ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

有色体

索引 有色体

Ophrys apifera 。有色体は、植物の花弁や萼片の色の源となる。 有色体またはクロモプラスト (Chromoplast) は、特定の光合成を行う真核生物において、色素の合成と貯蔵に関わる色素体、細胞小器官である。.

57 関係: 対立遺伝子マンゴーチョウチラコイドネオキサンチンハチバレンシアオレンジリコペンルテイントマトプロテイノプラストビオラキサンチンビタミンデンプンデオキシリボ核酸フラボノイドニンジンホルモンアミロプラストアモルファスアントシアニンエチオプラストエライオプラストオレンジカロテノイドカロテンキサントフィルクロマトグラフィークロロフィルゲノムシトシンストロマサツマイモ共生光合成光学顕微鏡種子植物細胞小器官紅葉真核生物甲虫類白色体DNAメチル化芳香族化合物藍藻葉緑体脂質色素...色素体電子顕微鏡老化送粉者果実液胞 インデックスを展開 (7 もっと) »

対立遺伝子

対立遺伝子(たいりついでんし、)とは、対立形質を規定する個々の遺伝子を指す。アレルと呼ばれることもある。.

新しい!!: 有色体と対立遺伝子 · 続きを見る »

マンゴー

マンゴー(檬果、芒果、学名: Mangifera indica)は、ウルシ科マンゴー属の果樹、またその果実。菴羅(あんら)、菴摩羅(あんまら)ともいう。マンゴーの栽培は古く、紀元前のインドで始まっており、仏教では、聖なる樹とされ、ヒンドゥー教では、マンゴーは万物を支配する神「プラジャーパティ」の化身とされている。.

新しい!!: 有色体とマンゴー · 続きを見る »

チョウ

チョウ(蝶)は、昆虫綱チョウ目(鱗翅目、ガ目とも)のうち、 に分類される生物の総称である。 チョウ目の21上科のうち、アゲハチョウ上科、セセリチョウ上科、シャクガモドキ上科の3上科が、いくつかの特徴を共有し、 に分類される、すなわちチョウである。 その他のチョウ目の種はガ(蛾)と呼ばれるが、チョウはチョウ目の系統の中でかなり深いところにある派生的な系統で、それに対しガは「チョウでない」としか定義できない側系統であり、チョウ目をチョウとガに分けるのは自然な分類ではない。(チョウ目#チョウとガの区別参照)。しかし、一般には完全に区別して扱われ、昆虫採集においてもっとも愛されてきた昆虫である。.

新しい!!: 有色体とチョウ · 続きを見る »

チラコイド

チラコイド(緑)は、葉緑体の中にある。 チラコイド(Thylakoid)は、葉緑体やシアノバクテリア中で膜に結合した区画である。光合成の光化学反応が起こる場所である。チラコイドという言葉は、「嚢」を表すギリシャ語の θύλακος (thylakos)に由来する。チラコイドは、ルーメンの周りを取り巻くチラコイド膜から構成される。緑色植物の葉緑体のチラコイドは円盤状で、積み重なってグラナと呼ばれる構造をなしている。グラナはストロマとつながり、単一機能を持つ構造を作っている。.

新しい!!: 有色体とチラコイド · 続きを見る »

ネオキサンチン

ネオキサンチン(Neoxanthin)は、カロテノイド、キサントフィルである。植物では、植物ホルモンアブシジン酸の生合成における中間体である。ビオラキサンチンからネオキサンチンシンターゼの作用によって合成される。ホウレンソウのような緑色の葉物野菜に含まれる主要なキサントフィルである。.

新しい!!: 有色体とネオキサンチン · 続きを見る »

ハチ

蜂の巣。六角形の部屋が密集してできている。 ハチ(蜂)とは、昆虫綱ハチ目(膜翅目)に分類される昆虫のうち、アリ(ハチ類ではあるが、多くの言語・文化概念上、生活様式の違い等から区別される)と呼ばれる分類群以外の総称。ハバチ亜目の全てと、ハチ亜目のうちハナバチ、スズメバチ等がこれに含まれる(ハチ目を参照)。.

新しい!!: 有色体とハチ · 続きを見る »

バレンシアオレンジ

バレンシアオレンジの果実 バレンシアオレンジ(Valencia Orange)は柑橘類の一種で、スイートオレンジの中では最もよく知られた品種のひとつである。「バレンシア」からは、しばしばオレンジの産地として有名な、スペイン東部の地中海沿岸部にあるバレンシア州や、その州都であるバレンシアが連想されるが、原産地はアメリカ合衆国カリフォルニア州のサンタアナである。.

新しい!!: 有色体とバレンシアオレンジ · 続きを見る »

リコペン

リコペン (リコピン、lycopene) は、カロテンの1種で、鮮やかな赤色を呈す有機化合物である。.

新しい!!: 有色体とリコペン · 続きを見る »

ルテイン

ルテイン(Lutein、luteus)は、600種以上知られているカロテノイドのうちの一つ。ホウレンソウやケールなどの緑葉野菜、卵黄、動物脂肪、黄体で見られる。生体内では酸化防止剤として作用し、青色光を吸収する。ルテインは植物において、1〜2ヶ所のヒドロキシル基にそれぞれ脂肪酸が結合した脂肪酸エステルを形成する。ルテインエステルを鹸化すると約1:2のモル比でルテインが生成される。 脂溶性の分子であり水には溶けない。不飽和二重結合(ポリエン鎖)の発色団により特有な光吸収性を持つ。ポリエン鎖は光もしくは熱による酸化分解を受けやすく、酸に対しても不安定である。.

新しい!!: 有色体とルテイン · 続きを見る »

トマト

トマト(学名:Solanum lycopersicum、)は、南アメリカのアンデス山脈高原地帯(ペルー、エクアドル)原産のナス科ナス属の植物。また、その果実のこと。多年生植物で、果実は食用として利用される。緑黄色野菜の一種である。日本語では、、、、などの異称もある。.

新しい!!: 有色体とトマト · 続きを見る »

プロテイノプラスト

色素体の種類 プロテイノプラスト(Proteinoplast)は、植物細胞のみに見られる特殊な細胞小器官である。タンパク質の結晶を含み、酵素作用の場となる。プロテイノプラストは、ブラジルナッツやラッカセイ等の多くの植物の種子に含まれる。全ての色素体は、高濃度のタンパク質を含むが、プロテイノプラストは、1960年代から1970年代にかけて、光学顕微鏡でも電子顕微鏡でも見える大きなタンパク質包摂体として発見された。アミロプラストがデンプン貯蔵、エライオプラストが脂肪貯蔵に特化しているように、プロテイノプラストがタンパク質貯蔵に特化しているか否かは分かっていない。2007年に書かれた文献では、プロテイノプラストに関して、それまでの25年で研究論文が全く出されていないことが記述されている。 プロテイノプラストは色素体の1種であり、色素を欠くことから、特に白色体に分類される。.

新しい!!: 有色体とプロテイノプラスト · 続きを見る »

ビオラキサンチン

ビオラキサンチン(Violaxanthin)は、橙色の天然のキサントフィル色素であり、パンジーなどの様々な植物に含まれている。ゼアキサンチンのエポキシド化によって合成される。食品添加物として、E番号E161eの着色料として用いられる。欧州連合やアメリカ合衆国では使用が承認されていないが、オーストラリアやニュージーランドでは承認されている。.

新しい!!: 有色体とビオラキサンチン · 続きを見る »

ビタミン

ビタミン(ヴィタミン、 )は、生物の生存・生育に微量に必要な栄養素のうち、炭水化物・タンパク質・脂質以外の有機化合物の総称である(なお栄養素のうち無機物はミネラルである)。 生物種によってビタミンとして働く物質は異なる。たとえばアスコルビン酸はヒトにはビタミンCだが、多くの生物にはそうではない。ヒトのビタミンは13種が認められている。 ビタミンは機能で分類され、物質名ではない。たとえばビタミンAはレチナール、レチノールなどからなる。 ビタミンはほとんどの場合、生体内で十分量合成することができないので、主に食料から摂取される(一部は腸内細菌から供給される)。ビタミンが不足すると、疾病や成長障害が起こりうる(ビタミン欠乏症)。日本では厚生労働省が日本人の食事摂取基準によって各ビタミンの指標を定めており、摂取不足の回避を目的とする3種類の指標と、過剰摂取による健康障害の回避を目的とする指標、及び生活習慣病の予防を目的とする指標から構成されている。.

新しい!!: 有色体とビタミン · 続きを見る »

デンプン

デンプン(澱粉、amylum、starch)とは、分子式(C6H10O5)n の炭水化物(多糖類)で、多数のα-グルコース分子がグリコシド結合によって重合した天然高分子である。構成単位であるグルコースとは異なる性質を示す。陸上植物におけるグルコース貯蔵の一形態であり、種子や球根などに多く含まれている。 高等植物の細胞において認められるデンプンの結晶(デンプン粒)やそれを取り出して集めたものも、一般にデンプンと呼ばれる。デンプン粒の形状や性質(特に糊化特性)は起源となった植物の種類によりかなり異なる。トウモロコシを原料として取り出したものを特にコーンスターチと呼ぶ。.

新しい!!: 有色体とデンプン · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 有色体とデオキシリボ核酸 · 続きを見る »

フラボノイド

フラボノイド (flavonoid) は天然に存在する有機化合物群で、クマル酸CoAとマロニルCoAが重合してできるカルコンから派生する植物二次代謝物の総称。いわゆるポリフェノールと呼ばれる、より大きな化合物グループの代表例。その中にアントシアニン、カテキンやフラバンを含む広い概念で、付着する糖のバリエーションを考慮すると7,000以上の構造が知られている。フラボンやアントシアニンは天然色素として用いられる。また花の色素として知られるアントシアニンは紅葉(赤色)の原因でもある。フラボノイドのうち、クエルセチン、ヘスペリジンなどをあわせてビタミンPと呼ぶこともある。しかし、日本ビタミン学会はビタミンPをビタミン様物質として規定している。つまり、ビタミンPはビタミンではない。 シキミ酸経路でできるフェニルアラニンの脱アミノで生成するクマル酸が補酵素Aと結合してクマル酸CoA(4-クマロイルCoA)ができる。次に酢酸マロン酸経路のマロニルCoA、3分子がそれと反応してカルコンが生成する。カルコンからフラバノンを経てジヒドロフラボノールが生成し、ジヒドロフラボノールからフラボノール、アントシアニ(ジ)ンやプロアントシアニジン(タンニン)誘導される。.

新しい!!: 有色体とフラボノイド · 続きを見る »

ニンジン

ニンジンの根 ニンジン(人参、学名:Daucus carota subsp.

新しい!!: 有色体とニンジン · 続きを見る »

ホルモン

ホルモン(Hormon、hormone)は、狭義には生体の外部や内部に起こった情報に対応し、体内において特定の器官で合成・分泌され、血液など体液を通して体内を循環し、別の決まった細胞でその効果を発揮する生理活性物質を指す生化学辞典第2版、p.1285 【ホルモン】。ホルモンが伝える情報は生体中の機能を発現させ、恒常性を維持するなど、生物の正常な状態を支え、都合よい状態にする生化学辞典第2版、p.1285 【ホルモン作用】重要な役割を果たす。ただし、ホルモンの作用については未だわかっていない事が多い。.

新しい!!: 有色体とホルモン · 続きを見る »

アミロプラスト

ジャガイモの細胞に含まれるアミロプラスト アミロプラスト(Amyloplast)とは、プラスチド内にデンプン粒を含む細胞小器官。白色体の一種であり、サツマイモの塊根やジャガイモの塊茎、イネ、コムギ子実の胚乳、マメ科の子葉など、デンプン摂取を目的とした可食部には多くみられる。 一般的に、アミロプラストはプラスチド内に複数のデンプン粒をもつ複粒のアミロプラストと、プラスチド内に1つのデンプン粒しか含まない単粒のアミロプラストが存在する。普通、イネの胚乳では複粒のアミロプラストがみられ、コムギの胚乳では単粒のアミロプラストがみられる。形状も植物の種や、組織によって様々なものが観察されており、コムギの胚乳内では、どら焼きの様な形の大型のアミロプラストと、丸い小型のアミロプラストが混在している。可食部以外にも、根、葉、茎などで観察される。 Category:細胞小器官 Category:植物細胞 Category:植物生理学 Category:細胞解剖学.

新しい!!: 有色体とアミロプラスト · 続きを見る »

アモルファス

アモルファス、あるいは 非晶質(ひしょうしつ)とは、結晶のような長距離秩序はないが、短距離秩序はある物質の状態。これは熱力学的には、非平衡な準安定状態である。 は、(形を持つ)に「非」の意味の接頭辞 a‐ が付いた語(19世紀にスウェーデンのイェンス・ベルセリウスが非結晶の固体に対して命名した)。結晶は、明礬や水晶のようにそれぞれ固有の結晶形態を持っており、 である。しかし、急冷や不純物が混じった状態で出来た固体は、時間的空間的に規則的な原子配列が取れず非晶質となり、不定形である。 アモルファス状態は、非金属ではしばしば見られる状態である。しかし、金属にもアモルファス状態が存在することは、アメリカのポール・デュエイ カリフォルニア工科大学教授らが1960年に発見した。.

新しい!!: 有色体とアモルファス · 続きを見る »

アントシアニン

アントシアニン()は、植物界において広く存在する色素、アントシアン(、果実や花の赤、青、紫を示す水溶性色素の総称)のうち、アントシアニジン()がアグリコンとして糖や糖鎖と結びついた配糖体成分のこと。 高等植物では普遍的な物質であり、花や果実の色の表現に役立っている。フラボノイドの一種で、抗酸化物質として知られる。.

新しい!!: 有色体とアントシアニン · 続きを見る »

エチオプラスト

色素体の種類 エチオプラスト(Etioplast)は、光に晒されない葉緑体である。暗い場所で育つ顕花植物等で見られる。植物が数日間、光に当たらないと、通常の葉緑体は、エチオプラストに変化する。エチオプラストは活性型の色素を欠いており、白色体と見なされる。エチオプラストの割合が高くなると、葉は、緑色よりも黄色っぽくなる。 光に曝露されるとすぐに始まるサイトカイニンによるクロロフィル合成が刺激となり、エチオプラストは葉緑体に変換する。この過程の最中、ラメラ形成体からはチラコイドとグラナが生じる。.

新しい!!: 有色体とエチオプラスト · 続きを見る »

エライオプラスト

ライオプラストの分化 バニラの幼葉の細胞。E - エライオプラスト; Л - 核; Я - 白色体; B - 小嚢Illustration from Collegiate Dictionary, FA Brockhaus and IA Efron, circa 1905. エライオプラスト(Elaioplast)は、植物で脂肪を貯蔵することに特化した白色体の種類の1つである。エライオプラストは、油体を油滴状の物質にして貯蔵し、これは生命に必須の脂肪小滴になる。 貯蔵に特化した白色体としては、他にデンプンを貯蔵するアミロプラスト等がある。.

新しい!!: 有色体とエライオプラスト · 続きを見る »

オレンジ

レンジの実と花 オレンジ。内部の様子がよくわかる。 ブラッドオレンジ オレンジ(英名: orange、学名: Citrus sinensis)はミカン科ミカン属の常緑小高木、またはその果実のこと。 (syn. C. aurantium)、柑橘類に属する。和名はアマダイダイ(甘橙、甘代々)。オレンジ類はスイートオレンジ、サワーオレンジ、マンダリンオレンジに大別される。 我々の日常生活において単にオレンジというと、非常に多く栽培、流通されているスイートオレンジのネーブルオレンジかバレンシアオレンジを指すことが多い。また、英語の orange という単語がよく「みかん」と日本語訳されることが多いが、日本で単に「みかん」というとマンダリンオレンジの近縁である温州みかんを指すことが多く、同じ柑橘属であるが、別の種類である。 なお、オレンジの果実のような暖色をオレンジ色という(橙色と区別される事もある)。.

新しい!!: 有色体とオレンジ · 続きを見る »

カロテノイド

テノイド(カロチノイド,carotenoid)は黄、橙、赤色などを示す天然色素の一群である。 微生物、動物、植物などからこれまで750種類以上のカロテノイドが同定されている。たとえばトマトやニンジン、フラミンゴやロブスターの示す色はカロテノイド色素による着色である。自然界におけるカロテノイドの生理作用は多岐にわたり、とくに光合成における補助集光作用、光保護作用や抗酸化作用等に重要な役割を果たす。また、ヒトをはじめとする動物の必須栄養素であるビタミンAの前駆体となるほか、近年ではがんや心臓病の予防効果も報告されている眞岡孝至『』食品・臨床栄養、2、2007年。。 カロテノイドは一般に8個のイソプレン単位が結合して構成された化学式 C40H56 の基本骨格を持つ。テルペノイドの一種でもあり、テトラテルペンに分類される。ごくわずかの細菌からは、化学式C30H48を基本骨格とするものも発見されており、トリテルペンに分類される。カロテノイドのうち炭素と水素原子のみで構成されるものはカロテン類、これに加えて酸素原子を含むものはキサントフィル類に分類される。カロテンの名称はニンジン(carrot)から得られた不飽和炭化水素(ene)に、キサントフィルの名称は黄色い(xantho)葉(phyll)の色素にそれぞれ由来する。 カロテノイドの色素としての性質は、その分子骨格にそってのびる長い共役二重結合(ポリエン)によるものである。その共役系の長さによって、400から500 nm の間に極大をもつ異なる吸収スペクトルを示すことにより、黄色、橙色、赤色の異なる色を呈する。また、カロテノイドのもつ高い抗酸化作用もこの共役二重結合に由来する。.

新しい!!: 有色体とカロテノイド · 続きを見る »

カロテン

テン、カロチン(carotene、carotine)は、カロテノイドのうち炭素と水素とから成る化合物の総称である。植物によって生合成されるが、動物は生合成することができない。カロテンは光合成において重要な橙色光合成色素の一つである。ニンジン(carota、carrot)の橙色の元であり、これがカロテンの語源となっている。しかし、ニンジンだけでなく多くの果物や野菜(例えばサツマイモやマスクメロン)に含まれている。枯れ葉の橙色や乳脂肪、バター、卵黄の黄色も、カロテンによる着色である。ヒトやニワトリの典型的な黄色脂肪は、それら食物由来のカロテンの脂肪貯蔵の結果である。 カロテンは、吸収した光エネルギーをクロロフィルへ伝送することで光合成に寄与している。また、カロテンは、光合成中に形成する酸素分子の活性型である一重項酸素のエネルギーを吸収するので、植物組織の保護に役立っている。 化学的には、カロテンはテルペンの一つであり、8個のイソプレン単位から生合成される。カロテンには、主にα-カロテンとβ-カロテンの2種の異性体がある。カロテンは酸素原子を含まない炭化水素分子なので、脂溶性であり水には溶けない。.

新しい!!: 有色体とカロテン · 続きを見る »

キサントフィル

ントフィル(英:Xanthophyll、独:Xanthophylle)は、カロテノイド由来の黄色の色素である。分子構造はカロテンが基本であるが、カロテンとは違い水素原子のいくつかがヒドロキシル基、または同じ炭素原子に結合する水素原子のペアがオキソ基と置換した構造を持つ。キサントフィルはほとんどの植物に存在し、葉の色素体で生合成される。緑色のクロロフィルとともに光合成に関わっている。なお、クロロフィルは秋の寒さによって変性し葉は特有の色に変わる。 植物では、キサントフィルはカロテンと共に光合成の補助色素だと考えられている。葉や花などを赤色と青色、紫色にするアントシアニン類は光合成には関与しないため補助色素ではない。 動物はキサントフィルを生合成することができないため食物から摂取する必要がある。卵黄の黄色は摂取したキサントフィルによるものである。 キサントフィルはカロテンの酸化誘導体と見なすことができる。ヒドロキシル基を含むためカロテンよりも極性が大きく、ペーパークロマトグラフィーではカロテンよりも移動しない。 キサントフィルには、ルテイン、ゼアキサンチン、ネオキサンチン、ビオラキサンチン、α-およびβ-クリプトキサンチンなどがある。.

新しい!!: 有色体とキサントフィル · 続きを見る »

クロマトグラフィー

フィルはクロマトグラフィーによって成分ごとに分離することができる。 クロマトグラフィー は、ロシアの植物学者ミハイル・ツヴェットが発明した、物質を分離・精製する技法。物質の大きさ・吸着力・電荷・質量・疎水性などの違いを利用して、物質を成分ごとに分離する。 クロマトグラフィーは色(ギリシャ語で )を分けるといった意味合いを持つ。これは、ツヴェットがクロマトグラフィーで植物色素を分離した際に色素別に色が分かれて帯ができたことに由来する。.

新しい!!: 有色体とクロマトグラフィー · 続きを見る »

クロロフィル

フィルの1種、クロロフィル''a'' の分子構造。マグネシウムが配位した テトラピロール環(クロリン)に、長鎖アルコール(フィトール)がエステル結合している。 クロロフィル (Chlorophyll) は、光合成の明反応で光エネルギーを吸収する役割をもつ化学物質。葉緑素(ようりょくそ)ともいう。 4つのピロールが環を巻いた構造であるテトラピロールに、フィトール (phytol) と呼ばれる長鎖アルコールがエステル結合した基本構造をもつ。環構造や置換基が異なる数種類が知られ、ひとつの生物が複数種類をもつことも珍しくない。植物では葉緑体のチラコイドに多く存在する。 天然に存在するものは一般にマグネシウムがテトラピロール環中心に配位した構造をもつ。マグネシウム以外では、亜鉛が配位した例が紅色光合成細菌 Acidiphilium rubrum において報告されている。金属がはずれ、2つの水素で置換された物質はフェオフィチンと呼ばれる。抽出されたクロロフィルでは、化学反応によって中心元素を人工的に置換することができる。特に銅が配位したものはマグネシウムのものよりも光や酸に対して安定であり、化粧品や食品への添加物として利用される。 2010年にクロロフィルfの発見が報告された。NMR、質量分析法等のデータから構造式はC55H70O6N4Mgだと考えられている。.

新しい!!: 有色体とクロロフィル · 続きを見る »

ゲノム

ノム(Genom、genome, ジーノーム)とは、「遺伝情報の全体・総体」を意味するドイツ語由来の語彙であり、より具体的・限定的な意味・用法としては、現在、大きく分けて以下の2つがある。 古典的遺伝学の立場からは、二倍体生物におけるゲノムは生殖細胞に含まれる染色体もしくは遺伝子全体を指し、このため体細胞には2組のゲノムが存在すると考える。原核生物、細胞内小器官、ウイルス等の一倍体生物においては、DNA(一部のウイルスやウイロイドではRNA)上の全遺伝情報を指す。 分子生物学の立場からは、すべての生物を一元的に扱いたいという考えに基づき、ゲノムはある生物のもつ全ての核酸上の遺伝情報としている。ただし、真核生物の場合は細胞小器官(ミトコンドリア、葉緑体など)が持つゲノムは独立に扱われる(ヒトゲノムにヒトミトコンドリアのゲノムは含まれない)。 ゲノムは、タンパク質をコードするコーディング領域と、それ以外のノンコーディング領域に大別される。 ゲノム解読当初、ノンコーディング領域はその一部が遺伝子発現調節等に関与することが知られていたが、大部分は意味をもたないものと考えられ、ジャンクDNAとも呼ばれていた。現在では遺伝子発現調節のほか、RNA遺伝子など、生体機能に必須の情報がこの領域に多く含まれることが明らかにされている。.

新しい!!: 有色体とゲノム · 続きを見る »

シトシン

トシン (cytosine) は核酸を構成する5種類の主な塩基のうちのひとつで、ピリミジン塩基である。分子量は 111.10。右図の構造に対応するIUPAC名は 4-アミノピリミジン-2(1H)-オン (4-aminopyrimidin-2(1H)-one) であるが、ほかに互変異性として、3H体と、4-アミノピリミジン-2-オールをとることができる。 シトシンから誘導されるヌクレオシドはシチジンである。DNA、あるいはRNAの二重鎖構造の中ではグアニンと3本の水素結合を介して塩基対を作る。.

新しい!!: 有色体とシトシン · 続きを見る »

ストロマ

ルーメン) ストロマ(Stroma)とは、植物細胞内の葉緑体内でグラナを取り囲む無色の液体のことである。 チラコイドが重なったグラナにおいて光合成が開始し、ストロマ内で化学変化が完了する 。 光合成は、2段階で行われる。第1段階では、明反応で光エネルギーが捕捉され、それを用いてエネルギー貯蔵分子であるATPとNADPHが作られる。第2段階では、暗反応によりこれらの生成物を用いて二酸化炭素の捕捉と還元が行われる。 ストロマで起こるこれらの一連の生化学酸化還元反応は、総称してカルビン回路と呼ばれる。炭素固定、還元反応、リブロース-1,5-ビスリン酸再生の3段階からなる。 またストロマは、葉緑体DNAや葉緑体リボソームが存在する場所であり、そのため、葉緑体DNA複製や一部の葉緑体タンパク質の転写/翻訳もストロマで行われる。.

新しい!!: 有色体とストロマ · 続きを見る »

サツマイモ

掘り出したサツマイモ サツマイモのアミノ酸スコア http://www.nal.usda.gov/fnic/foodcomp/search/『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』日本アミノ酸学会監訳、医歯薬出版、2009年05月。ISBN 978-4263705681 邦訳元 ''http://whqlibdoc.who.int/trs/WHO_TRS_935_eng.pdf Protein and amino acid requirements in human nutrition'', Report of a Joint WHO/FAO/UNU Expert Consultation, 2007 サツマイモ(薩摩芋、学名: Ipomoea batatas)は、ヒルガオ科サツマイモ属の植物。あるいはその食用部分である塊根(養分を蓄えている肥大した根)。別名に、甘藷(かんしょ)、唐芋(からいも、とういも)、琉球薯(りゅうきゅういも)、とん、はぬす等がある。近縁の植物に、アサガオやヨウサイ(アサガオ菜)がある。 英語圏の一部では、サツマイモ「sweet potato」を「Yam」などの別の名前で呼んでいるニュージーランドではkumaraと呼ぶ。ヤム芋を育てていたアフリカ系奴隷が、アメリカで作られた水っぽい「ソフトスイートポテト品種」をヤム芋と似ていたことから「ヤム」と呼ぶようになった。アメリカなどでは本来のヤム芋は輸入食料品店ぐらいにしか置いてないことから、ヤムと表示されていれば「ラベルに注意書き」が無い限り「ソフト」スイートポテトのことである。.

新しい!!: 有色体とサツマイモ · 続きを見る »

共生

共生(きょうせい、SymbiosisあるいはCommensal)とは、複数種の生物が相互関係を持ちながら同所的に生活する現象。共に生きること。 元の用字は共棲であるとする説もあるが、最新の研究では、共生は明治21年に三好学の論文で用いられていることが確認されており、共棲の用例より早い。確認されている範囲では、日本に初めてSymbiosisという概念を紹介した最初の研究者は三好学であるので、彼がこの訳を当てた可能性が高いともされる。日本では1922年に椎尾弁匡が仏教運動として共生運動を始め、共生が単なる生物学的な意味だけでなく、哲学的な意味を含む言葉になっていった。.

新しい!!: 有色体と共生 · 続きを見る »

光合成

光合成では水を分解して酸素を放出し、二酸化炭素から糖を合成する。 光合成の主な舞台は植物の葉である。 光合成(こうごうせい、Photosynthese、photosynthèse、拉、英: photosynthesis)は、主に植物や植物プランクトン、藻類など光合成色素をもつ生物が行う、光エネルギーを化学エネルギーに変換する生化学反応のことである。光合成生物は光エネルギーを使って水と空気中の二酸化炭素から炭水化物(糖類:例えばショ糖やデンプン)を合成している。また、光合成は水を分解する過程で生じた酸素を大気中に供給している。年間に地球上で固定される二酸化炭素は約1014kg、貯蔵されるエネルギーは1018kJと見積もられている『ヴォート生化学 第3版』 DONALDO VOET・JUDITH G.VOET 田宮信雄他訳 東京化学同人 2005.2.28。 「光合成」という名称を初めて使ったのはアメリカの植物学者チャールズ・バーネス(1893年)である『Newton 2008年4月号』 水谷仁 ニュートンプレス 2008.4.7。 ひかりごうせいとも呼ばれることが多い。かつては炭酸同化作用(たんさんどうかさよう)とも言ったが現在はあまり使われない。.

新しい!!: 有色体と光合成 · 続きを見る »

光学顕微鏡

'''研究・実習用光学顕微鏡の例''' 1:接眼レンズ、2:レボルバ、3:対物レンズ、4:粗動ハンドル、5:微動ハンドル、6:ステージ、7:鏡、8:コンデンサ、9:プレパラート微動装置 '''1900年代初頭に用いられていた顕微鏡の模式図''' 1:接眼レンズ、2:レボルバ、3:対物レンズ、4:粗動ハンドル、5:微動ハンドル、6:ステージ、7:鏡、8:絞り 双眼実体顕微鏡(ズーム機構・写真撮影対応鏡筒つき) '''双眼顕微鏡の光学系'''A:対物レンズ、B:ガリレオ望遠鏡接眼側に凹レンズを用いて正立像を得る光学系、C:調整ハンドル、D:内部対物レンズ、E:プリズム、F:リレーレンズ、G:網線、H:接眼レンズ 光学顕微鏡(こうがくけんびきょう)は、可視光線および近傍の波長域の光を利用する、顕微鏡の一種。単に顕微鏡と言う場合、これを指す。.

新しい!!: 有色体と光学顕微鏡 · 続きを見る »

種子植物

子植物(しゅししょくぶつ、)は、植物のうち、有性生殖の結果として種子を形成するものである。維管束を持つ維管束植物に含まれる。 全植物の約8割を占め、大別すると、裸子植物門と、被子植物門に分かれる。.

新しい!!: 有色体と種子植物 · 続きを見る »

糖(とう)とは、多価アルコールの最初の酸化生成物であり、アルデヒド基 (−CHO) またはケトン基 (>C.

新しい!!: 有色体と糖 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: 有色体と細胞小器官 · 続きを見る »

紅葉

紅葉(こうよう)、もみじ(紅葉、黄葉)とは、主に落葉広葉樹が落葉の前に葉の色が変わる現象のこと。ただし、読んで字の如く、葉の色が赤変することだけを紅葉(こうよう)と呼ぶ場合もある。.

新しい!!: 有色体と紅葉 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: 有色体と真核生物 · 続きを見る »

甲虫類

虫類(こうちゅうるい)は、昆虫綱・有翅昆虫亜綱・コウチュウ目(甲虫目、鞘翅目(しょうしもく)とも)に分類される昆虫の総称。カブトムシ、クワガタムシ、カミキリムシ、ゲンゴロウ、オサムシ、ホタル、テントウムシ、ゾウムシなど、非常に多様な昆虫が所属する。.

新しい!!: 有色体と甲虫類 · 続きを見る »

白色体

白色体 (はくしょくたい、leucoplast)とは、植物の白色部分に見られる色素を持たない色素体のこと。 光を当てることで葉緑体へ変化したり、デンプン合成を行う白色体が存在する。.

新しい!!: 有色体と白色体 · 続きを見る »

DNAメチル化

ピジェネティックな遺伝子制御で重要な役割を果たしている。 DNAメチル化(ディーエヌエイメチルか)とは、DNA中によく見られるCpG アイランドという配列の部分などで炭素原子にメチル基が付加する化学反応。エピジェネティクスに深く関わり、複雑な生物の体を正確に形づくるために必須の仕組みであると考えられている。がんにも関わっている。.

新しい!!: 有色体とDNAメチル化 · 続きを見る »

桜の花 いろいろな花 花(はな、華とも書く。花卉-かき=漢字制限のため、「花き」と書かれることが多い)とは植物が成長してつけるもので、多くは綺麗な花びらに飾られる。花が枯れると果実ができて、種子ができる。多くのものが観賞用に用いられる。生物学的には種子植物の生殖器官である。また、植物の代表的器官として、「植物(種)」そのものの代名詞的に使われることも多い。なお、植物の花を生花(せいか)、紙や布・金属などで作られた花を造花(ぞうか)という。.

新しい!!: 有色体と花 · 続きを見る »

芳香族化合物

芳香族化合物(ほうこうぞくかごうぶつ、aromatic compounds)は、ベンゼンを代表とする環状不飽和有機化合物の一群。炭化水素のみで構成されたものを芳香族炭化水素 (aromatic hydrocarbon)、環構造に炭素以外の元素を含むものを複素芳香族化合物 (heteroaromatic compound) と呼ぶ。狭義には芳香族化合物は芳香族炭化水素と同義である。 19世紀ごろ知られていた芳香をもつ化合物の共通構造であったことから「芳香族」とよばれるようになった。したがって匂い(芳香)は芳香族の特性ではない。.

新しい!!: 有色体と芳香族化合物 · 続きを見る »

藍藻

藍藻(らんそう、blue-green algae)は、藍色細菌(らんしょくさいきん、cyanobacteria)の旧名である。藍色細菌は、シアノバクテリア、ラン色細菌とも呼ばれる細菌の1群であり、光合成によって酸素を生み出す酸素発生型光合成細菌である。単細胞で浮遊するもの、少数細胞の集団を作るもの、糸状に細胞が並んだ構造を持つものなどがある。また、ネンジュモなどの一部のものは寒天質に包まれて肉眼的な集団を形成する。.

新しい!!: 有色体と藍藻 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: 有色体と葉緑体 · 続きを見る »

脂質

代表的な脂質であるトリアシルグリセロールの構造。脂肪酸とグリセリンがエステル結合した構造をもつ。 脂質(ししつ、lipid, lipide)は、生物から単離される水に溶けない物質を総称したものである。特定の化学的、構造的性質ではなく、溶解度によって定義される。 ただし、この定義では現在では数多くの例外が存在し、十分な条件とは言えない。現在の生化学的定義では「長鎖脂肪酸あるいは炭化水素鎖を持つ生物体内に存在あるいは生物由来の分子」となる。.

新しい!!: 有色体と脂質 · 続きを見る »

色素

色素(しきそ、coloring matter, pigment)は、可視光の吸収あるいは放出により物体に色を与える物質の総称。 色刺激が全て可視光の吸収あるいは放出によるものとは限らず、光の干渉による構造色や真珠状光沢など、可視光の吸収あるいは放出とは異なる発色原理に依存する染料や顔料も存在する。染料や顔料の多くは色素である。応用分野では色素は染料及び顔料と峻別されず相互に換言できる場合がある。色素となる物質は無機化合物と有機化合物の双方に存在する。.

新しい!!: 有色体と色素 · 続きを見る »

色素体

色素体(しきそたい、もしくはプラスチド、plastid, chromatophore)は、植物や藻類などに見られ、光合成をはじめとする同化作用、糖や脂肪などの貯蔵、様々な種類の化合物の合成などを担う、半自律的な細胞小器官の総称である。代表的なものとして葉緑体がある。.

新しい!!: 有色体と色素体 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: 有色体と電子顕微鏡 · 続きを見る »

老化

老化(ろうか、ageing、aging)とは、生物学的には時間の経過とともに生物の個体に起こる変化。その中でも特に生物が死に至るまでの間に起こる機能低下やその過程を指す。 澱粉の老化は澱粉を参照のこと。.

新しい!!: 有色体と老化 · 続きを見る »

送粉者

ヤナギタンポポの一種を送粉するハナアブの一種''Eristalinus taeniops'' 送粉者(そうふんしゃ、)とは、植物の花粉を運んで受粉させ(送粉)、花粉の雄性配偶子と花の胚珠を受精させる動物のこと。花粉媒介者(かふんばいかいしゃ)・授粉者(じゅふんしゃ)・ポリネーターともいう,, - "pollinator"を入力し検索のこと。送粉者によって媒介される受粉様式を動物媒と呼ぶ。 送粉者となる動物は主に昆虫類と脊椎動物であり、送粉者に花粉媒介をされる植物は主に被子植物である裸子植物のうちグネツム目 やソテツ目には虫媒と考えられる植物が含まれる(中山剛 BotanyWEB「-動物媒」)。。送粉者の訪花行動と摂食器官の形態は、被子植物の花の形態と開花様式など(送粉シンドローム)と密接な関連があり、送粉者と被子植物の間で共進化があったと考えられている中山剛 BotanyWEB「」。。 花を訪れる動物の中で送粉を行わず蜜のみを採る動物を盗蜜者と呼ぶ。同一の動物種でも訪れる花によって送粉者として振舞う場合と盗蜜者として振舞う場合が分かれるものもある田中肇『花に秘められたなぞを解くために』76-79ページ。。.

新しい!!: 有色体と送粉者 · 続きを見る »

果実

果実(かじつ).

新しい!!: 有色体と果実 · 続きを見る »

根(ね)とは、植物の器官の1つである。地中・水中に伸び、水分や養分を吸収したり、呼吸したり、植物体を支える機能を持つ。.

新しい!!: 有色体と根 · 続きを見る »

液胞

典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) ミトコンドリア、(10) '''液胞'''、(11) 細胞質基質、(12) リソソーム、(13) 中心体 液胞(えきほう、vacuole)は、生物の細胞中にある構造のひとつである。 電子顕微鏡で観察したときのみ、動物細胞内にもみられる。主な役割として、ブドウ糖のような代謝産物の貯蔵、無機塩類のようなイオンを用いた浸透圧の調節・リゾチームを初めとした分解酵素が入っており不用物の細胞内消化、不用物の貯蔵がある。ちなみに、不用物の貯蔵についてであるが、秋頃の紅葉が赤や黄色をしているのは、液胞内に色素が不用物として詰め込まれているからである。 液胞は、細胞内にある液胞膜と呼ばれる膜につつまれた構造であり、その内容物を細胞液と呼ぶ。若い細胞では小さいが、細胞の成長につれて次第に大きくなる。これは、成長する過程で排出された老廃物をため込むためである。良く育った細胞では、多くの場合、細胞の中央の大きな部分を液胞が占める。植物細胞を見ると、往々にして葉緑体が細胞の表面に張り付いたように並んでいるのは、内部を液胞が占めているためでもある。 蜜柑などの酸味や花の色は、この液胞中にある色素(アントシアンなど)に由来している。 Category:植物解剖学 Category:細胞解剖学 Category:細胞小器官.

新しい!!: 有色体と液胞 · 続きを見る »

ここにリダイレクトされます:

クロモプラスト

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »