ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

残留応力

索引 残留応力

残留応力 (ざんりゅうおうりょく、residual stress)とは、 外力を除去した後でも物体内に存在する応力のことである。フックの法則により残留応力に対応するひずみを、残留ひずみ(ざんりゅうひずみ、residual strain)と呼ぶ。残留応力の分布は様々だが、物体の平衡状態を満足するため、物体全体では正負の残留応力が釣り合っている。 残留応力の発生は望ましいときと望ましくないときがある。一般的に、圧縮の残留応力は強度を向上させ、引張の残留応力は強度を低下させる。例えば、レーザーピーニングはタービンエンジンファンブレードのような金属部品に有益な圧縮の残留応力を与える。また、スマートフォンのディスプレイに使用されている強化ガラスにも応用され、大きくて薄く、かつ、き裂・擦り傷に抵抗のあるものを実現している。しかし、意図しない残留応力の発生は構造物の早期破壊を引き起こす場合もある。 残留応力は様々なメカニズムで発生する。例えば、塑性変形や温度勾配、物質の相転移などがある。溶接時に発生する熱は局所的な材料の膨張を発生させる。溶接中は、溶接されている部品が移動したり、溶融金属が膨張を吸収するが、溶接完了時には、ある部分は他の場所以上に早く冷却され、残留応力が残る結果となる。.

29 関係: き裂ひずみ塑性中性子回折法平衡強化ガラス引張り応力応力集中圧縮マルテンサイトプレストレスト・コンクリートディスプレイフックの法則イオン交換オランダの涙ショットピーニングスマートフォン硬さ疲労 (材料)疲労限度焼なまし相転移脆性X線回折溶接

き裂

材料工学においてき裂(亀裂、Crack)とは、材料に生じた欠陥で、その先端の局所的な領域で原子面の分離が生じた破壊の状態をいう。弾性論の観点からは、先端部の曲率半径が半径0である切り欠きとみなせる。破壊力学においては、原子面間隔を曲率半径の下限値として考察する。 き裂を有する材料に荷重を与えると、き裂の先端近傍には著しく高い応力集中が発生する。先端部は降伏し塑性変形する。グリフィス理論によると、き裂に与えられるエネルギー(エネルギー解放率)が、材料の破壊靱性を上回ると、き裂はその長さを伸ばしていく。これをき裂進展という。き裂進展が始まると、き裂は急速に成長していき、短時間のうちに材料を破壊する。 弾性体を仮定して、き裂周囲の理論的な応力分布を求めると先端に特異点が生じるため、き裂の応力集中係数は評価できない。代わりに塑性変形を考慮した応力拡大係数によって、その応力分布が特徴づけられる。この応力拡大係数を創出したのはであり、流体力学で萌芽した座標変換技術を応用し、簡潔なき裂の進展における式を提示した。 図1に示すようにσはその部材にかかる平均的応力であり、その応力方向に垂直に内包された長さaのき裂がもつ駆動力であるK(応力拡大係数)を示すことで、どのサイズの欠陥を検出すれば強度の安全性が守られるかが理論的に示される。.

新しい!!: 残留応力とき裂 · 続きを見る »

ひずみ

ひずみ(Strain)は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。.

新しい!!: 残留応力とひずみ · 続きを見る »

塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

新しい!!: 残留応力と塑性 · 続きを見る »

中性子回折法

中性子回折法(ちゅうせいしかいせつほう, Neutron diffraction; ND)とは、結晶による中性子線の回折現象を利用して、物質の結晶構造や磁気構造の解析を行う手法である。.

新しい!!: 残留応力と中性子回折法 · 続きを見る »

平衡

平衡(へいこう、balance, equilibration, equilibrium)は、物が釣り合って安定していること、あるいはその釣り合い。平衡させることを英語で といい、そのときの状況が である。 および は「平衡」の他に「均衡」とも訳される。平衡と似た概念として詳細釣り合いがある。.

新しい!!: 残留応力と平衡 · 続きを見る »

強化ガラス

強化ガラス(きょうかガラス、英語:toughened glass)とは、一般的なフロート板ガラスに比べ3 - 5倍程度の強度を持つガラスである。.

新しい!!: 残留応力と強化ガラス · 続きを見る »

引張り

引張り(ひっぱり)とは.

新しい!!: 残留応力と引張り · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: 残留応力と応力 · 続きを見る »

応力集中

応力集中(おうりょくしゅうちゅう、)とは、物体の形状変化部で局所的に応力が増大する現象である。機械・構造物の疲労破壊や脆性破壊では、この応力集中を起こす部分が破壊の起点となることが多い。.

新しい!!: 残留応力と応力集中 · 続きを見る »

圧縮

圧縮(あっしゅく).

新しい!!: 残留応力と圧縮 · 続きを見る »

マルテンサイト

マルテンサイト(martensite)は、Fe-C系合金(鋼や鋳鉄)を安定なオーステナイトから急冷する事によって得られる組織である。体心正方格子の鉄の結晶中に炭素が侵入した固溶体で、鉄鋼材料の組織の中で最も硬く脆い組織である。 1891年にドイツの冶金学者(Adolf Martens)により発見され、マルテンサイトという名称も、彼の名前に由来している。現在ではあまり使用されないが、組織形状が麻の葉に似ていることから、日本の冶金学者本多光太郎による麻留田(マルテン)という漢字の当て字がある。.

新しい!!: 残留応力とマルテンサイト · 続きを見る »

プレストレスト・コンクリート

プレストレスト・コンクリート は、あらかじめ応力を加えたコンクリート材である。しばしば、PC(ピーシー)と略される。.

新しい!!: 残留応力とプレストレスト・コンクリート · 続きを見る »

ディスプレイ

ディスプレイ.

新しい!!: 残留応力とディスプレイ · 続きを見る »

フックの法則

フックの法則(フックのほうそく、Hooke's law)は、力学や物理学における構成則の一種で、ばねの伸びと弾性限度以下の荷重は正比例するという近似的な法則である。弾性の法則(だんせいのほうそく)とも呼ばれる。フックの法則が近似として成り立つ物質を線形弾性体またはフック弾性体 (Hookean elastic material) と呼ぶ。 フックの法則は17世紀のイギリスの物理学者、ロバート・フックが提唱したものであり、彼の名を取ってフックの法則と名づけられた。フックは1676年にラテン語のアナグラムでこの法則を記述し、1678年にアナグラムの答えが、即ち であると発表した。フックの法則に従う系では、荷重は伸びに正比例し と表される。ここで.

新しい!!: 残留応力とフックの法則 · 続きを見る »

19世紀 フランス海軍将校が使用していた刀 刀「ラハイヤン」とアラビア語の信仰告白「アラーの他に神はなし。ムハンマドはアラーの使徒である」が描かれたサウジアラビアの国旗 刀(かたな)は武器(刀剣)の一種であり、剣の内でもとくに片側にしか刃のない物を指し、切断力を増す為に反りのついた構造のものが多い。反りのついていないものは特に直刀と称する。日本語としては「かた・な」と分解できてそれぞれ片、刃をあらわす。日本の刀に関する詳細は日本刀の項を参照。.

新しい!!: 残留応力と刀 · 続きを見る »

イオン交換

イオン交換(-こうかん)とは、ある種の物質が示す、接触している電解質溶液に含まれるイオンを取り込み、代わりに自らの持つ別種のイオンを放出することで、イオン種の入れ換えを行う現象または能力。 イオン交換作用を示す物質をイオン交換体という。イオン交換体にはフッ石類、酸性白土、パームチットなどの無機質のものもあるが、有機質のイオン交換樹脂がすぐれ、もっともよく用いられる。.

新しい!!: 残留応力とイオン交換 · 続きを見る »

オランダの涙

ランダの涙(オランダのなみだ)は、溶融させたガラスを冷水に落として作られたガラス製の物体である。17世紀にはヨーロッパのガラス工房でその存在が知られていた。英語では、Prince Rupert's Dropと呼ばれ、これは、1661年にイギリスで行われた実験に立ち会ったカンバーランド公ルパートにちなむ。このため日本語でもプリンス・ルパートの滴あるいはルパートの滴ともいう。 水中に落ちた溶融ガラスはオタマジャクシの尾が細長くなったような滴型に冷却される。溶融ガラスを冷水に落とすと、滴の内部が熱いまま外側が急速に冷却される。最終的にガラスの内部まで冷却される頃には既に固体化している外側部分が内側に向かって収縮している。この収縮で外側部には非常に大きな圧縮応力がかかり、核部分は引張応力の状態となる。これは強化ガラスと考え方は同じである。 頭部はハンマーによる打撃にも耐えられるが、尻尾部を折ると全体が爆発的に破砕する。このように、非常に高い残留応力により特殊な性質を持つ。オランダの涙自体は粉々になるので破片で怪我をすることは無いが、破砕実験をガラスの容器内で行うと容器が破損し手を切る恐れがあるため、厚手のビニール袋の中で行うのが良い。http://gigazine.net/news/20130326-mystery-of-prince-ruperts-drop/ -->.

新しい!!: 残留応力とオランダの涙 · 続きを見る »

ショットピーニング

ョットピーニング (Shot Peening) とは、機械工作における噴射加工の一種で、無数の鋼鉄あるいは非鉄金属の小さな球体を高速で金属表面に衝突させることで、塑性変形による加工硬化、圧縮残留応力の付与を図る処理である。.

新しい!!: 残留応力とショットピーニング · 続きを見る »

スマートフォン

マートフォン(smartphone)は、先進的な携帯機器用OSを備えた携帯電話の一種。略称は「スマホ」。.

新しい!!: 残留応力とスマートフォン · 続きを見る »

剣(つるぎ、けん、劍)とは、長い諸刃の剣身を持つ手持ちの武器の1種である。現代の長剣は儀礼用としてのみ使われる。諸刃である点で刀と区別するが、文脈で広義に刀を含むこともある。なお、刃の両側に角度がつけてあり、左右両側から研ぐ刃物(断面がV字状)の刃物も両刃と言われるため、本項では刀身の両側に付けられた刃については「諸刃」と統一する。.

新しい!!: 残留応力と剣 · 続きを見る »

硬さ

さ(かたさ、hardness、硬度)とは物質、材料の特に表面または表面近傍の機械的性質の一つであり、材料が異物によって変形や傷を与えられようとする時の、物体の変形しにくさ、物体の傷つきにくさである。工業的に比較的簡単に検査でき、これを硬さ試験法と呼ぶ。例えば鋼製品の熱処理結果の管理などに用いられている。.

新しい!!: 残留応力と硬さ · 続きを見る »

疲労 (材料)

労(ひろう、Fatigue)は、物体が力学的応力を継続的に、あるいは繰り返し受けた場合にその物体の機械材料としての強度が低下する現象。金属で発生するものは金属疲労(Metal fatigue)として一般に知られているが、金属だけではなく樹脂やガラス、セラミックスでも起こり得る。また、力学的応力だけではなく電圧や温度の継続的または繰り返し負荷によって絶縁耐力や耐熱性が低下する現象を指すこともあるが一般的ではない。こちらはむしろ経年劣化と呼ぶ。.

新しい!!: 残留応力と疲労 (材料) · 続きを見る »

疲労限度

労限度(ひろうげんど、英語:fatigue limit, endurance limit)とは、材料の疲労において、物体が振幅一定の繰返し応力を受けるとき、何回負荷を繰り返しても疲労破壊に至らない、またはそのように見なされる応力値のことである。疲労限、疲れ限度、耐久限度、耐久限などとも呼ぶ。材料の疲労強度特性の検討や設計応力の検討を行う際の重要な特性の1つとされる。.

新しい!!: 残留応力と疲労限度 · 続きを見る »

焼なまし

なまし(やきなまし、)、焼鈍し、焼き鈍し、焼鈍(しょうどん)、アニーリングとは、加工硬化による内部のひずみを取り除き、組織を軟化させ、展延性を向上させる熱処理である。目的に応じて多くの種類・方法が存在する。焼きなましと「き」の送り仮名をつける表記もあるが、本記事では日本工業規格、学術用語集の表記に準じる。「焼入れ」を緩和する「焼戻し」とは異なる。.

新しい!!: 残留応力と焼なまし · 続きを見る »

相転移

転移(そうてんい、英語:phase transition)とは、ある系の相(phase)が別の相へ変わることを指す。しばしば相変態(そうへんたい、英語:phase transformation)とも呼ばれる。熱力学または統計力学において、相はある特徴を持った系の安定な状態の集合として定義される。一般には物質の三態(固体・固相、液体・液相、気体・気相)の相互変化として理解されるが、同相の物質中の物性変化(結晶構造や密度、磁性など)や基底状態の変化に対しても用いられる。相転移に現れる現象も単に「相転移」と呼ぶことがある。.

新しい!!: 残留応力と相転移 · 続きを見る »

脆性

脆性(ぜいせい、brittleness)は、物質の脆さを表す技術用語。破壊に要するエネルギーの小さいことをいう。対語としては靱性(じんせい:壊れにくいこと)と展延性(壊れずに変形すること)がある。 「脆」の文字が常用漢字に含まれていないことからぜい性と表記されることもある。本記事では学術用語集に準じて「脆性」の表記で統一する。.

新しい!!: 残留応力と脆性 · 続きを見る »

鋼(はがね、こう、釼は異体字、steel)とは、炭素を0.04~2パーセント程度含む鉄の合金。鋼鉄(こうてつ)とも呼ばれる。強靭で加工性に優れ、ニッケル・クロムなどを加えた特殊鋼や鋳鋼等とあわせて鉄鋼(てっこう)とも呼ばれ、産業上重要な位置を占める。.

新しい!!: 残留応力と鋼 · 続きを見る »

X線回折

X線回折(エックスせんかいせつ、、XRD)は、X線が結晶格子で回折を示す現象である。 1912年にドイツのマックス・フォン・ラウエがこの現象を発見し、X線の正体が波長の短い電磁波であることを明らかにした。 逆にこの現象を利用して物質の結晶構造を調べることが可能である。このようにX線の回折の結果を解析して結晶内部で原子がどのように配列しているかを決定する手法をX線結晶構造解析あるいはX線回折法という。しばしばこれをX線回折と略して呼ぶ。他に同じように回折現象を利用する結晶構造解析の手法として、電子回折法や中性子回折法がある。.

新しい!!: 残留応力とX線回折 · 続きを見る »

溶接

溶接(ようせつ、英語:welding)とは、2個以上の部材の接合部に、熱又は圧力もしくはその両者を加え、必要があれば適当な溶加材を加えて、接合部が連続性を持つ一体化された1つの部材とする接合方法。更に細かく分類すると、融接、圧接、ろう付けに分けられる。かつては、現在に至るまで一般的な溶接のほかに鎔接や熔接の文字も並んで利用されていたが、「鎔」「熔」ともに当用漢字に入らず、「溶」に統一された。 溶接は青銅器時代(ろう付、メソポタミアのレリーフ)からも見出され、日本では弥生時代の銅鐸にも溶接の跡が発見されている。現代では、建設業、自動車産業、宇宙工学、造船などの先端技術だけでなく生活をささえる基本的な古くて新しい技術である。.

新しい!!: 残留応力と溶接 · 続きを見る »

ここにリダイレクトされます:

残留ひずみ

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »