ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

極性変換

索引 極性変換

極性変換(きょくせいへんかん)とは、.

14 関係: 保護基マグネシウムディーター・ゼーバッハイライアス・コーリーグリニャール試薬シントンシアノヒドリンジチアン逆合成解析極性求電子剤求核剤有機化学

化学において、基(き、group、radical)は、その指し示すものは原子の集合体であるが、具体的には複数の異なる概念に対応付けられているため、どの概念を指すものかは文脈に依存して判断される。 分子中に任意の境界を設定すると、原子が相互に共有結合で連結された部分構造を定義することができる。これは、基(または原子団)と呼ばれ、個々の原子団は「~基」(「メチル基」など)と命名される。 「基」という語は、上に述べた原子団を指す場合と、遊離基(またはラジカル)を意味する場合がある。後者の用語法は、日本語でかつて遊離基の個別名称を原子団同様に「~基」(「メチル基」など)としていたことに由来するが、現在ではほとんどの場合「ラジカル」、「遊離基」と呼ぶ。原語における経緯についてはラジカルの項に詳しい。以上、語義の変遷は、おおかた右図のようにまとめられる。 以下この記事では、原子団たる基(group)について述べる。.

新しい!!: 極性変換と基 · 続きを見る »

保護基

有機合成において、反応性の高い官能基をその後の反応に於いて不活性な官能基に変換しておくことを「保護」といい、その官能基を保護基(ほごき)と言う。また、保護した官能基は必要な反応が終了した後、適当な反応を行うことで保護をはずす。このことを脱保護という。様々な条件で外れる保護基が開発されており、複雑な化合物の合成では保護基の選択や脱保護の順序などの戦略が成否を分けることも多い。また、保護を施すことで分子全体の反応性が変わることもある。 例えば、アルデヒドは求核付加反応に対して活性であるが、アルデヒドをアセタールにすることで保護し求核付加反応に対して不活性とすることができる。また、アセタールは酸性条件下で水との反応により脱保護され、元のアルデヒドへと戻すことができる。.

新しい!!: 極性変換と保護基 · 続きを見る »

マグネシウム

マグネシウム(magnesium )は原子番号 12、原子量 24.305 の金属元素である。元素記号は Mg。マグネシュームと転訛することがある。中国語は金へんに美と記する。 周期表第2族元素の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)であり、とりわけ植物の光合成に必要なクロロフィルで配位結合の中心として不可欠である。また、有機化学においてはグリニャール試薬の構成元素として重要である。 酸化マグネシウムおよびオキソ酸塩の成分としての酸化マグネシウムを、苦い味に由来して苦土(くど、bitter salts)とも呼称する。.

新しい!!: 極性変換とマグネシウム · 続きを見る »

ディーター・ゼーバッハ

ディーター・ゼーバッハ(Dieter Seebach, 1937年10月31日 - )は、ドイツ・カールスルーエ出身の化学者。 カールスルーエ大学で化学を専攻し、1964年にルドルフ・クリーギーの指導の下博士号を取得。その後博士研究員・講師としてハーバード大学のイライアス・コーリー研に約2年間所属し、ジチアン類を中心とする極性変換の研究を推進した。 帰国後、1971年にギーセン大学に職を得る。1977年にチューリッヒ工科大学に移り、2003年に退職するまで教授を務めた。.

新しい!!: 極性変換とディーター・ゼーバッハ · 続きを見る »

イライアス・コーリー

イライアス・ジェイムズ “E.J.” コーリー(Elias James “E.J.” Corey、1928年7月12日 - )は、アメリカ合衆国の有機化学者である。1990年の「有機合成理論および方法論の開発」、特に逆合成解析における功績で、ノーベル化学賞を受賞した。2011年現在存命の最も偉大な化学者の1人であり、多くの人々の尊敬を集めている。コーリーは数々の合成試薬や方法論を開発し、有機合成の分野の発展に大きく寄与した。.

新しい!!: 極性変換とイライアス・コーリー · 続きを見る »

グリニャール試薬

リニャール試薬(グリニャールしやく、Grignard reagent)はヴィクトル・グリニャールが発見した有機マグネシウムハロゲン化物で、一般式が R−MgX と表される有機金属試薬である(R は有機基、X はハロゲンを示す)。昨今の有機合成にはもはや欠かせない有機金属化学の黎明期を支えた試薬であり、今もなおその多彩な用途が広く利用される有機反応試剤として、近代有機化学を通して非常に重要な位置を占めている。 その調製は比較的容易であり、ハロゲン化アルキルにエーテル溶媒中で金属マグネシウムを作用させると、炭素-ハロゲン結合が炭素-マグネシウム結合に置き換わりグリニャール試薬が生成する。生成する炭素-マグネシウム結合では炭素が陰性、マグネシウムが陽性に強く分極しているため、グリニャール試薬の有機基は強い求核試薬 (形式的には R−)としての性質を示す。 また、強力な塩基性を示すため、酸性プロトンが存在すると、酸塩基反応によりグリニャール試薬は炭化水素になってしまう。そのため、水の存在下では取り扱うことができず、グリニャール試薬を合成する際には原料や器具を十分に乾燥させておく必要がある。これらの反応性や取り扱いはアルキルリチウムと類似している。.

新しい!!: 極性変換とグリニャール試薬 · 続きを見る »

シントン

ントン (synthon) は逆合成解析で用いられる概念のひとつで、合成等価体(ごうせいとうかたい、synthetic equivalent)ともいう。多段階の有機合成を行う際、分子中の一部分について、化学変換による置き換えが可能であることから、合成経路の設計上、等価であるとみなすことのできる構造単位である。イライアス・コーリーによって考案された。 例えばフェニル酢酸の合成を考える場合、2つのシントンが設定できる。すなわち求核剤となる部分 −COOH と、求電子剤となる部分 PhCH2+ である。これらの断片はそのままの形で存在するわけではないが、反応によって等価に振舞う前駆体を用意することができる。 つまり、シアニドイオン CN− を −COOH の、臭化ベンジル PhCH2Br を PhCH2+ 等価体として用いることができる。これらの化合物を用いた反応は、以下のように進められる。まず臭化ベンジルにシアン化ナトリウムを作用させ、フェニルアセトニトリルを得る。次にこれを加水分解するとフェニル酢酸が生成する。.

新しい!!: 極性変換とシントン · 続きを見る »

シアノヒドリン

アノヒドリン (cyanohydrin) は分子内にシアノ基とヒドロキシ基を持つ化学種の総称である。特にシアノ基のα位にヒドロキシ基を持つα-シアノヒドリンを指すことが多い。 カルボン酸やアミノ酸の前駆体として工業的に重要である。また、ストレッカー反応において中間体として生成する。.

新しい!!: 極性変換とシアノヒドリン · 続きを見る »

ジチアン

チアン (dithiane) とは有機硫黄化合物で、硫黄を2個含む飽和複素6員環化合物のこと。あるいはその構造を含む化合物群。有機合成において 1,3-ジチアン環が重要であり、ビルディングブロックとして、または保護基として用いられる。.

新しい!!: 極性変換とジチアン · 続きを見る »

逆合成解析

逆合成解析(Retrosynthetic analysis)とは有機合成化学の多段階合成において、目的とする化合物を得るための効率的な合成経路を決定する方法である。これは目的とする分子を単純な構造の前駆体へと合理的に切り分けることによりなされる。最終的には、同様な手法を繰り返すことにより、各々の前駆体を入手容易な、もしくは市販されている化合物へと導く。イライアス・コーリーはこの概念を彼の著書に記している。この逆合成によって得られる合成可能なルートは一つないしはそれ以上のものになる可能性があるが、その中でもより論理的かつ合理的な逆合成を行うことが重要である。.

新しい!!: 極性変換と逆合成解析 · 続きを見る »

極性

極性.

新しい!!: 極性変換と極性 · 続きを見る »

求電子剤

求電子剤(きゅうでんしざい、electrophile)あるいは求電子試薬(—しやく)、求電子種(—しゅ)とは、異なる化学種の間で電子の授受をともないながら化学結合を生成する反応において、電子を受け取る側、奪う側の化学種を指す、有機化学などで使われる用語である。これに対し、電子を与える側の化学種は求核剤(nucleophile)と呼ばれる。 「electrophile」という呼称は「nucleophile」とともに、クリストファー・ケルク・インゴルドにより提唱された。かつて日本では「electrophile」の訳に親電子の語が当てられた為に親電子剤と呼ばれることもある。求電子剤を機構の説明で図示する際に、その英語名から E と略される。 求電子剤は、反応する対象となる求核剤の、電子密度の高い部位に対して攻撃を行う。有機反応の多くは電子対の授受であるため、その場合は求電子剤をルイス酸と見なすこともできる。求電子剤には、陽イオン(H+、NO2+ など)、分極により陽性を帯びた部位を持つ中性分子(HCl、各種ルイス酸、ハロゲン化アルキル、カルボン酸ハロゲン化物、カルボニル化合物 など)、求核種の接近により分極が誘起される分子(Cl2、Br2 など)、酸化剤(過酸 RC(.

新しい!!: 極性変換と求電子剤 · 続きを見る »

求核剤

求核剤(きゅうかくざい、nucleophile)とは、電子密度が低い原子(主に炭素)へ反応し、多くの場合結合を作る化学種のことである。広義では、求電子剤と反応する化学種を求核剤と見なす。求核剤が関与する反応はその反応様式により求核置換反応あるいは求核付加反応などと呼称される。求核剤は、反応機構を図示する際に英語名の頭文字をとり、しばしばNuと略記される。 求核剤として反応性の高い化学種のほとんどは孤立電子対を持つ。アニオンであることも多い。例として、各種カルバニオン、アミンまたはその共役塩基(アミド)、アルコールまたはその共役塩基(アルコキシド)、ハロゲン化物イオンなど、多数が挙げられる。 一方、求核剤が攻撃対象とする炭素原子(反応中心炭素)の多くは、電気陰性度が高い原子(酸素、ハロゲンなど)に隣接するなどの理由によりその電子密度が低下している。例として、カルボニル基、ハロゲン化アルキル、シアノ基 などの炭素原子が挙げられる。これらは、後述する有機金属試薬を求核剤として作用させると、反応して炭素-炭素結合を作る。カルボニル基を攻撃する求核剤をハード求核剤、飽和した炭素を攻撃するものをソフト求核剤という。 求核的反応において孤立電子対の授受に着目すると、求核剤はルイス塩基として、反応中心炭素はルイス酸と見なすことができる。 求核的反応は、溶媒効果、隣接基効果、あるいは立体効果(立体障害)などの影響を受けることがある。溶媒効果は求核種の反応性に影響を与える。隣接基効果や立体効果は、反応速度や、生成物の選択性に影響する。また、求核的反応の反応性を評価、予測する経験則として、HSAB則、ハメット則が知られる。有機電子論の項目も参照されたい。 グリニャール試薬や有機リチウム化合物を代表とする各種有機金属試薬は、多様な基質に対し高い反応性を示すことから、有機合成法上、炭素-炭素結合を得たいときに用いられる重要な求核剤である。特に立体特異的な求核置換反応(SN2反応)や求核付加反応は選択的立体制御を可能にすることから不斉合成において多用される。.

新しい!!: 極性変換と求核剤 · 続きを見る »

有機化学

有機化学(ゆうきかがく、英語:organic chemistry)は、有機化合物の製法、構造、用途、性質についての研究をする化学の部門である。 構造有機化学、反応有機化学(有機反応論)、合成有機化学、生物有機化学などの分野がある。 炭素化合物の多くは有機化合物である。また、生体を構成するタンパク質や核酸、糖、脂質といった化合物はすべて炭素化合物である。ケイ素はいくぶん似た性質を持つが、炭素に比べると Si−Si 結合やSi.

新しい!!: 極性変換と有機化学 · 続きを見る »

ここにリダイレクトされます:

ウムポルンク極性反転極性転換

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »