ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

観測問題

索引 観測問題

観測問題(かんそくもんだい、measurement problem)とは、量子力学における問題のひとつで、観測に伴う問題を言う白井仁人, 東克明,森田邦久,渡部鉄兵『量子という謎.

35 関係: 実在論丹治信春マックス・ボルンマクスウェルの方程式ボーム解釈パリ大学パリ第11大学デヴィッド・ボームダイヤモンド社ベルの不等式アルベルト・アインシュタインアインシュタイン=ポドルスキー=ローゼンのパラドックスエヴェレットの多世界解釈クライン–ゴルドン方程式クラスター分解性ケンブリッジ大学コペンハーゲン解釈シュレーディンガーの猫シュレーディンガー方程式先進波勁草書房固有状態隠れた変数理論道具主義観測解釈黒崎宏重ね合わせ量子力学量子デコヒーレンス柳瀬睦男村上陽一郎決定論時間発展1926年

実在論

実在論(じつざいろん、Realism)とは、名辞・言葉に対応するものが、それ自体として実在しているという立場。対応するものが概念や観念の場合は観念実在論になり、物質や外界や客観の場合は、素朴実在論や科学的実在論になる。 実在論の起源は古代ギリシアのプラトンが論じたイデア論にまで遡ることができる。イデアの理論によれば、感覚することができる世界は実在するものでなくイデアの射影であると考えられた。個々の感覚を理性によって把握することによってのみ実在するイデアを認識することができると論じている。 アリストテレスもまた普遍的な概念として実在を考えており、感覚によって捉えられる個物を「第一実体」、そしてそれが普遍化されたものを「第二実体」と呼んで区別した。 中世のスコラ学においてはプラトンやアリストテレスの伝統を受け継ぎながら霊魂という観念的な存在の実在を基礎付けるための議論が起こった。それが普遍論争であり、その論争で実在論はトマス・アクィナスなどによって一方の立場と位置づけられた。この意味のときは実念論とも訳し、唯名論の立場に対立する見解となった。 近代哲学においてはベルナルト・ボルツァーノは概念そのものの観念的な対象が実在することを主張し、科学的実在論の立場からはゴットロープ・フレーゲは科学的に構築された理論、論理記号を制約する独立した普遍的な対象が実在することを主張した。.

新しい!!: 観測問題と実在論 · 続きを見る »

丹治信春

丹治 信春(たんじ のぶはる、1949年 - )は、日本の哲学者。現在、日本大学文理学部教授、東京都立大学名誉教授。科学哲学、言語哲学、心の哲学を専門とする。前日本科学哲学会会長。 言語の意味に基準があるという考えを排する、徹底したアポステリオリズムに基づく言語観を著書『言語と認識のダイナミズム』で提唱した。同書によって博士(学術)を東京大学から取得した。.

新しい!!: 観測問題と丹治信春 · 続きを見る »

マックス・ボルン

マックス・ボルン(Max Born, 1882年12月11日 - 1970年1月5日)は、ドイツの理論物理学者。量子力学の初期における立役者の一人である。1954年ノーベル物理学賞を受賞。.

新しい!!: 観測問題とマックス・ボルン · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 観測問題とマクスウェルの方程式 · 続きを見る »

ボーム解釈

ボーム解釈(ボームかいしゃく)とは、1952年にアメリカ合衆国生まれの物理学者デヴィッド・ボームによって提案された量子力学の解釈であり、非局所実在論のひとつである。.

新しい!!: 観測問題とボーム解釈 · 続きを見る »

パリ大学

パリ大学(仏:Université de Paris)は、フランス共和国のパリ、クレテイユおよびヴェルサイユの3大学区にある13の大学の総称である。多くのノーベル賞受賞者を送り出している他、法学、政治学、科学、物理学、神学などの分野で優秀な学者を輩出している。また芸術の教育機関としても名高い。.

新しい!!: 観測問題とパリ大学 · 続きを見る »

パリ第11大学

パリ第11大学(パリだい11だいがく、Université de Paris-Sud)は13あるパリ大学の1校。パリ南部の郊外オルセーに位置している。理学部、工学部、医学部、薬学部、法学部を有する。薬学部はシャトネ=マラブリーに位置する。.

新しい!!: 観測問題とパリ第11大学 · 続きを見る »

デヴィッド・ボーム

デヴィッド・ジョーゼフ・ボーム(David Joseph Bohm、דייוויד ג'וֹזף בוֹהם, דוד יוֹסף בוֹהם‎、1917年12月20日1992年10月27日)は、理論物理学、哲学、神経心理学およびマンハッタン計画に大きな影響を及ぼした、アメリカ合衆国の物理学者である。.

新しい!!: 観測問題とデヴィッド・ボーム · 続きを見る »

ダイヤモンド社

株式会社ダイヤモンド社(ダイヤモンドしゃ、DIAMOND,Inc.)は、日本の主に経済やビジネスなどの書籍や雑誌、小説を出版している出版社である。 日本で最初のビジネス誌で草分け的存在の「東洋経済新報」(現「週刊東洋経済」)から遅れること約20年後に、「ダイヤモンド」を創刊して設立。本誌は日本初の出版社系週刊誌となる。本社は東京都渋谷区に所在する。.

新しい!!: 観測問題とダイヤモンド社 · 続きを見る »

ベルの不等式

ベルの不等式(—ふとうしき)とは、隠れた変数理論などの局所実在論が満たすべき相関の上限を与える式である。量子力学ではこの上限を破ることができ、実験的に、量子論と局所的な隠れた変数理論を区別することができる。同様の不等式はいくつか存在し、1982年にアラン・アスペによっての破れが報告された。 局所的隠れた変数理論は実験的に否定されたが、非局所隠れた変数理論はいまだに生きており、の確率過程量子化をそのように解釈することができる。.

新しい!!: 観測問題とベルの不等式 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 観測問題とアルベルト・アインシュタイン · 続きを見る »

アインシュタイン=ポドルスキー=ローゼンのパラドックス

アインシュタイン=ポドルスキー=ローゼンのパラドックス(頭文字をとってEPRパラドックスとも呼ばれる)は、量子力学の量子もつれ状態が局所性を(ある意味で)破るので、相対性理論と両立しないのではないかというパラドックスである。アルベルト・アインシュタイン、ボリス・ポドルスキー、ネイサン・ローゼンらの思考実験にちなむ。 EPRパラドックスが発表された当時は、アインシュタインらは局所実在論の立場を取っていたため、量子論が実在論的に完全でない結果を与えることを「パラドックス」であるとした。しかし、ベルの不等式の検証(1982年)などにより、量子論では局所実在論が破綻することが明らかになっており、非局所的な量子もつれ状態はEPR相関と呼ばれている。.

新しい!!: 観測問題とアインシュタイン=ポドルスキー=ローゼンのパラドックス · 続きを見る »

エヴェレットの多世界解釈

ヴェレットの多世界解釈(エヴェレットのたせかいかいしゃく、many-worlds interpretation; MWI)とは、量子力学の観測問題における解釈の一つである。 プリンストン大学の大学院生であったヒュー・エヴェレット3世が1957年に提唱した定式を元に、によって提唱された。.

新しい!!: 観測問題とエヴェレットの多世界解釈 · 続きを見る »

クライン–ゴルドン方程式

ライン–ゴルドン方程式 (クライン–ゴルドンほうていしき、Klein–Gordon equation) は、スピン0の相対論的な自由粒子を表す場(クライン–ゴルドン場)が満たす方程式である。スウェーデン人物理学者オスカル・クラインとドイツ人物理学者ヴァルター・ゴルドンにちなんで名づけられた。.

新しい!!: 観測問題とクライン–ゴルドン方程式 · 続きを見る »

クラスター分解性

ラスター分解性(-ぶんかいせい)あるいはクラスター分解性理論とは、空間的に十分離れた二つの系は、十分よい精度で互いの因果関係を無視できる、と想定する理論あるいは仮説のこと。 この理論・仮説を採用すると、自由に系を選べる、ということになる。この仮説が成立しない場合は、宇宙全体のことを知らなければ的確な予言をすることができない、ということを意味する。 例えば、場の量子論で生成消滅演算子が使われるが、生成消滅演算子を用いた記述をすると系がクラスター分解性を満たす、ということになる。.

新しい!!: 観測問題とクラスター分解性 · 続きを見る »

ケンブリッジ大学

ンブリッジ大学(University of Cambridge)は、イギリスの大学都市ケンブリッジに所在する総合大学であり、イギリス伝統のカレッジ制を特徴とする世界屈指の名門大学である。中世に創設されて以来、英語圏ではオックスフォード大学に次ぐ古い歴史をもっており、アンシャン・ユニヴァシティーに属する。 ハーバード大学、シカゴ大学、オックスフォード大学等と並び、各種の世界大学ランキングで常にトップレベルの優秀な大学として評価されており、公式のノーベル賞受賞者は96人(2016年12月現在)と、世界の大学・研究機関で最多(内、卒業生の受賞者は65人)。総長はで、副総長は。 公式サイトでは国公立大学(Public University)と紹介している。法的根拠が国王の勅許状により設立された自治団体であること、大学財政審議会(UFC)を通じて国家から国庫補助金の配分を受けており、大学規模や文科・理科の配分比率がUFCにより決定されていること、法的性質が明らかに違うバッキンガム大学等の私立大学が近年新設されたことによる。ただし、自然発生的な創立の歴史や高度な大学自治、独自の財産と安定収入のあるカレッジの存在、日本でいう国公立大学とは解釈が異なる。 アメリカ、ヨーロッパ、アジア、アフリカ各国からの留学生も多い。2005年現在、EU外からの学生は3,000人を超え、日本からの留学生も毎年十数人~数十人規模となっている。研究者の交流も盛んで、日本からの在外訪問研究者も多い。.

新しい!!: 観測問題とケンブリッジ大学 · 続きを見る »

コペンハーゲン解釈

ペンハーゲン解釈(コペンハーゲンかいしゃく)は、量子力学の解釈の一つである。 量子力学の状態は、いくつかの異なる状態の重ね合わせで表現される。このことを、どちらの状態であるとも言及できないと解釈し、観測すると観測値に対応する状態に変化する(波束の収縮が起こる)と解釈する。 「コペンハーゲン解釈」という名称は、デンマークの首都コペンハーゲンにあるボーア研究所から発信されたことに由来する。.

新しい!!: 観測問題とコペンハーゲン解釈 · 続きを見る »

シュレーディンガーの猫

ュレーディンガーの猫」のイメージ図 シュレーディンガーの猫(シュレーディンガーのねこ、Schrödinger's cat)またはシュレディンガーの猫は、射影公準における収縮がどの段階で起きるのかが明確でないことによって引き起こされる矛盾を示すことを狙いとした思考実験のことである白井仁人, 東克明,森田邦久,渡部鉄兵『量子という謎 量子力学の哲学入門』勁草書房2012年ISBN978-4-326-70075-2 p3-16。.

新しい!!: 観測問題とシュレーディンガーの猫 · 続きを見る »

シュレーディンガー方程式

ュレーディンガー方程式(シュレーディンガーほうていしき、Schrödinger equation)とは、物理学の量子力学における基礎方程式である。 シュレーディンガー方程式という名前は、提案者であるオーストリアの物理学者エルヴィン・シュレーディンガーにちなむ。1926年にシュレーディンガーは量子力学の基礎理論に関する一連の論文を提出した。 シュレーディンガー方程式の解は一般的に波動関数と呼ばれる。波動関数はまた状態関数とも呼ばれ、量子系(電子など量子力学で取り扱う対象)の状態を表す。シュレーディンガー方程式は、ある状況の下で量子系が取り得る量子状態を決定し、また系の量子状態が時間的に変化していくかを記述する。あるいは、波動関数を量子系の状態を表すベクトルの成分と見た場合、シュレーディンガー方程式は状態ベクトルの時間発展方程式に置き換えられる。状態ベクトルによる記述は波動関数を用いた場合と異なり物理量の表現によらないため、より一般的である。シュレーディンガー方程式では、波動関数や状態ベクトルによって表される量子系の状態が時間とともに変化するという見方をする。状態が時間変化するという考え方はシュレーディンガー描像と呼ばれる。 シュレーディンガー方程式はその形式によっていくつかの種類に分類される。ひとつの分類は時間依存性で、時間に依存するシュレーディンガー方程式と時間に依存しないシュレーディンガー方程式がある。時間に依存するシュレーディンガー方程式(time-dependent Schrödinger equation; TDSE)は、波動関数の時間的変化を記述する方程式であり、波動関数の変化の仕方は波動関数にかかるハミルトニアンによって決定される。解析力学におけるハミルトニアンは系のエネルギーに対応する関数だったが、量子力学においてはエネルギー固有状態を決定する作用素物理学の文献において作用素は演算子とも呼ばれる。以下では作用素の意味で演算子という語を用いる。である。 時間に依存しないシュレーディンガー方程式(time-independent Schrödinger equation; TISE)はハミルトニアンの固有値方程式である。時間に依存しないシュレーディンガー方程式は、系のエネルギーが一定に保たれる閉じた系に対する波動関数を決定する。 シュレーディンガー方程式のもう1つの分類として、方程式の線型性がある。通常、線型なシュレーディンガー方程式は単にシュレーディンガー方程式と呼ばれる。線型なシュレーディンガー方程式は斉次方程式であるため、方程式の解となる波動関数の線型結合もまた方程式の解となる。 非線型シュレーディンガー方程式(non-linear Schrödinger equation; NLS)は、通常のシュレーディンガー方程式におけるハミルトニアンにあたる部分が波動関数自身に依存する形の方程式である。シュレーディンガー方程式に非線型性が現れるのは例えば、複数の粒子が相互作用する系について、相互作用ポテンシャルを平均場近似することにより一粒子に対するポテンシャルに置き換えることによる。相互作用ポテンシャルが求めるべき波動関数自身に依存する一体ポテンシャルとなる場合、方程式は非線型となる(詳細は例えばハートリー=フォック方程式、グロス=ピタエフスキー方程式などを参照)。本項では主に線型なシュレーディンガー方程式について述べる。.

新しい!!: 観測問題とシュレーディンガー方程式 · 続きを見る »

先進波

先進波(せんしんは、advancing wave)とは、マクスウェルの電磁方程式から算出される通常とは逆向きに進む波のことである。先行波ともいう。.

新しい!!: 観測問題と先進波 · 続きを見る »

勁草書房

株式会社 勁草書房(けいそうしょぼう)は、東京都文京区水道に本社を置く出版社。.

新しい!!: 観測問題と勁草書房 · 続きを見る »

固有状態

量子力学において、ある物理量 の固有状態 (eigenstate) とは、その物理量(オブザーバブル)を表すエルミート演算子 \hat の固有ベクトル \ \ のことである。 よって物理量 の固有状態 \ \ は以下の固有値方程式を満たす。 一般に、量子系について物理量の測定を行った時、どんなに同じように状態を用意して同じように測定をしても、測定値は測定によってバラバラである。しかし系が\hatの固有値 a_n \ に属する固有状態 |a_n\rangle \ であるときは、物理量 \hat を観測すれば必ず a_n \ という値を得る(オブザーバブルを参照)。よって「物理量 \hat の固有状態 |a_n\rangle \ は、物理量 \hat が確定した値 a_n を持っている状態である」と解釈できる。 また \hat はエルミート演算子なので、その固有値はすべて実数である。.

新しい!!: 観測問題と固有状態 · 続きを見る »

隠れた変数理論

れた変数理論 (かくれたへんすうりろん、hidden variable theory)とは、量子力学に特徴的な確率的な性質を、実験者が観測できない変数を導入して説明する理論である。 確率的な性質を理由に量子力学が不完全だと主張する少数派の決定論的物理学者に支持されていたが、ベルの不等式の破れの検証後は支持するものがさらに少数となった。 例えば隠れた変数理論の最も有名な支持者アルベルト・アインシュタインの言葉に、「神はサイコロを振らない」というものがある。これはアインシュタインの、完全な物理学理論は決定論的であるべきとの信念の表れであるEinstein, A., Podolsky, B. and Rosen, N. (1935), Phys.

新しい!!: 観測問題と隠れた変数理論 · 続きを見る »

道具主義

道具主義(どうぐしゅぎ、instrumentalism)とは、科学哲学の世界で使われる言葉で、科学理論を、観察可能な現象を組織化・予測するための形式的な道具・装置であると見なす立場。観察可能な現象の背後にある観察不可能な隠れた実在の真の姿は知りえないとする。この点で科学的実在論と対立する。 道具主義においては、観察不可能な対象について語ることは形而上学の役割であると考え、科学の仕事ではないとする。つまり科学理論によって現象の説明・予測がどれだけうまくいっていても、それによって「理論が観察可能な現象の背後にある観察不可能な隠れた実在についての真なる記述になっている」とは考えない。「ただ単にうまくいっているだけだ」という風に考える。これが道具主義のひとつの特徴である。また現象を説明するためのいくつかの理論が存在する場合、理論の選択はその正しさによってではなく、現象をどれだけうまく予測・説明できるか、その有用性によって決まるとする。これは道具主義がそもそも「理論の正しさ」、つまり理論が実在を正しく記述しているかどうか、といった事は知りえないと考えているためである。 物理学の世界で道具主義の立場を鮮明にした人物として、19世紀オーストリアの物理学者エルンスト・マッハがいる。.

新しい!!: 観測問題と道具主義 · 続きを見る »

観測

観測(かんそく)とは、.

新しい!!: 観測問題と観測 · 続きを見る »

解釈

解釈(かいしゃく、ἑρμηνεία (hermeneia)、interpretatio、Auslegung、Interpretation)は、主として以下のような意味で用いられる。.

新しい!!: 観測問題と解釈 · 続きを見る »

黒崎宏

黒崎 宏(くろさき ひろし、1928年10月25日 - )は、日本の哲学者、成城大学名誉教授。.

新しい!!: 観測問題と黒崎宏 · 続きを見る »

重ね合わせ

重ね合わせ(かさねあわせ、superposition)は、量子力学の基本的な性質である。.

新しい!!: 観測問題と重ね合わせ · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 観測問題と量子力学 · 続きを見る »

量子デコヒーレンス

量子デコヒーレンス(りょうしデコヒーレンス)は、量子系の干渉が環境との相互作用によって失われる現象。デコヒーレンス。.

新しい!!: 観測問題と量子デコヒーレンス · 続きを見る »

柳瀬睦男

柳瀬 睦男(やなせ むつお、1922年1月19日-2008年12月7日)は、日本の物理学者、科学哲学者、カトリック司祭。 .

新しい!!: 観測問題と柳瀬睦男 · 続きを見る »

村上陽一郎

村上 陽一郎(むらかみ よういちろう、1936年9月9日 - )は、日本の科学史家・科学哲学者、東京大学・国際基督教大学名誉教授。.

新しい!!: 観測問題と村上陽一郎 · 続きを見る »

決定論

決定論(けっていろん、determinism, determinare)とは、あらゆる出来事は、その出来事に先行する出来事のみによって決定している、とする立場。 対立する世界観や仮説は「非決定論」と呼ばれる。.

新しい!!: 観測問題と決定論 · 続きを見る »

時間発展

時間発展(じかんはってん)とは、時間が進むことで物理系が変化することである。.

新しい!!: 観測問題と時間発展 · 続きを見る »

1926年

記載なし。

新しい!!: 観測問題と1926年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »