ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

塑性

索引 塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

20 関係: 力 (物理学)ひずみ塑性加工展延性弾性引張試験応力ヤング率ユゴニオ弾性限界レオロジープラスチック爆薬超塑性脆性金属金箔英語降伏 (物理)欠陥残留応力

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 塑性と力 (物理学) · 続きを見る »

ひずみ

ひずみ(Strain)は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。.

新しい!!: 塑性とひずみ · 続きを見る »

塑性加工

塑性加工(そせいかこう、Plastic working または Deformation processing)とは、物質の塑性を利用し、材料に大きな力を加えて変形させることによって、目的とする形状に加工することである。一般に他の加工方法より加工時間が短く、材料のロスが少なくエネルギー原単位が比較的少なく、巨大なものにも適応可能であることから工業製品の生産等に広く用いられる。並びうる素形材造形技術として、切削加工、研削研磨加工、鋳造加工、粉末加工、3Dプリンター、レーザー加工、放電加工に比べ広い範囲に応用されている。.

新しい!!: 塑性と塑性加工 · 続きを見る »

展延性

アルミニウム合金 (AlMgSi) の引張試験の結果。円錐状に細長く延びて破断しているのは、延性のある金属によく見られる結果である。 延性の低いダクタイル鋳鉄の引張試験の結果 展延性(てんえんせい、英:ductility)とは、固体の物質の力学的特性(塑性)の一種で、素材が破断せずに柔軟に変形する限界を示す。展延性は延性 (ductility) と展性 (malleability) に分けられる。英語の "ductility" は展延性と延性の両方の意味で使われる。 物質科学において、延性は特に物質に引っ張る力を加えた際の変形する能力を指し、針金状に延ばせる能力で表されることが多い。一方展性は圧縮する力を加えた際の変形する能力を指し、鍛造や圧延で薄いシート状に成形できる能力で表されることが多い。そのため展性を可鍛性(かたんせい)とも呼ぶ。 延性と展性は必ずしも正の相関があるとは言えない。例えば金は延性も展性も高いが、鉛は展性のみが高く引っ張る力には弱い。.

新しい!!: 塑性と展延性 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

新しい!!: 塑性と弾性 · 続きを見る »

引張試験

引張試験(ひっぱりしけん)とは、試料に破断するまで制御された張力をかけ、試料の引張強度、降伏点、伸び、絞りなどの機械的性質を測定する試験である。それらの測定値から、ヤング率、ポアソン比、降伏強さ、加工硬化特性などが算出され、機械製品を設計開発するときの材料の強度計算に使用される。 一軸引張試験は、等方性材料の機械的特性を得るために一般的に用いられる。複合材料や織物などの異方性材料の場合、二軸引張試験が必要である。.

新しい!!: 塑性と引張試験 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: 塑性と応力 · 続きを見る »

ヤング率

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。.

新しい!!: 塑性とヤング率 · 続きを見る »

ユゴニオ弾性限界

ユゴニオ弾性限界(ユゴニオだんせいげんかい、Hugoniot Elastic Limit、HEL)とは固体が塑性変形を開始し流体のように振舞う領域に入る境界線となる圧力である。 この限界を超えた固体は塑性変形を開始し流体のように振舞うようになることを利用して、超音速でハンマーを振り下ろすことで冷間のまま金属を加工するコールドハンマーや、爆薬の爆轟による衝撃波で金属のユゴニオ弾性限界を超えさせることで金属を加工する爆着などがある。.

新しい!!: 塑性とユゴニオ弾性限界 · 続きを見る »

レオロジー

レオロジー(rheology)とは、物質の変形および流動一般に関する学問分野である。日本語では「流動学」とも呼ばれる。レオロジーという用語は、ヘラクレイトス(異説もあり)の有名な言葉 "panta rhei "「万物は流転する」による造語で、(1920年)による。 適用範囲は広く、大きさ的に見れば分子サイズから宇宙サイズまで、様々な大きさでの議論がある。基本的に物体間での作用を議論する学問であるため、ニュートン力学の範囲で議論される。ただし、量子力学は適用されない。 レオロジーは、古典的な弾性やニュートン流体など連続体力学の理論を、より一般的で複雑な物質へ拡張するものである。塑性と非ニュートン粘性の流体力学という一見無関係の二分野を、「いずれの対象も静的平衡においてせん断応力に耐えられない」という認識で結び付ける。この意味で可塑性固体は液体である。レオロジーの課題の 1 つは、測定により変形とストレスの間の関係を実験的に確定することにある。これらの実験技術はレオメトリー (rheometry) として知られる。 レオロジーは工学、地球物理学や生理学への応用においても重要である。レオロジーには以下のような応用がある。; 粉体レオロジー (granular rheology); ヘモレオロジー (hemorheology) または 血液レオロジー (blood rheology); サイコレオロジー (psychorheology).

新しい!!: 塑性とレオロジー · 続きを見る »

プラスチック爆薬

プラスチック爆薬(プラスチックばくやく、plastic explosive)とは可塑性を持つ混合爆薬のこと。 日本国の法律に基づく名称では「可塑性爆薬」と呼称する。C-4やセムテックスなどがある。.

新しい!!: 塑性とプラスチック爆薬 · 続きを見る »

超塑性

超塑性(ちょうそせい)とは、固体を高温域で一定のひずみ速度で変形させた時、数百%以上に伸びる現象のことである。超塑性には、材料の相変態に起因する変態超塑性と結晶粒径が数μm以下の多結晶材料で発生する微細結晶粒超塑性の2種類がある。微細結晶粒超塑性においては、対数表記したひずみ速度-応力曲線の勾配に相当するひずみ速度感受性指数(m値)が高く、一般にm値が0.3以上で破断伸びが200%以上であることが超塑性挙動発現の判断基準とされる。超塑性現象を発現していると、その変形応力も低下し、ニッケル基超合金などの高強度難加工材ではこの現象を利用して鍛造などの塑性加工をする方法が実用化されている。また、超塑性現象の多くは金属材料での報告がほとんどであるが、一部セラミクスにおいても報告例がある。.

新しい!!: 塑性と超塑性 · 続きを見る »

脆性

脆性(ぜいせい、brittleness)は、物質の脆さを表す技術用語。破壊に要するエネルギーの小さいことをいう。対語としては靱性(じんせい:壊れにくいこと)と展延性(壊れずに変形すること)がある。 「脆」の文字が常用漢字に含まれていないことからぜい性と表記されることもある。本記事では学術用語集に準じて「脆性」の表記で統一する。.

新しい!!: 塑性と脆性 · 続きを見る »

自然金 金(きん、gold, aurum)は原子番号79の元素。第11族元素に属する金属元素。常温常圧下の単体では人類が古くから知る固体金属である。 元素記号Auは、ラテン語で金を意味する aurum に由来する。大和言葉で「こがね/くがね(黄金: 黄色い金属)」とも呼ばれる。。 見かけは光沢のある黄色すなわち金色に輝く。日本語では、金を「かね」と読めば通貨・貨幣・金銭と同義(お金)である。金属としての金は「黄金」(おうごん)とも呼ばれ、「黄金時代」は物事の全盛期の比喩表現として使われる。金の字を含む「金属」や「金物」(かなもの)は金属全体やそれを使った道具の総称でもある。 金属としては重く、軟らかく、可鍛性がある。展性と延性に富み、非常に薄く延ばしたり、広げたりすることができる。同族の銅と銀が比較的反応性に富むこととは対照的に、標準酸化還元電位に基くイオン化傾向は全金属中で最小であり、反応性が低い。熱水鉱床として生成され、そのまま採掘されるか、風化の結果生まれた金塊や沖積鉱床(砂金)として採集される。 これらの性質から、金は多くの時代と地域で貴金属として価値を認められてきた。化合物ではなく単体で産出されるため精錬の必要がなく、装飾品として人類に利用された最古の金属で、美術工芸品にも多く用いられた。銀や銅と共に交換・貨幣用金属の一つであり、現代に至るまで蓄財や投資の手段となったり、金貨として加工・使用されたりしている。ISO通貨コードでは XAU と表す。また、医療やエレクトロニクスなどの分野で利用されている。.

新しい!!: 塑性と金 · 続きを見る »

金属

リウム の結晶。 リチウム。原子番号が一番小さな金属 金属(きんぞく、metal)とは、展性、塑性(延性)に富み機械工作が可能な、電気および熱の良導体であり、金属光沢という特有の光沢を持つ物質の総称である。水銀を例外として常温・常圧状態では透明ではない固体となり、液化状態でも良導体性と光沢性は維持される。 単体で金属の性質を持つ元素を「金属元素」と呼び、金属内部の原子同士は金属結合という陽イオンが自由電子を媒介とする金属結晶状態にある。周期表において、ホウ素、ケイ素、ヒ素、テルル、アスタチン(これらは半金属と呼ばれる)を結ぶ斜めの線より左に位置する元素が金属元素に当たる。異なる金属同士の混合物である合金、ある種の非金属を含む相でも金属様性質を示すものは金属に含まれる。.

新しい!!: 塑性と金属 · 続きを見る »

金箔

金箔(きんぱく)は、金を微量の銀や銅とともに金槌で叩いてごく薄く伸ばし、箔状態にしたもの。紀元前1200年頃にエジプトで製造が始まったと考えられている。 現在は真鍮からなる「洋金箔」も普及しており、本来の意味での金箔は「純金箔」として区別されていたが、純金の表示が純金のみで製造されていると誤解を受けるため、金のみで作られたものを「純金箔」、銀および銅を合金しているものを「(本)金箔」とあらわしている。 以下、特に断りがない限り、本金箔について述べる。.

新しい!!: 塑性と金箔 · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 塑性と英語 · 続きを見る »

降伏 (物理)

降伏(こうふく)とは、金属材料などに応力を加えていくと現れる現象である。例えば鋼に応力を加えていくと、応力-ひずみ線図は図1のような挙動を示す。図1では、応力が点2に至るとひずみは大きくなるのに対し引っ張り応力は下降する。このとき鋼は降伏したという。点2に至るまでの変形は弾性変形であり荷重を除荷すれば形状は元に戻るのに対し、降伏後は塑性変形になり除荷しても弾性変形分(点2までの変形)以上は戻ることはない。 降伏中の最大の応力を上降伏点(点2)、最低の応力を下降伏点という。実用上は上降伏点が、弾性変形の最大基準の応力としてよく利用されている。.

新しい!!: 塑性と降伏 (物理) · 続きを見る »

欠陥

欠陥(けっかん、 Defect)とは、理想状態を想定できる物事における理想状態との違いである。.

新しい!!: 塑性と欠陥 · 続きを見る »

残留応力

残留応力 (ざんりゅうおうりょく、residual stress)とは、 外力を除去した後でも物体内に存在する応力のことである。フックの法則により残留応力に対応するひずみを、残留ひずみ(ざんりゅうひずみ、residual strain)と呼ぶ。残留応力の分布は様々だが、物体の平衡状態を満足するため、物体全体では正負の残留応力が釣り合っている。 残留応力の発生は望ましいときと望ましくないときがある。一般的に、圧縮の残留応力は強度を向上させ、引張の残留応力は強度を低下させる。例えば、レーザーピーニングはタービンエンジンファンブレードのような金属部品に有益な圧縮の残留応力を与える。また、スマートフォンのディスプレイに使用されている強化ガラスにも応用され、大きくて薄く、かつ、き裂・擦り傷に抵抗のあるものを実現している。しかし、意図しない残留応力の発生は構造物の早期破壊を引き起こす場合もある。 残留応力は様々なメカニズムで発生する。例えば、塑性変形や温度勾配、物質の相転移などがある。溶接時に発生する熱は局所的な材料の膨張を発生させる。溶接中は、溶接されている部品が移動したり、溶融金属が膨張を吸収するが、溶接完了時には、ある部分は他の場所以上に早く冷却され、残留応力が残る結果となる。.

新しい!!: 塑性と残留応力 · 続きを見る »

ここにリダイレクトされます:

可塑性塑性体塑性変形変形体 (物理学)

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »