ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

埋め込み (数学)

索引 埋め込み (数学)

数学において、埋め込み(うめこみ、embedding, imbedding)とは、数学的構造間の構造を保つような単射のことである。 It is suggested by, that the word "embedding" is used instead of "imbedding" by "the English", i.e. the British.

35 関係: はめ込み単射可換体同型写像同値多様体引き戻し (圏論)位相同型位相空間位相空間論体論微分同相写像微分位相幾何学圏論ノルム線型空間リーマン多様体リーマン幾何学ヒルベルト空間イデアル (環論)カーヴ (バンド)シュプリンガー・サイエンス・アンド・ビジネス・メディア写像の微分環準同型相対位相領域理論順序集合計量テンソル距離空間部分多様体連続写像核 (代数学)沈め込み有向集合数学数学的構造

はめ込み

数学において,はめ込み (immersion) は可微分多様体の間の可微分写像であって微分がいたるところ単射であるもののことである.明示的には, がはめ込みであるとは, が のすべての点 において単射関数であることをいう(ここで は多様体 の点 における接空間を表す).同じことであるが, がはめ込みであるとは,その微分が の次元に等しい定数を持つことである: 関数 それ自身は単射である必要はない. 関連概念は埋め込みである.滑らかな埋め込みは位相的な埋め込みでもある単射はめ込み であり,したがって は におけるその像に微分同相である.はめ込みはちょうど局所的な埋め込みである――つまり,任意の点 に対して, のある近傍 が存在して, が埋め込みとなり,逆に局所的な埋め込みははめ込みである.無限次元多様体に対して,これははめ込みの定義として取られることもある. がコンパクトならば,単射なはめ込みは埋め込みであるが, がコンパクトでなければ,そうとは限らない;連続全単射と同相を比較せよ..

新しい!!: 埋め込み (数学)とはめ込み · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 埋め込み (数学)と単射 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 埋め込み (数学)と可換体 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: 埋め込み (数学)と同型写像 · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 埋め込み (数学)と同値 · 続きを見る »

多様体

多様体(たようたい、manifold, Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。.

新しい!!: 埋め込み (数学)と多様体 · 続きを見る »

引き戻し (圏論)

圏論という数学の分野において,引き戻し(ひきもどし,pullback),あるいはファイバー積 (fiber/fibre/fibered product),デカルトの四角形 (Cartesian square) とは,共通の終域を持つ2つの射, からなる図式の極限である.引き戻しはしばしば と書かれ,2つの自然な射, を備えている.2つの射の引き戻しが存在するとは限らないが,存在すれば2つの射から本質的に一意に定義される.多くの状況において, は,元 と の対 であって なるものからなるものと直観的に考えることができる.一般の定義には普遍性が用いられ,このことを本質的な理由として,引き戻しは2つの与えられた射を可換四角形に適合させる「最も一般の」方法である. 引き戻しの双対概念は (pushout) である..

新しい!!: 埋め込み (数学)と引き戻し (圏論) · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 埋め込み (数学)と位相同型 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 埋め込み (数学)と位相空間 · 続きを見る »

位相空間論

数学における位相空間論(いそうくうかんろん、general topology; 一般位相幾何学)または点集合トポロジー(てんしゅうごうトポロジー、point-set topology; 点集合論的位相幾何)は、位相空間の性質やその上に定義される構造を研究対象とする位相幾何学の一分野である。位相幾何学のほかの分野が多様体などの特定の構造や具体的な構造を前提とすることと異なり、現れる位相空間としては病的なものも含めた極めて広範かつ一般のものを扱い、その一般論を形成するのが位相空間論の主目的である。.

新しい!!: 埋め込み (数学)と位相空間論 · 続きを見る »

体論

数学において体論(たいろん、英語:field theory)とは、体の性質を研究する分野のことである。体は四則演算が定義されている数学的対象である。.

新しい!!: 埋め込み (数学)と体論 · 続きを見る »

微分同相写像

数学において、微分同相写像(びぶんどうそうしゃぞう、diffeomorphism)は滑らかな多様体の同型写像である。それは1つの可微分多様体を別の可微分多様体に写す可逆関数であって、関数と逆関数が両方滑らかであるようなものである。.

新しい!!: 埋め込み (数学)と微分同相写像 · 続きを見る »

微分位相幾何学

微分位相幾何学もしくは微分トポロジー(英語:differential topology)は、多様体の微分可能構造に注目する幾何学の一分野。微分可能構造という位相のみでは 決まらないものを扱うため純粋な位相幾何学として扱うのは難しい部分もあるが,位相が与えられている多様体の微分可能構造つまり微積分ができる ような構造を調べるということで位相多様体を調べるもので,微分可能構造まで込めた多様体に距離や曲率を定めて 研究を行う微分幾何学に比べ自由度は高いことから位相幾何学であるとされている。解析学や微分幾何学と位相幾何学の学際研究が非常に有益なことは初期から知られており、局所的な性質を扱う微分幾何学と大域的な性質を扱う位相幾何学の対照的な2分野による多様体の研究は双方の発展を促した。古くはフェリックス・クラインやアンリ・ポアンカレまで遡れ、現在微分位相幾何学と呼ばれているものはルネ・トムやジョン・ミルナーといった数学者によって創り出された。.

新しい!!: 埋め込み (数学)と微分位相幾何学 · 続きを見る »

圏論

圏論(けんろん、category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。 考えている種類の「構造」を持った対象とその構造を反映するような対象間の射の集まりからなる圏が基本的な考察の対象になる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。.

新しい!!: 埋め込み (数学)と圏論 · 続きを見る »

ノルム線型空間

数学におけるノルム線型空間(ノルムせんけいくうかん、normed vector space; ノルム付きベクトル空間、ノルム付き線型空間)または短くノルム空間は、ノルムの定義されたベクトル空間を言う。 各成分が実数の、二次元あるいは三次元のベクトルからなる空間では、直観的にベクトルの「大きさ」(長さ)の概念が定義できる。この直観的アイデアを任意有限次元の実数ベクトル空間 に拡張するのは容易い。ベクトル空間におけるそのようなベクトルの大きさは以下のような性質を持つ.

新しい!!: 埋め込み (数学)とノルム線型空間 · 続きを見る »

リーマン多様体

微分幾何学におけるリーマン多様体(リーマンたようたい、Riemannian manifold)とは、可微分多様体 で 上の各点に基本計量テンソル が与えられているものを言う。ベルンハルト・リーマンによって導入された。.

新しい!!: 埋め込み (数学)とリーマン多様体 · 続きを見る »

リーマン幾何学

リーマン幾何学(リーマンきかがく、Riemannian geometry)とは、リーマン計量や擬リーマン計量と呼ばれる距離の概念を一般化した構造を持つ図形を研究する微分幾何学の分野である。このような図形はリーマン多様体、擬リーマン多様体とよばれる。ドイツの数学者ベルンハルト・リーマンに因んでこの名前がついている。1850年代に確立された。 楕円・放物・双曲の各幾何学は、リーマン幾何学では、曲率がそれぞれ正、0、負の一定値をとる空間(それぞれ球面、ユークリッド空間、双曲空間)上の幾何学と考えられる。なお、楕円幾何学のことをリーマン幾何と呼ぶことがあるが、本稿で述べるリーマン幾何学はそれとは異なるものである。 アルベルト・アインシュタインは、重力、即ち、一様ではなく湾曲した時空を記述するのに擬リーマン多様体の枠組みが有効であることを見いだし、リーマン幾何学を数学的核心とした一般相対性理論を構築した。 3.

新しい!!: 埋め込み (数学)とリーマン幾何学 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: 埋め込み (数学)とヒルベルト空間 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 埋め込み (数学)とイデアル (環論) · 続きを見る »

カーヴ (バンド)

ーヴ(Curve)は、イギリスのロックデュオ。1990年にロンドンで結成。インダストリアルを取り入れたシューゲイザーバンドの一つとして人気を博した。.

新しい!!: 埋め込み (数学)とカーヴ (バンド) · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 埋め込み (数学)とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

写像の微分

数学の一分野、微分幾何学における多様体間の写像の微分(びぶん、differential)または全微分 は、通常の解析学における全微分の概念を可微分写像に対して一般化するもので、可微分多様体間の可微分写像のある意味での最適線型近似を各点において与えるものである。より具体的に、可微分多様体 の間の可微分写像 に対し、 の における微分(係数) は、 における の接空間から における の接空間への線型写像として与えられる。 各点における微分係数 は、接束を考えることにより、 を動かして微分写像(導写像) にすることができる。 は接写像とも呼ばれ、可微分多様体の接束をとる操作(接構成)は接写像を伴って可微分多様体の圏からベクトル束の圏への函手(接函手)を定める。.

新しい!!: 埋め込み (数学)と写像の微分 · 続きを見る »

環準同型

論や抽象代数学において、環準同型(ring homomorphism)は2つの環の間の構造を保つ関数である。 きちんと書くと、R と S が環であれば、環準同型は以下を満たす関数 である。.

新しい!!: 埋め込み (数学)と環準同型 · 続きを見る »

相対位相

数学の位相空間論周辺分野における部分位相空間(ぶぶんいそうくうかん、subspace)は、位相空間の部分集合でもとの空間から由来する自然な位相を備えたものをいう。そのような位相は、部分空間位相 (subspace topology), 相対位相 (relative topology) あるいは誘導位相 (induced topology) やトレース位相 (trace topology) などと呼ばれる。.

新しい!!: 埋め込み (数学)と相対位相 · 続きを見る »

領域理論

域理論 (りょういきりろん、domain theory)は、領域 (domain) と呼ばれる特別な種類の半順序集合を研究する数学の分野であり、順序理論の一分野である。 計算機科学の表示的意味論(denotational semantics)を構築するために用いられる。 領域理論は、近似と収束という直観的概念を極めて一般的な枠組で形式化し、位相空間と密接な関係をもつ。 表示的意味論に対する他の重要なアプローチとしては距離空間を用いるものがある。.

新しい!!: 埋め込み (数学)と領域理論 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: 埋め込み (数学)と順序集合 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 埋め込み (数学)と計量テンソル · 続きを見る »

距離空間

距離空間(きょりくうかん、metric space)とは、距離関数(きょりかんすう)と呼ばれる非負実数値関数が与えられている集合のことである。 古代より、平面や空間、地上の 2 点間の離れ具合を表す尺度である距離は測量や科学、数学において重要な役割を果たしてきた。1906年にモーリス・フレシェは、様々な集合の上で定義された関数の一様連続性の概念を統一的に研究した論文 において、ユークリッド空間から距離の概念を抽出して用い、距離空間の理論を築いた。 平面 R2 の上の 2 点 P1.

新しい!!: 埋め込み (数学)と距離空間 · 続きを見る »

部分多様体

部分多様体(submanifold)とは多様体 M の部分集合 S であって、それ自体も多様体構造を持つものを指す。このとき、包含写像 i: S → M の性質によって、部分多様体はいくつかの種類に分けられる。.

新しい!!: 埋め込み (数学)と部分多様体 · 続きを見る »

連続写像

位相空間論において函数や写像が連続(れんぞく、continuous)であるというのは、ある特定の意味で位相空間の間の位相的構造を保つある種の準同型となっていることを意味し、それ自体が位相空間論における興味の対象ともなる。数学の他の領域における各種の連続性の定義も、位相空間論における連続性の定義から導出することができる。連続性は、空間の位相が同相(位相同型)であることの基礎となる概念であり、特に全単射な連続写像が同相写像であるための必要十分条件は、その逆写像もまた連続となることである。 連続でない写像あるいは函数は、不連続であると言う。 連続性と近しい関係にある概念として、一様連続性、同程度連続性、作用素の有界性などがある。 位相空間の間の写像の連続性の概念は、それが距離空間の間の連続函数の場合のような明確な「距離」の概念を一般には持たない分、より抽象的である。位相空間というのは、集合 とその上の位相(あるいは開集合系)と呼ばれる の部分集合族で(距離空間における開球体全体の成す族の持つ性質を一般化するように)合併と交叉に関する特定の条件を満足するものを組にしたもので、位相空間においても与えられた点の近傍について考えることができる。位相に属する各集合は の(その位相に関する)開部分集合と呼ばれる。.

新しい!!: 埋め込み (数学)と連続写像 · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: 埋め込み (数学)と核 (代数学) · 続きを見る »

沈め込み

数学において、沈め込み (submersion) とは、可微分多様体間の可微分写像であって微分がいたるところ全射であるもののことである。これは微分トポロジーにおいて基本的な概念である。沈め込みの概念ははめ込みの概念の双対である。.

新しい!!: 埋め込み (数学)と沈め込み · 続きを見る »

有向集合

数学における有向集合(ゆうこうしゅうごう、directed set)、有向前順序集合 (directed preordered set) あるいはフィルター付き集合 (filtered set) とは、空でない集合 A と反射的かつ推移的な二項関係(つまり前順序)≤ との組 (A, &le) であって、さらに任意の二元が上界を持つ、すなわち A の任意の元 a, b に対して、A の元 c で a ≤ c かつ b ≤ c を満たすものが必ず存在するものをいう。 有向集合は空でない全順序集合の一般化、すなわち任意の全順序集合は有向集合となるが、一方で必ずしも全ての半順序集合が有向集合となるわけではない。位相空間論において有向集合は列の概念を一般化する有向点族(ネット)の概念を定義するのに用いられ、それにより解析学で用いられる様々な極限の概念を統一的に扱うことが可能になる。有向集合から抽象代数学あるいはもっと一般の圏論における直極限の概念が生じる。.

新しい!!: 埋め込み (数学)と有向集合 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 埋め込み (数学)と数学 · 続きを見る »

数学的構造

数学における構造(こうぞう、mathematical structure)とは、ブルバキによって全数学を統一的に少数の概念によって記述するために導入された概念である。集合に、あるいは圏の対象に構造を決めることで、その構造に対する準同型が構造を保つ写像として定義される。数学の扱う対象は、基本的には全て構造として表すことができる。.

新しい!!: 埋め込み (数学)と数学的構造 · 続きを見る »

ここにリダイレクトされます:

うめ込まれるうめ込みうめ込み (トポロジー)うめ込み (位相空間論)うめ込み (体論)位相的うめ込み位相的埋め込み埋め込まれる埋め込み埋め込み (トポロジー)埋め込み (位相空間論)埋め込み (体論)埋蔵等長はめ込み等長うめ込み等長埋め込み

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »