ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

イデアル (環論)

索引 イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

81 関係: 加法群原始イデアル原始環偶数半素環半環単位的環単純加群単純環単項イデアル整域単集合可逆元可換体可換環同型定理同値類同値関係合同算術合同関係完備束両側加群中国の剰余定理主イデアル二項関係代数的整数リヒャルト・デーデキントツォルンの補題デデキント環フェルマーの最終定理ドイツ分数イデアルイデアルの根基イデアル商エルンスト・クンマークルルの定理シュプリンガー・サイエンス・アンド・ビジネス・メディア冪乗冪零元円分体商体商群元 (数学)剰余環剰余類空和空集合算術の基本定理素イデアル素因数分解素環...素数群 (数学)群論環 (数学)環上の加群環論非可換環順序集合被約環複素数部分集合自然数零化イデアルP進数抽象代数学束 (束論)核 (代数学)極大イデアル極小イデアル正規部分群準同型準素イデアル有限生成加群斜体 (数学)既約イデアル擬環数論整域整数整数環19世紀 インデックスを展開 (31 もっと) »

加法群

加法群 (additive group) は群演算をある意味で加法と考えることのできる群である。それは通常アーベル群であり、その二項演算を記号 + を使って書くのが一般的である。 この用語は複数の演算をもった構造で他の演算を忘れることによって得られる構造を明示するために広く使われる。例えば、整数全体、ベクトル空間、環の加法群。これは環と体で可逆元全体からなる乗法群を加法群と区別するために特に有用である。.

新しい!!: イデアル (環論)と加法群 · 続きを見る »

原始イデアル

数学において、環論において左原始イデアル (primitive ideal) は単純左加群の零化イデアルである。右原始イデアルは同様に定義される。(その名前にもかかわらず)左と右原始イデアルは常に両側イデアルであることに注意しよう。 環の左原始イデアルによる商は左原始環である。.

新しい!!: イデアル (環論)と原始イデアル · 続きを見る »

原始環

論において、左原始環(ひだりげんしかん、left primitive ring)とは、忠実な単純左加群をもつ環である。よく知られた例として、ベクトル空間の自己準同型環や、標数0の体上のワイル代数がある。.

新しい!!: イデアル (環論)と原始環 · 続きを見る »

偶数

偶数(ぐうすう、even number) とは、 を約数に持つ整数、すなわち で割り切れる整数のことをいう。逆に で割り切れない整数のことは、奇数という。 具体的な偶数の例として などが挙げられる。これらはそれぞれ に等しいため、 で割っても余りが生じず、 で割り切ることができる。 より派生して、 で割り切れるが では割り切れない整数を単偶数または半偶数という。これに対して、 で割り切れる整数を複偶数 または全偶数という。 偶数と奇数は、偶数全体、奇数全体をそれぞれ 1 つの元と見て、2 つの元からなる有限体の例を与える。.

新しい!!: イデアル (環論)と偶数 · 続きを見る »

半素環

数学の一分野である環論において、半素イデアルと半素環は素イデアルと素環の一般化である。可換環論においては、半素イデアルは根基イデアルとも呼ばれる。 例えば、有理整数環において、半素イデアルは、零イデアルと、n を square-free な整数として n\mathbb Z の形のイデアルである。なので、30\mathbb Z は有理整数環の半素イデアルだが 12\mathbb Z\, は半素イデアルでない。 半素環のクラスは半原始環、素環、被約環を含む。 この記事における多くの定義や主張はとにある。.

新しい!!: イデアル (環論)と半素環 · 続きを見る »

半環

抽象代数学において、半環(はんかん、semi-ring)とは環に類似した代数的構造で、環の公理から加法的逆元の存在を除いたようなもののことである。負元 (negative) の無い環 (ring) ということから rig という用語もしばしば用いられる。.

新しい!!: イデアル (環論)と半環 · 続きを見る »

単位的環

数学、特に環論における単位的環(たんいてきかん、unital/unitary ring)、単位環(たんいかん、unit ring)あるいは単位元持つ環 (ring with unit/unity/identity) は、乗法単位元を持つ環のことを言う。.

新しい!!: イデアル (環論)と単位的環 · 続きを見る »

単純加群

上の左加群 が非自明な部分 -加群をもたないとき、 を単純加群(たんじゅんかぐん、simple module)または既約加群(きやくかぐん、irreducible module)という。これは任意の について となることと同値である。 これは左 -加群の圏 において、すべてのゼロでない準同型写像 は単射である、あるいはすべてのゼロでない準同型写像 は全射であることとしても特徴づけられる。 右加群に対しても同様に定義される。.

新しい!!: イデアル (環論)と単純加群 · 続きを見る »

単純環

数学の環論において、( を持つ可換とは限らない)環 が単純(たんじゅん、simple)であるとは、 の両側イデアルが と しか存在しないことをいう。.

新しい!!: イデアル (環論)と単純環 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: イデアル (環論)と単項イデアル整域 · 続きを見る »

単集合

数学における単集合(たんしゅうごう、singleton; 単元集合、単項集合、一元集合)あるいは単位集合()は、唯一の元からなる集合である。一つ組 (1-tuple) や単項列 (a sequence with one element) と言うこともできる。 例えば、 という集合は単集合である。.

新しい!!: イデアル (環論)と単集合 · 続きを見る »

可逆元

数学、とくに代数学における可逆元(かぎゃくげん、invertible element)または単元(たんげん、unit)とは、一般に代数系の乗法と呼ばれる二項演算に対する逆元を持つ元のことをいう。.

新しい!!: イデアル (環論)と可逆元 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: イデアル (環論)と可換体 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: イデアル (環論)と可換環 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: イデアル (環論)と同型定理 · 続きを見る »

同値類

数学において,ある集合 の元が(同値関係として定式化される)同値の概念を持つとき,集合 を同値類(どうちるい,equivalence class)たちに自然に分割できる.これらの同値類は,元 と が同じ同値類に属するのは と が同値であるとき,かつそのときに限るものとして構成される. フォーマルには,集合 と 上の同値関係 が与えられたとき,元 の における同値類は, に同値な元全体の集合 である.「同値関係」の定義から同値類は S の分割をなす.この分割,同値類たちの集合,を の による商集合 (quotient set) あるいは商空間 (quotient space) と呼び, と表記する. 集合 が(群演算や位相のような)構造を持ち,同値関係 がこの構造と適切に両立するように定義されているとき,商集合はしばしばもとの集合から類似の構造を引き継ぐ.例としては,線型代数学における商空間,位相空間論における商空間,,等質空間,商環,,など..

新しい!!: イデアル (環論)と同値類 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: イデアル (環論)と同値関係 · 続きを見る »

合同算術

数学、特に初等代数的整数論における合同算術(ごうどうさんじゅつ、modular arithmetic; モジュラ計算)は、(剰余を持つ除法の意味で))自然数あるいは整数をある特定の自然数で割ったときの剰余に注目して、自然数あるいは整数に関する問題を解決する一連の方法の総称である。合同算術の起源は、一般にはガウスが著作『Disquisitiones Arithmeticae』を出版する1801年にまで遡れるものとされる。ガウスによる合同を用いたこの新しい手法は、有名な平方剰余の相互法則を明らかにし、より抽象的な観点からウィルソンの定理などの定理の記述の簡素化に一役を買った。ガウスの研究は自然数を扱う整数論のみならず、代数学や幾何学といった数学のほかの主要な分野にまで影響を与えるものであった。 かんたんな時刻の計算は「時間」については 12 あるいは 24 を法とする、「分・秒」については 60 を法とする合同算術になっている。合同算術はあたかも法 ''n'' を「周期」として循環あるいは回転しているかのようである。 この手法の基本は、「数それ自体」ではなくそれを別な数で割った(商がいくらになるかということは無視して)「剰余だけ」を考えるということにある。こういった考え方は何か特殊で高尚なものというようなものではなく、実際に日常生活においても時刻や角度といったものの計算や単位の換算などで、ちょっとした合同算術が特別な知識無くあるいは無意識に行われているのである。 20世紀には、合同算術にまつわる状況は大きく様変わりをしている。計算機やウェブの普及に伴って情報セキュリティの観点からの暗号化アルゴリズムの開発や取り扱いといったような場面で古典的な合同算術に関する理論の工業的・商業的応用が頻繁に見られるようになった。.

新しい!!: イデアル (環論)と合同算術 · 続きを見る »

合同関係

抽象代数学において、合同関係 (congruence relation)(あるいは単に合同 (congruence))は(群、環、あるいはベクトル空間のような)代数的構造上の、その構造と協調的な同値関係である。すべての合同関係は対応する構造を持ち、その元はその関係の同値類(あるいは合同類 (congruence class))である。.

新しい!!: イデアル (環論)と合同関係 · 続きを見る »

完備束

数学の一分野における完備束(complete lattice)とは部分集合が常に上限と下限を持つ半順序集合のことである。 完備束は束の重要な例で順序集合論及び普遍代数の研究対象であり、数学及び計算機科学に多くの応用を持つ。 には様々な異なる定義があるので注意を要する(例えば完備半順序 (CPO) は完備束とは異なる概念である)。特に重要な完備束のクラスとしてや (locale) がある。.

新しい!!: イデアル (環論)と完備束 · 続きを見る »

両側加群

抽象代数学において、両側加群(りょうがわかぐん、bimodule)とは、アーベル群であって、左加群かつ右加群であり、左右の積が両立しているようなもののことである。数学の多くの部分で自然に現れることに加えて、左右の加群の関係の多くは両側加群の用語によって簡潔に表現される。.

新しい!!: イデアル (環論)と両側加群 · 続きを見る »

中国の剰余定理

loc.

新しい!!: イデアル (環論)と中国の剰余定理 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: イデアル (環論)と主イデアル · 続きを見る »

二項関係

数学において、二項関係(にこうかんけい、binary relation)あるいは二変数関係 (dyadic relation, 2-place relation) は、集合 の元からなる順序対のあつまりである。別な言い方をすれば、直積集合 の部分集合を、集合 上の二項関係と呼ぶ。あるいはもっと一般に、二つの集合 に対して、 と との間の二項関係とは、直積 の部分集合のことをいう。 二項関係の一つの例は素数全体の成す集合 と整数全体の成す集合 の間の整除関係である。この整除関係では任意の素数 は、 の倍数である任意の整数 に関係を持ち、倍数でない整数には関係しないものとして扱われる。例えば、素数 が関係を持つ整数には などが含まれるが や は含まれない。同様に素数 が関係する整数として などが挙げられるが、 や はそうではない。 二項関係は数学のさまざまな分野で用いられ、不等関係、恒等関係、算術の整除関係、初等幾何学の合同関係、グラフ理論の隣接関係、線型代数学の直交関係などのさまざまな概念が二項関係として定式化することができる。また、写像の概念を特別な種類の二項関係として定義することもできる。二項関係は計算機科学においても重用される。 二項関係はn-項関係 (各 -番目の成分が関係の -番目の始集合 からとられているようなn-組からなる集合)で とした特別の場合である。 ある種の公理的集合論では(集合の一般化としての)類の上の関係を考えることができる。このような拡張は、集合論における元の帰属関係や包含関係の概念(に限った話ではないが)のモデル化を、ラッセルの逆理のような論理矛盾に陥らずに行うために必要である。.

新しい!!: イデアル (環論)と二項関係 · 続きを見る »

代数的整数

数論において代数的整数(だいすうてきせいすう、algebraic integer)とは、整数係数モニック多項式の根となるような複素数のことを言う。代数的整数の全体 A は加法と乗法について閉じており、ゆえに複素数環 C の部分環をなす。この環 A は有理整数環 Z の C における整閉包となっている。 代数体 K の整数環 O は K ∩ A に等しく、また体 K の極大整環(order)となっている。全ての代数的整数はそれぞれ何らかの代数体の整数環に属している。x が代数的整数であることは、環 Z がアーベル群として有限生成(即ち有限生成 '''Z'''-加群)であることと同値である。.

新しい!!: イデアル (環論)と代数的整数 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: イデアル (環論)とリヒャルト・デーデキント · 続きを見る »

ツォルンの補題

集合論においてツォルンの補題(ツォルンのほだい、Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。; 命題 (Zorn の補題) この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。.

新しい!!: イデアル (環論)とツォルンの補題 · 続きを見る »

デデキント環

デデキント環(デデキントかん、Dedekind ring)、あるいはデデキント整域(デデキントせいいき、Dedekind domain)とは、任意の0でない真のイデアルが、有限個の素イデアルの積にかけるような整域のことである。そのような分解は一意であることが知られており、イデアル論の基礎定理と呼ばれる。.

新しい!!: イデアル (環論)とデデキント環 · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: イデアル (環論)とフェルマーの最終定理 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: イデアル (環論)とドイツ · 続きを見る »

分数イデアル

数学、特に可換環論において、分数イデアル(fractional ideal)の概念は整域の文脈で導入され、特にデデキント整域の研究において成果が多い。ある意味で、整域の分数イデアルは分母が許されたイデアルのようなものである。分数イデアルと普通の環のイデアルがともに議論に出てくるような文脈では、明確にするために後者を整イデアル (integral ideal) と呼ぶこともある。.

新しい!!: イデアル (環論)と分数イデアル · 続きを見る »

イデアルの根基

数学の一分野である可換環論において、イデアル I の根基(radical of an ideal)とは、イデアルであって、何乗かすれば I の元となるような元の集合である。根基イデアル(あるいは半素イデアル)とは、自分自身の根基と等しいようなイデアルのことである。(これは「根基化」と呼ばれるイデアルへの作用の固定点であるということもできる。)準素イデアルの根基は素イデアルである。 ここで定義された根基イデアルは半素環の記事において非可換環に一般化される。.

新しい!!: イデアル (環論)とイデアルの根基 · 続きを見る »

イデアル商

抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(ideal quotient) (I: J) とは集合 である。すると (I: J) も R のイデアルである。イデアル商は商と見ることができる、なぜならば IJ \subset K であることと I \subset K: J であることが同値だからだ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。 (I: J) はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。.

新しい!!: イデアル (環論)とイデアル商 · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: イデアル (環論)とエルンスト・クンマー · 続きを見る »

クルルの定理

数学、とくに環論においてクルルの定理 (Krull's theorem)とは、零環でない環は少なくとも1つの極大イデアルを持つという定理である。1929年にヴォルフガング・クルル (Wolfgang Krull) によって超限帰納法を用いて証明された。この定理はツォルンの補題を用いると簡単に証明できるが、実際はツォルンの補題(そして選択公理と)と同値である。.

新しい!!: イデアル (環論)とクルルの定理 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: イデアル (環論)とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

冪乗

冪演算(べきえんざん、英: 独: 仏: Exponentiation)は、底 (base) および冪指数 (exponent) と呼ばれる二つの数に対して定まる数学的算法である。通常は、冪指数を底の右肩につく上付き文字によって示す。自然数 を冪指数とする冪演算は累乗(るいじょう、repeated multiplication) に一致する。 具体的に、 および冪指数 を持つ冪 (power) は、 が自然数(正整数)のとき、底の累乗 で与えられる。このとき は の -乗とか、-次の -冪などと呼ばれる。 よく用いられる冪指数に対しては、固有の名前が与えられているものがある。例えば冪指数 に対して二次の冪(二乗) は の平方 (square of) あるいは -自乗 (-squared) と呼ばれ、冪指数 に対する三次の冪 は の立方 (cube of, -cubed) と呼ばれる。また冪指数 に対して冪 は であり の逆数(あるいは乗法逆元)と呼ばれる。一般に負の整数 に対して底 が零でないとき、冪 はふつう なる性質を保つように と定義される。 冪演算は任意の実数あるいは複素数を冪指数とするように定義を拡張することができる。底および冪指数が実数であるような冪において、底を固定して冪指数を変数と見なせば指数函数が、冪指数を固定して底を変数と見れば冪函数がそれぞれ生じる。整数乗冪に限れば、行列などを含めた非常に多種多様な代数的対象に対してもそれを底とする冪を定義することができるが、冪指数まで同種の対象に拡張するならばその上で定義された自然指数函数と自然対数函数を持つ完備ノルム環(例えば実数全体 や複素数全体 などはそう)を想定するのが自然である。.

新しい!!: イデアル (環論)と冪乗 · 続きを見る »

冪零元

数学において、環 R の元 x はある正の整数 n が存在して xn.

新しい!!: イデアル (環論)と冪零元 · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: イデアル (環論)と円分体 · 続きを見る »

商体

数学における整域の分数体(ぶんすうたい、field of fractions)あるいは商体(しょうたい、field of quotients)とは、与えられた整域に対してそれを部分環として含む最小の体である。整域 R の商体の元は a ≠ 0 および b なる整域 R の元によって分数 b/a の形に表される。環 R の商体が K であることを K.

新しい!!: イデアル (環論)と商体 · 続きを見る »

商群

数学において,商群(しょうぐん,quotient group, factor group)あるいは剰余群,因子群とは,群構造を保つ同値関係を用いて,大きい群から似た元を集めて得られる群である.例えば,n を法とした加法の巡回群は,整数から,差が の倍数の元を同一視し,そのような各類(合同類と呼ばれる)に1つの実体として作用する群構造を定義することによって得られる.群論と呼ばれる数学の分野の一部である. 群の商において,単位元の同値類はつねにもとの群の正規部分群であり,他の同値類たちはちょうどその正規部分群の剰余類たちである.得られる商は と書かれる,ただし はもとの群で は正規部分群である.(これは「(ジーモッドエヌ)」と読まれる."mod" は modulo の略である.) 商群の重要性の多くはその準同型との関係に由来する.第一同型定理は任意の群 の準同型による像はつねに のある商と同型であると述べている.具体的には,準同型 による の像は と同型である,ただし は の核 を表す. 商群の双対概念は部分群であり,これらが大きい群から小さい群を作る2つの主要な方法である.任意の正規部分群 は,大きい群から部分群 の元の間の差異を除去して得られる,対応する商群を持つ.圏論では,商群は商対象の例であり,これは部分対象の双対である.商対象の他の例は,商環,商線型空間,商位相空間,商集合を参照..

新しい!!: イデアル (環論)と商群 · 続きを見る »

元 (数学)

数学において元(げん、element)とは、集合を構成する個々の数学的対象のことである。ジュゼッペ・ペアノの導入した記法に従えば、対象 が集合 の元であることを と書き表す。このとき対象 が集合 に属する(ぞくする、membership)、あるいは集合 は対象 を含むとも言う。 「属する」という二項関係は、数学的対象と集合(あるいは一般にクラス)との間に定まる非対称な関係(帰属関係)である。外延性の公理により、集合はそれに属する全ての数学的対象を指定することで特徴づけられる。 通常用いられる においては基礎の公理が述べるところによって帰属関係は整礎、すなわち任意の集合は自身を元として含むことはない(帰属関係は反対称関係である)。しかし、基礎の公理の代わりにを置くではそのような制約を受けないが存在し得る。 帰属関係は推移的でない。これは集合の包含関係がそうであることと対照的である。.

新しい!!: イデアル (環論)と元 (数学) · 続きを見る »

剰余環

数学の一分野、環論における商環(しょうかん、quotient ring)、剰余環(じょうよかん、factor ring)あるいは剰余類環(じょうよるいかん、residue class ring)とは、群論における剰余群や線型代数学における商線型空間に類似した環の構成法およびその構成物である。すなわち、はじめに環 R とその両側イデアル I が与えられたとき、剰余環 R/I と呼ばれる新しい環が、I の全ての元が零元に潰れる(I による違いを「無視」するともいえる)ことで得られる。 注意: 剰余環は商環とも呼ばれるけれども、整域に対する商体(分数の体)と呼ばれる構成とは異なるし、全商環(商の環、これは環の局所化の一種)とも異なる。.

新しい!!: イデアル (環論)と剰余環 · 続きを見る »

剰余類

数学、特に群論における剰余類(じょうよるい、residue class)あるいは傍系(ぼうけい、coset; コセット)とは、特定の種類の同値関係に関する同値類である。.

新しい!!: イデアル (環論)と剰余類 · 続きを見る »

空和

数学における空和(くうわ、empty sum)または零項和 (nullary sum) は、(被加数の)項数が零であるような和を言う。規約として、「数からなる任意の空和は(和をとる際のいかなる条件が空に退化したものであっても) に等しい」と取り決める。例えば、 である。 数列 に対して、最初の -項の和を と書く。このとき が全ての に対し成り立つものとするには、 および という規約を設ける必要がある。これはつまり、ただひとつの項からなる "和" の値はその項の値であり、項を持たない "和" の値は と考えるのである。このようなひとつだけあるいは 0 個の項の "和" を許すことで、多くの数学的な公式において考慮すべき場合の数を減らすことができる。また、そのような "和" は数学的帰納法やアルゴリズムの起点として自然に現れる。これらの理由のため、「空和の値は であるものと約束する」ことは数学やコンピュータプログラミングにおいて標準的な慣習である。(同様の理由で、空積は乗法単位元である に等しいと約束する。) 項が数以外のもの(例えばベクトル、行列、多項式など)の場合に定義された和に対して、一般には項が何らかのアーベル群や加法的に書かれる可換モノイドに値を取る場合に、空和の値はその群の零元に等しいものと扱われる。.

新しい!!: イデアル (環論)と空和 · 続きを見る »

空集合

集合(くうしゅうごう、empty set)は、要素を一切持たない集合の事である。公理的集合論において、空集合は公理として存在を仮定される場合と、他の公理から存在が導かれる場合がある。空集合を表す記号として、∅ または \emptyset、 がある。記号 ∅ はノルウェー語等で用いられるアルファベット Ø に由来しており、形の似ているギリシャ文字φ, Φ(ファイ)とは全く関係がない。.

新しい!!: イデアル (環論)と空集合 · 続きを見る »

算術の基本定理

pp.

新しい!!: イデアル (環論)と算術の基本定理 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: イデアル (環論)と素イデアル · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: イデアル (環論)と素因数分解 · 続きを見る »

素環

論において、素環(そかん、prime ring)とは、任意の について、 ならば が成り立つような環 のことである。.

新しい!!: イデアル (環論)と素環 · 続きを見る »

素数

素数(そすう、prime number)とは、 より大きい自然数で、正の約数が と自分自身のみであるもののことである。正の約数の個数が である自然数と言い換えることもできる。 より大きい自然数で素数でないものは合成数と呼ばれる。 一般には、素数は代数体の整数環の素元として定義される(そこでは反数などの同伴なものも素数に含まれる)。このため、有理整数環 \mathbb Z での素数は有理素数(ゆうりそすう、rational prime)と呼ばれることもある。 最小の素数は である。素数は無数に存在する。したがって、素数からなる無限数列が得られる。 素数が無数に存在することは、紀元前3世紀頃のユークリッドの著書『原論』で既に証明されていた。 自然数あるいは実数の中での素数の分布の様子は高度に非自明で、リーマン予想などの現代数学の重要な問題との興味深い結び付きが発見されている。 分散コンピューティング・プロジェクト GIMPS により、史上最大の素数の探求が行われている。2018年1月現在で知られている最大の素数は、2017年12月に発見された、それまでに分かっている中で50番目のメルセンヌ素数 であり、十進法で表記したときの桁数は2324万9425桁に及ぶ。.

新しい!!: イデアル (環論)と素数 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: イデアル (環論)と群 (数学) · 続きを見る »

群論

群論(ぐんろん、group theory)とは、群を研究する学問。 群の概念は抽象代数学における中心的な概念。 環・体・ベクトル空間などは、演算や公理が付与された群と看做すことができる。 群論の方法は代数学の大部分に強い影響を与えている。 線形代数群とリー群の理論は群論の一分野。 特に発展を遂げており、独自の適用範囲を持っている。 結晶や、水素原子などの構造の多くは、対称性の群(symmetry group)で表現できる。このように、群論は、物理学や化学の中に多くの実例・応用例がある。 1960年代~80年代に発表された総計1万ページを超える論文によって、完全な有限単純群の分類が達成された。これは多くの数学者の共同作業の賜物であり、20世紀の数学の最も重要な業績の一つ。.

新しい!!: イデアル (環論)と群論 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: イデアル (環論)と環 (数学) · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: イデアル (環論)と環上の加群 · 続きを見る »

環論

数学において、環論(かんろん、ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)環を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環、可除環、普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。 可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学や代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。 非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった 。.

新しい!!: イデアル (環論)と環論 · 続きを見る »

非可換環

数学、特に現代代数学と環論において、非可換環(ひかかんかん、noncommutative ring)とは乗法が可換ではない環である。つまり、 なる の元 が存在する。非可換環論 (noncommutative algebra) は可換とは限らない環に適用できる結果の研究であるが、この分野の多くの重要な結果は特別な場合として可換環にも適用できる。.

新しい!!: イデアル (環論)と非可換環 · 続きを見る »

順序集合

数学において順序集合(じゅんじょしゅうごう、ordered set)とは「順序」の概念が定義された集合の事で、「順序」とは大小、高低、長短等の序列に関わる概念を抽象化したものである。ただし、順序集合内の2つの元, に順序関係が定まっている(「比較可能」である)必要はなく、両者が「比較不能」であってもよい。 比較不能のケースを許容していることを強調して順序集合の事を半順序集合(はんじゅんじょしゅうごう、partially ordered set, poset)ともいう。一方、半順序集合の中で比較不能のケースがないものを特に全順序集合 という。(「半順序」という言葉が「全順序」の対義語ではない事に注意。全順序集合も半順序集合の一種である。) 全順序集合の簡単な例は整数の集合や実数の集合で、通常の大小比較を順序とみなしたものがある。 一方、全順序ではない半順序集合の例としては、正の整数全体の集合に整除関係で順序を入れたものや、(2つ以上元を含む)集合の冪集合において、包含関係を順序とみなしたものがある。例えば2元集合 において と はいずれも他方を包含していないので S の冪集合は全順序ではない。 実生活に近い例では、「AさんはBさんの子孫である」という事を「A<B」という大小関係とみなす事で人間全体の集合を半順序集合とみなせる。AさんとBさんはどちらも他方の子孫でない事もありうる(兄弟同士、叔父と甥、赤の他人等)ので、この順序集合は全順序ではない。.

新しい!!: イデアル (環論)と順序集合 · 続きを見る »

被約環

論において、被約環(ひやくかん、reduced ring)とは、0でないベキ零元をもたない環のことである。(ベキ零元とは何乗かすると0になる元のことである。)被約環は数学の分野である可換環論や代数幾何学で役割を果たす。被約スキームとは茎が被約なスキームである。可換環上の可換多元環は環として被約なとき被約多元環と呼ばれる。 この記事は可換環論に関するものである。とくに、環は単位元をもち可換なものを考える。環準同型は単位元を単位元に写す。詳細は可換環論を見られたい。.

新しい!!: イデアル (環論)と被約環 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: イデアル (環論)と複素数 · 続きを見る »

部分集合

集合 A が集合 B の部分集合(ぶぶんしゅうごう、subset; 下位集合)であるとは、A が B の一部(あるいは全部)の要素だけからなることである。A が B の一部分であるという意味で部分集合という。二つの集合の一方が他方の部分集合であるとき、この二つの集合の間に包含関係があるという。.

新しい!!: イデアル (環論)と部分集合 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: イデアル (環論)と自然数 · 続きを見る »

零化イデアル

数学、特に加群論において、集合の零化イデアルあるいは零化域(annihilator, /ənáiəlèitər/, /ə-ˈnī-ə-ˌlā-tər/)はねじれや直交性を一般化した概念である。.

新しい!!: イデアル (環論)と零化イデアル · 続きを見る »

P進数

p 進数(ピーしんすう、p-adic number)とは、1897年にクルト・ヘンゼルによって導入された、数の体系の一つである。文脈によっては、その体系の個々の数を指して p 進数と呼ぶこともある。有理数の体系を実数や複素数の体系に拡張するのとは別の方法で、各素数 p に対して p 進数の体系が構成される。それらは有理数のつくる空間の局所的な姿を記述していると考えられ、数学の中でも特に数論において重要な役割を果たす。数学のみならず、素粒子物理学の理論などで使われることもある(例えば ''p'' 進量子力学を参照)。 「p 進数」とは「2進数」や「3進数」の総称に過ぎないので、文字 p がすでに他の場所で用いられている場合、q 進数や l 進数などと表現されることもある。 なお、自然数や実数を 0 と 1 で表現する方法(2進法)やその結果得られる記号列(2進列)も「2進数」と呼ぶ場合があるが、本項の意味での「2進数」とは異なる。.

新しい!!: イデアル (環論)とP進数 · 続きを見る »

抽象代数学

抽象代数学 (ちゅうしょうだいすうがく、abstract algebra) とは、群、環、体、加群、ベクトル空間や線型環のように公理的に定義される代数的構造に関する数学の研究の総称である。.

新しい!!: イデアル (環論)と抽象代数学 · 続きを見る »

束 (束論)

数学における束(そく、lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合論と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。.

新しい!!: イデアル (環論)と束 (束論) · 続きを見る »

核 (代数学)

数学において、準同型の核(かく、kernel)とは、その準同型の単射からのずれの度合いを測る道具である。代数系における準同型の核が "自明" (trivial) であることとその準同型が単射であることとが同値となる。.

新しい!!: イデアル (環論)と核 (代数学) · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: イデアル (環論)と極大イデアル · 続きを見る »

極小イデアル

論という抽象代数学の分野において、環 R の極小右イデアル (minimal right ideal) とは、他の 0 でない右イデアルを含まない 0 でない右イデアルのことである。同様に、極小左イデアル は R の他の 0 でない左イデアルを含まない R の 0 でない左イデアルで、R の極小イデアルとは R の他の 0 でない両側イデアルを含まない 0 でないイデアルのことである。 別の言い方をすれば、極小右イデアルは包含で順序を入れた R の 0 でない右イデアル全体からなる半順序集合の極小元である。この文脈の外ではイデアルのある半順序集合は零イデアルを持つかもしれず 0 がその半順序集合における極小元となるかもしれないことに注意しよう。例えば素イデアルの集合がそうである。として零イデアルを持つかもしれない。.

新しい!!: イデアル (環論)と極小イデアル · 続きを見る »

正規部分群

数学、とくに抽象代数学における正規部分群(せいきぶぶんぐん、normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。正規部分群は、与えられた群から剰余群を構成するのに用いることができる。 正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。.

新しい!!: イデアル (環論)と正規部分群 · 続きを見る »

準同型

準同型(じゅんどうけい、homomorphic)とは、複数の対象(おもに代数系)に対して、それらの特定の数学的構造に関する類似性を表す概念で、構造を保つ写像である準同型写像(じゅんどうけいしゃぞう、homomorphism) を持つことを意味する。構造がまったく同じであることを表すときは、準同型・準同型写像の代わりに同型(どうけい、isomorphic)および同型写像(どうけいしゃぞう、isomorphism)という術語を用いる。しばしば、準同型写像・同型写像のことを指して単に準同型・同型と呼ぶ。いずれも、「型」の代わりに「形」が用いられることが稀にある。.

新しい!!: イデアル (環論)と準同型 · 続きを見る »

準素イデアル

可換環論において、準素イデアル(primary ideal)とは、可換環 A の真のイデアル Q であって、xy が Q の元かつ x が Q の元でないとき、ある自然数 n > 0 が存在して yn が Q の元となるようなイデアルのことである。.

新しい!!: イデアル (環論)と準素イデアル · 続きを見る »

有限生成加群

数学において、有限生成加群(ゆうげんせいせいかぐん、finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。.

新しい!!: イデアル (環論)と有限生成加群 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: イデアル (環論)と斜体 (数学) · 続きを見る »

既約イデアル

数学において、可換環のイデアルはより大きい2つのイデアルの共通部分として書けないときに、既約 (irreducible) という.

新しい!!: イデアル (環論)と既約イデアル · 続きを見る »

擬環

抽象代数学において必ずしも単位元を持たない環 (rng) あるいは擬環(ぎかん、pseudo-ring)、非単位的環(ひたんいてきかん、non-unital ring)は、乗法単位元の存在以外の環の公理をすべて満たすような代数的構造を言う。英語では少しおどけて、「単位元」(identity, これをしばしば 1 で表す)の無い「環」 (ring) だからということで、「rng」と呼称することもある。 環の公理に乗法単位元の存在を含めない文献もあり、この文脈では本項に云う概念は単に「環」と呼称される。また、修飾辞「非単位的」は「必ずしも単位的でない」という意味で用いられるが、本項ではその意味では専ら「擬環」を(あるいは直接的に「必ずしも」を付けて)用い、単独の「単位的」・「非単位的」を単位元の有無を強調する意味でのみ用いる(つまり、非単位的であるといった場合には実際に単位元を持たない)。.

新しい!!: イデアル (環論)と擬環 · 続きを見る »

数論

数論(すうろん、number theory)とは数、特に整数およびそれから派生する数の体系(代数体、局所体など)の性質について研究する数学の一分野である。整数論とも言う。ふつうは代数学の一分野とみなされることが多い。おおむね次の四つに分けられる。;初等整数論;代数的整数論;解析的整数論;数論幾何学 フェルマーの最終定理のように、数論のいくつかの問題については、他の数学の分野に比して問題そのものを理解するのは簡単である。しかし、使われる手法は多岐に渡り、また非常に高度であることが多い。 ガウスは次のような言葉を残している。.

新しい!!: イデアル (環論)と数論 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: イデアル (環論)と整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: イデアル (環論)と整数 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: イデアル (環論)と整数環 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: イデアル (環論)と19世紀 · 続きを見る »

ここにリダイレクトされます:

イデヤルイデアルイデアルの和イデアルの積両側イデアル単位イデアル右イデアル左イデアル有限生成イデアル理想数真のイデアル片側イデアル自明なイデアル零イデアル

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »