般的にFeatureには、垂直的なもの(ピット、壁、溝など)は含まれるが、水平的なもの(生活面、床面、庭、道路など)は含まれないとされる。 縄文時代の柱穴遺構(青森県三内丸山遺跡六本柱建物跡).

新しい!!: 理化学的年代と遺構 · 続きを見る »

鍾乳石

1596年の李時珍による『本草綱目』中の石鍾乳の図秋吉台と鍾乳洞探検, 1992. 山口ケイビングクラブ 沖永良部島白蛇洞の鍾乳管 鍾乳石(しょうにゅうせき、)は、洞窟生成物 (石灰華生成物、二次生成物とも)のうち、洞窟の壁や天井からつらら状に垂れ下がるもので、つらら石(氷柱石)とも呼ばれる。広義では、石筍や石柱等を含む洞窟生成物の総称としても使用される。.

新しい!!: 理化学的年代と鍾乳石 · 続きを見る »

貝殻

貝殻 貝殻(かいがら、Shell)は、貝(軟体動物や腕足動物など)が外套膜の外面に分泌する硬組織で、代表的な生体鉱物のひとつである。.

新しい!!: 理化学的年代と貝殻 · 続きを見る »

黒曜石

アメリカ合衆国オレゴン州レイク郡で採取された黒曜石 黒曜石(黒耀石)(こくようせき、obsidian)は、火山岩の一種、及びそれを加工した宝石。岩石名としては黒曜岩(こくようがん)という。 英語名の「オブシディアン」は、エチオピアでオブシウス()なる人物がこの石を発見した、という、大プリニウスの『博物誌』の記述による。.

新しい!!: 理化学的年代と黒曜石 · 続きを見る »

鉱物

いろいろな鉱物 鉱物(こうぶつ、mineral、ミネラル)とは、一般的には、地質学的作用により形成される、天然に産する一定の化学組成を有した無機質結晶質物質のことを指す。一部例外があるが(炭化水素であるカルパチア石など)、鉱物として記載されるためには、人工結晶や活動中の生物に含まれるものは厳密に排除される。また鉱物は、固体でなければならない()。.

新しい!!: 理化学的年代と鉱物 · 続きを見る »

電子スピン共鳴

電子スピン共鳴(でんしスピンきょうめい: Electron Paramagnetic Resonance、略称EPR、Electron Spin Resonance、略称 ESR)は不対電子を検出する分光法の一種。遷移金属イオンもしくは有機化合物中のフリーラジカルの検出に用いられる。.

新しい!!: 理化学的年代と電子スピン共鳴 · 続きを見る »

考古資料

ルーシー」(レプリカ) 考古資料(こうこしりょう)とは歴史を考察する一次資料(実物又は現象に関する資料)文部省告示第164号「公立博物館の設置及び運営上の望ましい基準」第3条(資料)の定義による。のうち、遺構・遺物など考古学的発見によって得られた資料、また考古学が対象として取り扱う資料の総称で、物質のうえにとどめられた人間活動の痕跡のすべてをさす。.

新しい!!: 理化学的年代と考古資料 · 続きを見る »

暦年

暦年(れきねん)とは、暦における1年の区切りをいう。.

新しい!!: 理化学的年代と暦年 · 続きを見る »

泥炭

切り出された泥炭 泥炭(でいたん、)は、泥状の炭で石炭の一種。石炭の中では炭化度が少なく、簡単にいえば、いわゆる石炭と泥の中途半端のようなものともいえる。泥なので一見は湿地帯の表層などにある何の変哲のない普通の泥だが、実は可燃性があり、採取して乾かせば燃料として使用できる。別名にピート、あるいはとも呼ばれる。.

新しい!!: 理化学的年代と泥炭 · 続きを見る »

溶岩

溶岩(熔岩、ようがん、lava)は、火山噴火時に火口から吹き出たマグマを起源とする物質のうち、流体として流れ出た溶融物質と、それが固まってできた岩石。.

新しい!!: 理化学的年代と溶岩 · 続きを見る »

春成秀爾

春成 秀爾(はるなり ひでじ、1942年12月15日 - )は、日本の考古学者。国立歴史民俗博物館名誉教授、総合研究大学院大学名誉教授。専攻は日本考古学。主たる研究領域は旧石器時代から古墳時代にかけての儀礼・祭り・社会構造。日本第四紀学会評議員。考古学研究会会員。総合研究大学院大学(日本歴史専攻)教授。文学博士。2003年(平成15年)、弥生時代の始まりが従来の一般的な年代観よりも500年さかのぼる可能性があるとの見解を発表し、考古学における先史時代の実年代見直しの動きを主導した。また、佐原真の没後、その業績をまとめた『佐原真の仕事』(全6巻)を金関恕とともに編集しており、2005年(平成17年)より岩波書店から刊行されている。 2003年 九州大学 文学博士 論文の題は「縄文社会論究」。.

新しい!!: 理化学的年代と春成秀爾 · 続きを見る »

放射年代測定

放射年代測定(ほうしゃねんだいそくてい、)とは、原子核崩壊による核種変化、または放射線による損傷を利用して、岩石や化石の年代(形成以降の経過年数)を測定することである。 昔は測定された年代を絶対年代と言っていたこともあったが、現在は放射年代と言う。これは、年代測定の方法や試料の性質によって測定された年代の意味が異なるためである。その解釈は慎重に行う必要がある。.

新しい!!: 理化学的年代と放射年代測定 · 続きを見る »

放射性同位体

放射性同位体(ほうしゃせいどういたい、radioisotope、RI)とは、ある元素の同位体で、その核種の不安定性から放射線を放出して放射性崩壊を起こす能力(放射能)を持つ元素を言う。.

新しい!!: 理化学的年代と放射性同位体 · 続きを見る »

放射性炭素年代測定

放射性炭素年代測定(ほうしゃせいたんそねんだいそくてい、)は、自然の生物圏内において放射性同位体である炭素14 (14C) の存在比率が1兆個につき1個のレベルと一定であることを基にした年代測定方法であるアリソン 2011 p.71。対象は動植物の遺骸に限られ、無機物及び金属では測定が出来ない。 C14年代測定(シーじゅうよんねんだいそくてい、シーフォーティーンねんだいそくてい)に同じ。単に炭素年代測定、炭素14法、C14法などともいう。.

新しい!!: 理化学的年代と放射性炭素年代測定 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »