ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

弱測定

索引 弱測定

量子力学において弱測定(弱い測定、)とは、量子状態の重ね合わせを壊さずにその状態(可観測量)を測定する観測手段である。1988年にヤキール・アハラノフ、David Z. Albert、Lev Vaidmanらによって提唱された。 弱測定により、ある量子状態についてその始状態と終状態とを特定することで、量子状態の弱値(弱い測定値、)を得ることが出来る。弱値は、負の粒子数、負の確率といった通常の測定ではありえない値もとりうるが、これは通常と逆の物理的性質を持っているものと解釈されている。 参考文献『宇宙の未来が決める現在』.

14 関係: 位置ヤキール・アハラノフテンソル積エヴェレットの多世界解釈オブザーバブル物理量運動量観測観測問題負の確率量子力学量子状態波動関数測定

位置

位置(いち、position)とは、物体が空間の中のどこにあるかを表す量である。 原点 O から物体の位置 P へのベクトル(位置ベクトル (position vector))で表される。通常は x, r, s で表され、O から P までの各軸に沿った直線距離に対応する。 「位置ベクトル」という用語は、主に微分幾何学、力学、時にはベクトル解析の分野で使用される。 2次元または3次元空間で使用されることが多いが、任意の次元数のユークリッド空間に容易に一般化することができるKeller, F. J, Gettys, W. E. et al.

新しい!!: 弱測定と位置 · 続きを見る »

ヤキール・アハラノフ

ヤキール・アハラノフ(Yakir Aharonov, 1932年8月28日 - )はイギリス委任統治領パレスチナ生まれの物理学者である。チャップマン大学教授。 電子の波に、外部に電場も磁場もないコイルによって、位相変化が生じるというアハラノフ=ボーム効果(AB効果)を発表した。.

新しい!!: 弱測定とヤキール・アハラノフ · 続きを見る »

テンソル積

数学におけるテンソル積(テンソルせき、tensor product)は、線型代数学で多重線型性を扱うための線型化を担う概念で、既知のベクトル空間・加群など様々な対象から新たな対象を作り出す操作の一つである。そのようないずれの対象に関しても、テンソル積は最もな双線型乗法である。 共通の体 上の二つの ベクトル空間 のテンソル積 (基礎の体 が明らかな時には とも書く)はふたたびベクトル空間を成す。ベクトル空間のテンソル積を繰り返して得られるテンソル空間は物理的なテンソルを数学的に定式化する。テンソル空間に種々の積を入れてさまざまな多重線型代数・クリフォード代数が定式化されるが、その基本となる演算がテンソル積である。.

新しい!!: 弱測定とテンソル積 · 続きを見る »

エヴェレットの多世界解釈

ヴェレットの多世界解釈(エヴェレットのたせかいかいしゃく、many-worlds interpretation; MWI)とは、量子力学の観測問題における解釈の一つである。 プリンストン大学の大学院生であったヒュー・エヴェレット3世が1957年に提唱した定式を元に、によって提唱された。.

新しい!!: 弱測定とエヴェレットの多世界解釈 · 続きを見る »

オブザーバブル

ブザーバブル(英語:Observable)とは量子力学で、観測と呼ばれる物理的操作により決定できるような系の状態の性質をいう。可観測量、観測可能量と訳すこともある。具体的には、位置、運動量、角運動量、エネルギーなどといった物理量に相当するものである。 古典力学では実験的に観測可能な量はすべて、系のとる状態により一義的に決まる関数とみることができる。しかし量子力学では、状態と量との関係は一義的ではなく、状態からオブザーバブルを用いて確率的に求められるのみである。現実の測定値はこの確率に従って出現する。.

新しい!!: 弱測定とオブザーバブル · 続きを見る »

物理量

物理量(ぶつりりょう、physical quantity)とは、.

新しい!!: 弱測定と物理量 · 続きを見る »

運動量

運動量(うんどうりょう、)とは、初等的には物体の運動の状態を表す物理量で、質量と速度の積として定義される。この意味の運動量は後述する一般化された運動量と区別して、運動学的運動量(あるいは動的運動量、kinetic momentum, dynamical momentum)と呼ばれる。また、角運動量 という運動量とは異なる量と対比する上で、線型運動量 などと呼ばれることもある。 日常生活において、物体の持つ運動量は、動いている物体の止めにくさとして体感される。つまり、重くて速い物体ほど運動量が大きく、静止させるのに大きな力積が必要になる。 アイザック・ニュートンは運動量の時間的変化と力の関係を運動の第2法則として提示した。 解析力学では、上述の定義から離れ、運動量は一般化座標とオイラー=ラグランジュ方程式を通じて与えられる。この運動量は一般化座標系における一般化速度の対応物として、一般化運動量 と呼ばれる。 特にハミルトン形式の解析力学においては、正準方程式を通じて与えられる正準変数の一方を座標と呼び他方を運動量と呼ぶ。この意味の運動量は、他と区別して、正準運動量 と呼ばれる。また、正準運動量は、正準方程式において座標の対となるという意味で、共役運動量 と呼ばれる。運動量は、ハミルトン形式の力学では、速度よりも基本的な量であり、ハミルトン形式で記述される通常の量子力学においても重要な役割を果たす。 共役運動量と通常の運動学的運動量の違いが際立つ例として、磁場中を運動する電子の運動の例が挙げられる(#解析力学における運動量も参照)。電磁場中を運動する電子に対してはローレンツ力が働くが、このローレンツ力に対応する一般化されたポテンシャルエネルギーには電子の速度の項があるために、共役運動量はラグランジアンのポテンシャル項に依存した形になる。このとき共役運動量と運動学的運動量は一致しない。また、電磁場中の電子の運動を記述する古典的ハミルトニアンでは、共役運動量の部分がすべて共役運動量からベクトルポテンシャルの寄与を引いたものに置き換わる。.

新しい!!: 弱測定と運動量 · 続きを見る »

観測

観測(かんそく)とは、.

新しい!!: 弱測定と観測 · 続きを見る »

観測問題

観測問題(かんそくもんだい、measurement problem)とは、量子力学における問題のひとつで、観測に伴う問題を言う白井仁人, 東克明,森田邦久,渡部鉄兵『量子という謎.

新しい!!: 弱測定と観測問題 · 続きを見る »

負の確率

実験結果は負にならないが、負の確率(ふのかくりつ、)や擬確率(ぎかくりつ、)を許すとが定義できる。擬確率分布は観測不能な事象や条件付き確率に応用される。.

新しい!!: 弱測定と負の確率 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 弱測定と量子力学 · 続きを見る »

量子状態

量子状態(りょうしじょうたい、)とは、量子論で記述される系(量子系)がとる状態のことである。 これは系の物理量(可観測量、オブザーバブル)を測定したとき、その測定値のバラつき具合を表す確率分布によって定義される。 以下に述べるように、量子状態には、純粋状態と混合状態とがある。.

新しい!!: 弱測定と量子状態 · 続きを見る »

波動関数

波動関数(はどうかんすう、wave function)は、もともとは波動現象一般を表す関数のことだが、現在では量子状態(より正確には純粋状態)を表す複素数値関数のことを指すことがほとんどである。.

新しい!!: 弱測定と波動関数 · 続きを見る »

測定

測定(そくてい、Messung、mesure physique、measurement)は、様々な対象の量を、決められた一定の基準と比較し、数値と符号で表すことを指すJIS Z8103「計測用語」今井(2007)、p1-3 はじめに。人間の五感では環境や体調また錯視など不正確さから免れられず、また限界があるが、測定は機器を使うことでこれらの問題を克服し、科学の基本となる現象の数値化を可能とする。ただし、得られた値には常に測定誤差がつきまとい、これを斟酌した対応が必要となる。 ルドルフ・カルナップは1966年の著書『物理学の哲学的基礎』にて科学における主要な概念として、分類概念・比較概念・量的概念の3つを提示した。このうち、量的概念 (quantitative concept) を「対象が数値を持つ概念」と規定し、その把握には規則と客観的な手続きに則った判断が求められるとした。そしてこの物理学的測定は、測定する対象の性質や状態のメカニズム理論に基づいた尺度構成が重要になる。測定に関する理論および実践についての科学は、計量学(metrology)と呼ばれる。 測定の対象は自然科学だけにとどまらない。会計学においても貨幣的尺度を用いた評価や、企業の財務会計と適切なモデルを対応づけることなどを「測定」とするAmey,L.R.,A.ConceptualApproachtoManagement.NewYork:Prager,1986, p.130.

新しい!!: 弱測定と測定 · 続きを見る »

ここにリダイレクトされます:

弱い測定弱い測定値弱値

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »