ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ひずみ

索引 ひずみ

ひずみ(Strain)は、連続体力学における物体の変形状態を表す尺度であり、物体の基準(初期)状態の単位長さあたりに物体内の物質点がどれだけ変位するかを示す。.

31 関係: 加工硬化垂直応力ひずみエネルギーひずみゲージ塑性変位変形変形勾配岩石平面ひずみ状態弾性応力地震ポアソン比ヤング率ラジアンプレートフックの法則エラストマースプリット・ホプキンソン圧力棒法無次元量物体軟部組織重合体耐力連続体連続体力学降伏 (物理)HARUHI材料工学流体

加工硬化

加工硬化(かこうこうか、英語:work hardening、strain hardening)とは、金属に応力を与えると塑性変形によって硬さが増す現象。ひずみ硬化とも呼ばれる。金属に応力を与えると結晶面に沿ってすべりが生じるが(塑性変形)、このすべりは結晶格子を構成する原子の配列に対し一様にズレるのではなく、歪みすなわち、転位を生み出すC.Kittel、pp.286-289、 20.転位、すべり - 転位。。転位は順次に結晶格子内を移動していくが、加工硬化を起こし易い金属あるいは合金では、加工を繰り返すことで転位密度が高まり、転位は解放されずに次第に蓄積して絡み合い、そのすべり面に対しての抵抗が徐々に増してくる。すなわち、冷間加工により変形が進む程、転位は増加・重層化(ポリゴン化)して抵抗が大きくなり硬さを増していくことになる。これが加工硬化である。この性質を利用して、加工材料の強度の向上をさせることができる古沢、pp.112-113、9.鋼の塑性加工、9.1.3 加工硬化による鋼の強化。。.

新しい!!: ひずみと加工硬化 · 続きを見る »

垂直応力

垂直応力(すいちょくおうりょく、normal stress)とは、固体内部のある面の垂直方向に作用する応力のこと。固体に外力P が作用するとき、外力P に垂直な面による固体の断面積をA とすると、その面における垂直応力σは で表される。 静止状態にある流体には垂直応力のみが作用しており、せん断応力は存在しない。 垂直応力が押し合う場合を圧力、引き合う場合を張力という。.

新しい!!: ひずみと垂直応力 · 続きを見る »

ひずみエネルギー

ひずみエネルギー (Strain energy) とは弾性体に外力が仕事をした場合、弾性体に蓄えられるエネルギー。単軸引張状態では、応力σ、ひずみεが生じている体積V の物体に蓄えられるひずみエネルギーU は、 となる。.

新しい!!: ひずみとひずみエネルギー · 続きを見る »

ひずみゲージ

ひずみゲージ()またはストレインゲージは、物体のひずみを測定するための力学的センサである。ひずみ測定を利用して間接的に、応力計測や荷重計にも用いられる。.

新しい!!: ひずみとひずみゲージ · 続きを見る »

塑性

塑性(そせい、英語:plasticity)は、力を加えて変形させたとき、永久変形を生じる物質の性質のことを指す。延性と展性がある。荷重を完全に除いた後に残るひずみ(伸び、縮みのこと)を永久ひずみあるいは残留ひずみという。この特性は加工しやすさを意味し金属が世界中に普及した大きな要因である。またこの特性を結晶学的に説明することに成功したのがOrowanらによる転位論である。 金属材料の展性および延性についての明確な定義は多岐に渡り一言には説明しづらいが、実用的には、次のように考えられている。金属材料の塑性変形抵抗を示す代表的指標に硬さがあり、さらには機械的性質を調べる代表的な方法として、引張試験があるが、低強度域(破壊力学的欠陥の作用しない領域)では硬さと比例関係にある。 この際、得られる特性値として、次のようなものがある。.

新しい!!: ひずみと塑性 · 続きを見る »

変位

変位(へんい、displacement)とは、物体の位置の変化のこと。変位の対象は、古典力学での質点の位置であったり、結晶(固体、あるいは結晶表面やそれに吸着した原子、分子など)での原子の位置(原子変位)であったりする。表記は、変位の大きさに着目する x, d のような場合や、変化した前後の位置の差であるという点に注目する Δr という場合がある。物理量としての変位はベクトルで使うことが多く、変位ベクトルと呼ばれる。 物体の位置を表現するには原点からの位置ベクトルを使う方法もある。どこかに基準点を定めるということでは変位もあまり違わないが、局所的な現象をあらわすときには基準位置とそこからの変位で記述したほうが簡単になることもある。変位x と位置ベクトルr は次の式で変換できる。 ここでr0 は基準点の位置ベクトルである。.

新しい!!: ひずみと変位 · 続きを見る »

変形

変形(へんけい、deformation)とは、連続体力学における物体の初期状態から最終状態への変換であるTruesdell, C. and Noll, W., (2004), The non-linear field theories of mechanics: Third edition, Springer, p. 48.

新しい!!: ひずみと変形 · 続きを見る »

変形勾配

変形勾配(へんけいこうばい)または変形勾配テンソルとは、連続体力学において、物体の変形を特徴付けるテンソル量である。 基準配置における物質点 およびその近傍の点 が、変形後にそれぞれ点 に移ったとする。 が微小であれば、 は線形近似できて のように書ける。このとき を変形勾配と呼ぶ。変形勾配は物質座標系における量を空間座標系における標記へ変換するという意味を持つ。 基準配置 に対し、時刻 における変形勾配を 、時刻 における変形勾配を 、そして時刻 から への変形の変形勾配を と書けば、これらの間には次の関係が成り立つ。 変形勾配の行列式 は体積変化率と呼ばれる。.

新しい!!: ひずみと変形勾配 · 続きを見る »

岩石

岩石(がんせき、)は、鉱物が集合している物体のことである。日常語では石ころや岩盤のことをさす。、。岩石は大きく火成岩、堆積岩、変成岩に分けることができる。その成因は、岩石が溶けた液体であるマグマ(岩漿)が冷えたり、砂や泥が続成作用と呼ばれ、地下で固結作用をうけて岩石に戻ったり、あるいは誕生した岩石が変成作用とよばれる熱、圧力、溶液、気体との化学反応や物理現象を受け溶けてマグマにならないまでも、性質が変化し、二次的に岩石が誕生することもある。多くの地球型惑星は岩石でできている。.

新しい!!: ひずみと岩石 · 続きを見る »

平面ひずみ状態

平面ひずみ状態(へいめんひずみじょうたい)とは、ひずみが平面的である、すなわち、ある座標系 (x, y, z) がとれて、変位成分 (u, v, w)が z 軸によらず と表せる状態である。z 軸方向に伸びる長い柱体に、軸方向に変化しない外力が作用するときに平面ひずみ状態とみなすことができる。.

新しい!!: ひずみと平面ひずみ状態 · 続きを見る »

弾性

弾性(だんせい、elasticity)とは、応力を加えるとひずみが生じるが、除荷すれば元の寸法に戻る性質をいう。一般には固体について言われることが多い。 弾性は性質を表す語であって、それ自体は数値で表される指標ではない。弾性の程度を表す指標としては、弾性限界、弾性率等がある。弾性限界は、応力を加えることにより生じたひずみが、除荷すれば元の寸法に戻る応力の限界値である。弾性率は、応力とひずみの間の比例定数であって、ヤング率もその一種である。 一般的にはゴム等の材料に対して「高弾性」という表現が用いられる。この場合の「高弾性」とは弾性限界が大きいことを指す。しかしながら、前述の通り、弾性に関する指標は弾性限界だけでなく弾性率等があって、例えば、ゴムの場合には弾性限界は大きいが弾性率は小さいため、「高弾性」という表現は混同を生じる恐れがある。 英語で弾性をというが、この語源はギリシャ語の「ελαστικος(elastikos:推進力のある、弾みのある)」からきている。また、一般的には弾力や弾力性等の語が使われるが、これらはほぼ弾性と同義である。 現実に存在する物質は必ず弾性の他に粘性を持ち、粘弾性体である。物質が有する粘弾性のうち弾性に特に着目した場合、弾性を有する物質を弾性体と呼ぶ。.

新しい!!: ひずみと弾性 · 続きを見る »

応力

応力(おうりょく、ストレス、stress)とは、物体連続体などの基礎仮定を満たすものとする。の内部に生じる力の大きさや作用方向を表現するために用いられる物理量である。物体の変形や破壊などに対する負担の大きさを検討するのに用いられる。 この物理量には応力ベクトル と応力テンソル の2つがあり、単に「応力」といえば応力テンソルのことを指すことが多い。応力テンソルは座標系などを特別に断らない限り、主に2階の混合テンソルおよび混合ベクトルとして扱われる(混合テンソルについてはテンソル積#テンソル空間とテンソルを参照)。応力ベクトルと応力テンソルは、ともに連続体内部に定義した微小面積に作用する単位面積あたりの力として定義される。そのため、それらの単位は、SIではPa (N/m2)、重力単位系ではkgf/mm2で、圧力と同じである。.

新しい!!: ひずみと応力 · 続きを見る »

地震

地震(じしん、earthquake)という語句は、以下の2つの意味で用いられる日本地震学会地震予知検討委員会(2007)。.

新しい!!: ひずみと地震 · 続きを見る »

ポアソン比

ポアソン比(ポアソンひ、英語:Poisson's ratio、Poisson coefficient)とは、物体に弾性限界内で応力を加えたとき、応力に直角方向に発生するひずみと応力方向に沿って発生するひずみの比のことである。ヤング率などと同じく弾性限界内では材料固有の定数と見なされる。 名称はフランスの物理学者シメオン・ドニ・ポアソンに由来する。.

新しい!!: ひずみとポアソン比 · 続きを見る »

ヤング率

ヤング率(ヤングりつ、Young's modulus)は、フックの法則が成立する弾性範囲における、同軸方向のひずみと応力の比例定数である。この名称はトマス・ヤングに由来する。縦弾性係数(たてだんせいけいすう、modulus of longitudinal elasticity)とも呼ばれる。.

新しい!!: ひずみとヤング率 · 続きを見る »

ラジアン

ラジアン(radian、記号: rad)は、国際単位系 (SI) における角度(平面角)の単位である。円周上でその円の半径と同じ長さの弧を切り取る2本の半径が成す角の値と定義される。.

新しい!!: ひずみとラジアン · 続きを見る »

プレート

1:地殻、2:マントル、3a:外核、3b:内核、4:リソスフェア(≒'''プレート''')、5:アセノスフェア 地球の断面構造。組成、鉱物相、力学性質から分類。 プレート(tectonic plate)は、地球の表面を覆う、十数枚の厚さ100kmほどの岩盤のこと。リソスフェア(岩石圏)とほぼ同じで、地殻とマントルの最上部を合わせたもの。.

新しい!!: ひずみとプレート · 続きを見る »

フックの法則

フックの法則(フックのほうそく、Hooke's law)は、力学や物理学における構成則の一種で、ばねの伸びと弾性限度以下の荷重は正比例するという近似的な法則である。弾性の法則(だんせいのほうそく)とも呼ばれる。フックの法則が近似として成り立つ物質を線形弾性体またはフック弾性体 (Hookean elastic material) と呼ぶ。 フックの法則は17世紀のイギリスの物理学者、ロバート・フックが提唱したものであり、彼の名を取ってフックの法則と名づけられた。フックは1676年にラテン語のアナグラムでこの法則を記述し、1678年にアナグラムの答えが、即ち であると発表した。フックの法則に従う系では、荷重は伸びに正比例し と表される。ここで.

新しい!!: ひずみとフックの法則 · 続きを見る »

エラストマー

ラストマー(elastomer)とはゴム弾性を有する工業用材料の総称。 「elastic(弾力のある)」と「polymer(重合体)」を組み合わせた造語。.

新しい!!: ひずみとエラストマー · 続きを見る »

スプリット・ホプキンソン圧力棒法

プリット・ホプキンソン圧力棒法(すぷりっと・ほぷきんそんあつりょくぼうほう、"Split-Hopkinson pressure bar method")とは、バートラム・ホプキンソンによって考案された材料の動的応力-ひずみ応答を試験するための機構である。.

新しい!!: ひずみとスプリット・ホプキンソン圧力棒法 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: ひずみと無次元量 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: ひずみと物体 · 続きを見る »

軟部組織

軟部組織(なんぶそしき、soft tissue)とは、生体における骨格以外の支持組織のことである。軟組織 (なんそしき) とも呼ぶ。 軟部組織は、腱、靭帯、筋膜、皮膚、脂肪組織などの骨組織を除く結合組織(=結合織、英語:connective tissue)と、血管、横紋筋、平滑筋、末梢神経組織(神経節と神経線維)を総称する。軟部組織に対して硬組織という術語があるが、これはほぼ骨組織に対応している。微妙なのは軟骨である。耳介軟骨、喉頭軟骨、気管支軟骨を除けば脊椎動物の軟骨組織は骨組織と密接に関連しているので、骨・軟骨組織を一体として硬組織として扱う傾向がある。 軟部組織という術語は解剖学の用語であるが、専ら病理学領域で汎用される。病理学領域で好んで用いられるのは、腫瘍の分類の際に軟部腫瘍(英語:soft tissue tumor)をひとつのカテゴリーとしてまとめるときに便利なためである。しかし発生学的由来のまったく異なる組織、たとえば外胚葉由来の神経組織と中胚葉由来の血管や筋組織が軟部組織として一括されることには解剖学の専門家からは異論があるであろう。 軟部組織は便宜的に設定された術語であるため、以下の組織や組織由来の腫瘍はたとえ柔軟(soft)であっても軟部組織や軟部腫瘍のカテゴリーには含まれない。.

新しい!!: ひずみと軟部組織 · 続きを見る »

重合体

重合体(じゅうごうたい)またはポリマー(polymer)とは、複数のモノマー(単量体)が重合する(結合して鎖状や網状になる)ことによってできた化合物のこと。このため、一般的には高分子の有機化合物である。現在では、高分子と同義で用いられることが多くなっている。ポリマー(polymer)の poly- は接頭語で「たくさん」を意味する。 2種類以上の単量体からなる重合体のことを特に共重合体と言う。 身近なものとしては、繊維に用いられるナイロン、ポリ袋のポリエチレンなどの合成樹脂がある。また、生体内のタンパク質は、アミノ酸の重合体である。.

新しい!!: ひずみと重合体 · 続きを見る »

耐力

耐力(たいりょく、proof stress, offset yield strength)とは、その材料が耐えうる力のこと。耐力の値を超えたとき、その材料は塑性変形をはじめる。 材料試験の用語では、明確な降伏点をもたない材料で、ある一定の塑性ひずみを生じる応力をたとえば0.2%耐力などとして、材料の特性を比較するのに用いる。.

新しい!!: ひずみと耐力 · 続きを見る »

連続体

連続体(れんぞくたい、continuum ).

新しい!!: ひずみと連続体 · 続きを見る »

連続体力学

連続体力学 (れんぞくたいりきがく、Continuum mechanics)とは、物理的対象を連続体という空間的広がりを持った物体として理想化してその力学的挙動を解析する物理学の一分野である。連続体力学では対象である連続体を巨視的に捉え、分子構造のような内部の微視的な構造が無視できるなめらかなものであり、力を加えることで変形するものとみなす。 主な連続体として弾性体と流体がある。直観的には弾性体とは圧力を取り除くと元の状態に復帰する固体であり、流体は気体、液体、プラズマを記述するものである。 連続体力学は物体を空間上の一点に近似して扱う質点の力学とは区別され、物体の変形を許容しない剛体の力学とも区別される。剛体は、変形しにくさを表す量である弾性係数が無限大である(すなわち一切変形しない)連続体であるとみなすこともできる。 連続体の力学は材料力学、水力学、土質力学といった応用力学、およびそれらの応用分野である材料工学、化学工学、機械工学、航空宇宙工学などで用いられる。.

新しい!!: ひずみと連続体力学 · 続きを見る »

降伏 (物理)

降伏(こうふく)とは、金属材料などに応力を加えていくと現れる現象である。例えば鋼に応力を加えていくと、応力-ひずみ線図は図1のような挙動を示す。図1では、応力が点2に至るとひずみは大きくなるのに対し引っ張り応力は下降する。このとき鋼は降伏したという。点2に至るまでの変形は弾性変形であり荷重を除荷すれば形状は元に戻るのに対し、降伏後は塑性変形になり除荷しても弾性変形分(点2までの変形)以上は戻ることはない。 降伏中の最大の応力を上降伏点(点2)、最低の応力を下降伏点という。実用上は上降伏点が、弾性変形の最大基準の応力としてよく利用されている。.

新しい!!: ひずみと降伏 (物理) · 続きを見る »

HARUHI

HARUHI(ハルヒ、1999年2月25日 - )は日本の女性歌手。ロサンゼルス出身。.

新しい!!: ひずみとHARUHI · 続きを見る »

材料工学

材料工学(ざいりょうこうがく、英語:materials science and engineering)または材料科学(ざいりょうかがく)は、工学の一分野であり、物理学、化学等の知識を融合して新しい材料(素材)やデバイスの設計と開発、そして評価をおこなう学問である。 プロセス技術(結晶の成長、薄膜化、焼結、鋳造、圧延、溶接、イオン注入、ガラス形成など)、分析評価技術(電子顕微鏡、X線回折、熱量計測など)および産業上の材料生産での費用対利潤の評価などを扱う。.

新しい!!: ひずみと材料工学 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: ひずみと流体 · 続きを見る »

ここにリダイレクトされます:

ひずみテンソル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »