ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

定数関数

索引 定数関数

数学の分野における定数関数(ていすうかんすう、; 定値写像)とは、それがとりうる値が変数の変動によって変わらない定数値の関数(写像)のことを言う。例えば、関数 f(x).

29 関係: 偶関数と奇関数単調写像多項式多項式函数定義域定数実数値関数局所定数関数位相空間微分圏論グラフ (関数)冪等写像写像の合成元 (数学)空関数終域直交座標系関数 (数学)関数の零点零多項式零射零写像連続写像連結空間排中律束 (束論)数学

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: 定数関数と偶関数と奇関数 · 続きを見る »

単調写像

単調写像(たんちょうしゃぞう、monotonic function, monotone function)または単調関数は、単調性、すなわち順序集合の間の写像が順序を保つような性質を持つ写像のことである。具体的な例としては以下の単調増加関数および単調減少関数がある。 単調増加(たんちょうぞうか、monotonically increasing)とは、狭義には実数の値を持つ関数 が、 の増加につれて常に関数値 も増加することをいい、このような性質を持つ関数を単調増加関数(たんちょうぞうかかんすう、monotonically increasing function)と呼ぶ。同様に、引数 の増加につれて関数値 が常に減少することを単調減少(たんちょうげんしょう、monotonically decreasing)といい、そのような性質を持つ関数を単調減少関数(たんちょうげんしょうかんすう、monotonically decreasing function)と呼ぶ。従って、連続な単調増加関数 を縦軸、その引数 を横軸にとったグラフ上の曲線は常に右上りで、右下がりになっている部分がない。逆に単調減少関数の場合には、常に右下がりであり右上がりの部分がない。 ある関数が単調増加または単調減少する性質をまとめて単調性(たんちょうせい、monotonicity)と呼ぶ。.

新しい!!: 定数関数と単調写像 · 続きを見る »

多項式

数学における多項式(たこうしき、poly­nomial)は、多数を意味するpoly- と部分を意味する -nomen あるいは nomós を併せた語で、定数および不定元(略式ではしばしば変数と呼ぶ)の和と積のみからなり、代数学の重要な対象となる数学的対象である。歴史的にも現代代数学の成立に大きな役割を果たした。 不定元がひとつの多項式は、一元多項式あるいは一変数多項式 と呼ばれ、不定元を とすれば のような形をしている。各部分 "", "", "", "" のことを項(こう、)と呼ぶ。一つの項だけからできている式を単項式 (monomial)、同様に二項式 (binomial)、三項式 (trinomial) などが、-nomial にラテン配分数詞を付けて呼ばれる。すなわち、多項式とは「多数」の「項」を持つものである。単項式の語が頻出であることに比べれば、二項式の語の使用はやや稀、三項式あるいはそれ以上の項数に対する語の使用はごく稀で一口に多項式として扱う傾向があり、それゆえ単項式のみ多項式から排他的に分類するものもある。また多項式のことを整式 (integral expression) と呼ぶ流儀もある。 多項式同士の等式として与えられる方程式は多項式方程式と呼ばれ、特に有理数係数の場合において代数方程式という。多項式方程式は多項式函数の零点を記述するものである。 不定元がふたつならば二元 (bivariate), 三つならば三元 (trivariate) というように異なるアリティを持つ多元多項式が同様に定義できる。算術あるいは初等代数学において、数の計算の抽象化として実数(あるいは必要に応じてより狭く有理数、整数、自然数)を代表する記号としての「文字」変数を伴う「」およびその計算を扱うが、それは大抵の場合多変数の多項式である。 本項では主として一元多項式を扱い、多元の場合にも多少触れるが、詳細は多元多項式の項へ譲る。.

新しい!!: 定数関数と多項式 · 続きを見る »

多項式函数

代数学における多項式函数(たこうしきかんすう、polynomial function)は、適当な可換環(多くの場合は可換体) に係数を持つ多項式に付随して定まる f\colon x \mapsto a_n x^n + a_ x^ + \cdots + a_1 x + a_0 x^0 なる形の写像を言う。ただし、 は自然数で、 は の係数と呼ばれる の元である。これはまた、和の sum-記法によって のようにも書かれる。このような写像 を に係数を持つ多項式函数と呼ぶ。 ここでは定義を複雑にしないために多項式函数の定義域および終域 については特に限定しないが、事実として は 上の単位的結合多元環の構造を持てば十分である。つまりそのような構造は多項式函数の定義に現れるすべての演算を持っている.

新しい!!: 定数関数と多項式函数 · 続きを見る »

定義域

数学における写像の定義域(ていぎいき、domain of definition)あるいは始域(しいき、domain; 域, 領域)とは、写像の値の定義される引数(「入力」)の取り得る値全体からなる集合である。つまり、写像はその定義域の各元に対して(「出力」としての)値を与える。 例えば、実数の範囲での議論において、余弦函数の定義域はふつう実数全体の成す集合(実数直線)であるし、正の平方根函数の定義域は 以上の実数全体の成す集合であるものとする。定義域が実数から成る集合(実数全体の成す集合の部分集合)であるような実数値函数は、その定義域が -軸上にあるものとして -直交座標系に表すことができる。.

新しい!!: 定数関数と定義域 · 続きを見る »

定数

数学における定数(ていすう、じょうすう、constant; 常数)あるいは定項 (constant term) は、二つの異なる意味を示し得る。そのひとつは固定 (fix) され、矛盾なく定義された数(またはもっとほかの数学的対象)であり、この意味で言う定数であることをはっきりさせるために「数学定数」(あるいは「物理定数」もそうだが)という語を用いることもある。もう一つの意味は、定数函数またはその(これらはふつうたがいに同一視される)を指し示すもので、この意味での「定数」は扱う問題における主変数に依存しない変数という形で表されるのが普通である。後者の意味での例として、は、与えられた函数の原始函数をすべて得るために特定の原始函数に加えられる、任意の(積分変数に依存しないという意味での)定数函数を言う。 例えば、一般の二次函数はふつう を定数(あるいはパラメタ)として のようにあらわされる。ここに変数 は考えている函数の引数のプレースホルダとなるものである。より明示的に のように書けば がこの函数の引数であることが明瞭で、しかも暗黙の裡に が定数であることを提示できる。この例では、定数 はこの多項式の係数と呼ばれる。 の項は を含まないからと呼ばれ(これを の係数と考えることができる)、多項式において次数が零の任意の項または式は定数である。.

新しい!!: 定数関数と定数 · 続きを見る »

実数値関数

実数値関数(じっすうちかんすう、real-valued function)、あるいは実関数(じつかんすう、real function)とは、値として実数を与える関数をいう。つまり、定義域のそれぞれの元に対し実数を割り当てる関数のことである。 多くの重要な関数空間が、いくつかの実数値関数からなるものとして定義されている。.

新しい!!: 定数関数と実数値関数 · 続きを見る »

局所定数関数

数学において、位相空間 A から集合 B への写像 f が局所定数(きょくしょていすう、locally constant)とは、すべての a ∈ A に対して、a のある近傍 U が存在して、f が U 上定数となることである。.

新しい!!: 定数関数と局所定数関数 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 定数関数と位相空間 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 定数関数と微分 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 定数関数と圏論 · 続きを見る »

グラフ (関数)

関数のグラフ(graph)は、直観的には、関数を平面内の曲線もしくは空間内の曲面としてダイアグラム状に視覚化したものである。形式的には、関数 のグラフとは、順序対 の集合である。 例えば、 と が常に実数であるような関数の場合、グラフは座標平面上の点の集まりとみなすことができる。このような関数のうち、応用上重要な関数の多くは、グラフを座標平面上に曲線として描くことが可能である。 グラフの概念は、関数のみならず、より一般の写像や対応に対しても定義される。標語的には、グラフは関数や対応を特徴付ける集合であるといえる。.

新しい!!: 定数関数とグラフ (関数) · 続きを見る »

冪等

数学において、冪等性(べきとうせい、idempotence 「巾等性」とも書くが読み方は同じ)は、大雑把に言って、ある操作を1回行っても複数回行っても結果が同じであることをいう概念である。まれに等冪(とうべき)とも。抽象代数学、特に射影(projector)や閉包(closure)演算子に見られる特徴である。"idempotence" という単語はラテン語の "idem"(同じ.

新しい!!: 定数関数と冪等 · 続きを見る »

写像

写像(しゃぞう、mapping, map)とは、二つの集合が与えられたときに、一方の集合の各元に対し、他方の集合のただひとつの元を指定して結びつける対応のことである。函数(関数)、変換、作用素、射などが写像の同義語として用いられることもある。 ブルバキに見られるように、写像は集合とともに現代数学の基礎となる道具の一つである。現代的な立場では、「写像」と(一価の)「函数」は論理的におなじ概念を表すものと理解されているが、歴史的には「函数」の語は解析学に出自を持つものであり、一部には必ずしも写像でないものも函数の名の下におなじ範疇に扱われる(多価函数参照)。文献によっては「数の集合(大抵の場合実数体 または複素数体 の部分集合)を終域に持つ写像」をして特に「函数」と呼び、「写像」はより一般の場合に用いる。函数、二項関係、対応の各項も参照のこと。.

新しい!!: 定数関数と写像 · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: 定数関数と写像の合成 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: 定数関数と元 (数学) · 続きを見る »

空関数

関数(くうかんすう、empty function)、あるいは空写像とは、数学における関数(写像)の一種で、定義域が空集合の関数をいう。任意の集合 A について、A を終域とする空関数 は必ずちょうど1つ存在する。 空関数のグラフは、直積集合 ∅×A の部分集合である。直積は空なので、その部分集合も空集合 ∅ である。定義域 ∅ に属する全ての x に対して、(x, y) ∈ ∅ となるような値域 A 内の y が一意に定まるので、空部分集合は妥当なグラフである。実際には「定義域にはどんな x も存在しない」ので、これはの一例である。 空関数が定数関数の定義に含まれるかどうかを気にすることは少なく、その場その場で便利なように定義することが多い。しかし場合によっては空関数を定数関数の一種と考えない方がよく、値域を用いた定義が望ましい場合もある。これは、1を素数に含めないとか、空の位相空間を連結空間に含めないとか、自明群を単純群に含めないといったことと同列の考え方である。 空関数は単射であり、とくに終域 A も空集合のときは全単射である。 任意の集合 A について唯一の空関数が存在するということは、空集合が集合の圏の始対象 (initial object) であることを意味する。 値域を空集合とする空関数を考えることにより、基数あるいは順序数の冪の意味で を示すことが出来る。詳細は0の0乗#集合論による導出を参照。.

新しい!!: 定数関数と空関数 · 続きを見る »

終域

数学において写像の終域(しゅういき、codomain; 余域)あるいは終集合(しゅうしゅうごう、target set)は、写像を と表すときの集合 、すなわち写像 の出力する値がその中に属するべきという制約を定める集合をいう。終域の代わりに「値域」という語を用いる場合もあるが、値域は写像の像(出力される値すべてからなる集合、 で言えば )の意味で用いることが多いので注意すべきである。.

新しい!!: 定数関数と終域 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: 定数関数と直交座標系 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 定数関数と関数 (数学) · 続きを見る »

関数の零点

関数 f の 零点(れいてん、zero, 根(こん、)と呼ばれることもある)とは、f の定義域の元 x であって、 を満たすようなもののことである。別の言い方をすれば、関数 f の零点 (zero) とは、x を f で写した結果が 0 (zero) となるような値 x のことである。f(x) が x で消えている (vanish) と表現することもできる。実関数、複素関数、あるいは一般に、環に値を持つ関数やに対して用いられる。 多項式の根 (root) とは、それを多項式関数として考えたときの零点のことである。代数学の基本定理によると、0 でない任意の多項式は根を高々その個だけもち、根の個数と次数は、複素数の根(あるいはより一般に代数的に閉じている拡大における根)を重複度を込めて考えると等しい。例えば、多項式 で定義される2次多項式 f は2つの根 2 と 3 をもつ。なぜなら、 となるからである。 関数が実数を実数に写すならば、その零点はグラフが ''x'' 軸と交わる点の x 座標である。この意味でそのような点 (x, 0) を x 切片 (x-intercept) とも呼ぶ。 複素数の概念は(判別式が負の値となる)二次方程式や三次方程式の根(負の数の平方根等が含まれる)を扱うために発展したものである。 最も重要な未解決問題の1つであるリーマン予想は、リーマンゼータ関数の複素根の位置に関するものである。.

新しい!!: 定数関数と関数の零点 · 続きを見る »

零多項式

数学における零多項式(れいたこうしき、ゼロたこうしき、zero polynomial, null polynomial)は全ての係数が の多項式を言う。しばしば、零多項式自身をやはり で表す。零多項式は、一変数または多変数の多項式環における零元である。 零多項式を定数多項式や任意次数の斉次多項式と見ることもできるし、そうしないこともあり得る。.

新しい!!: 定数関数と零多項式 · 続きを見る »

零射

数学の一分野圏論における零射(れいしゃ、ゼロしゃ、zero morphism)は特別な種類の射で、零対象への射と零対象からの射の性質を併せ持つ。.

新しい!!: 定数関数と零射 · 続きを見る »

零写像

数学における零写像(れいしゃぞう、ゼロしゃぞう、zero mapping)は、零元を持つ適当な代数系への写像であって、その定義域の全ての元を終域の零元へ写すものを言う。殊に、解析学における零函数 (zero function) は、変数の値によらず函数値が常に零となるような函数を言う。より一般に、線型代数学におけるベクトル空間の間の零(線型)写像 (zero map) または零(線型)作用素 (zero operator) は、全てのベクトルを零ベクトルに写す。 零写像は多くの性質を満足し、数学において例や反例としてしばしば用いられる。零写像は斉次線型微分方程式や積分方程式などの数学の一連の問題において、自明なになる。.

新しい!!: 定数関数と零写像 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 定数関数と連続写像 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: 定数関数と連結空間 · 続きを見る »

排中律

排中律(はいちゅうりつ、Law of excluded middle)とは、論理学において、任意の命題 P に対し"P ∨ ¬P"(P であるか、または P でない)が成り立つことを主張する法則である。これは、論理の古典的体系では基本的な属性であり、同一律、無矛盾律とともに、(古典的な)思考の三原則のひとつに数えられる。しかし、論理体系によっては若干異なる法則となっている場合もあり、場合によっては排中律が全く成り立たないこともある(例えば直観論理)。 (第三の命題が排除される原理)あるいは(第三の命題・可能性は存在しない)と称され、Law of excluded middle(中間の命題は排除されて存在しない法則)または (第三の命題が排除される法則)と呼ばれ、これらが日本語での排中という表記につながり、排中原理と呼ばれる。 排中律は論理から導かれる法則ではない。また principle of bivalence とは異なる主張である。 修辞学では排中律が誤解されて利用されることがあり、誤謬の原因となっている。.

新しい!!: 定数関数と排中律 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: 定数関数と束 (束論) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 定数関数と数学 · 続きを見る »

ここにリダイレクトされます:

定値写像定値関数定数函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »