ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

圧力損失

索引 圧力損失

圧力損失(あつりょくそんしつ)とは、流体が機械装置などを通過する際の単位時間単位流量あたりのエネルギー損失である。摩擦損失とも呼ばれる。圧力と同じ次元をもつ。損失は装置内の抵抗に打ち勝つためにその分だけエネルギーを消費することによる。粘性のある流れの場合、熱力学第二法則より、圧力損失のない流れはあり得ない。しかし圧力損失が大きいことはエネルギーの利用効率が低いことであるので、できるだけ損失を小さくする工夫が必要である。配管などの内部流れに対しては、出入口の総圧の差で定義される。 最も単純な内部流れとして、円管を通る流れの圧力損失はダルシー・ワイスバッハの式によって摩擦損失係数という無次元数に置き換えてさまざまなレイノルズ数に対してその値が調べられ、その関係を表す式がいろいろ提案されている。 空気など流体の密度が低い場合、動圧は小さいため無視されることが多い。流体が液体の場合は以下のように水頭にした損失水頭で表されることも多い。 また、外部流れの場合は、装置の抵抗を表すために抗力を用いることが多い。 Category:流体力学 Category:圧力.

22 関係: 定義密度圧力レイノルズ数ダルシー・ワイスバッハの式ベルヌーイの定理エネルギー空気粘度無次元量熱力学第二法則装置重力加速度配管抗力機械次元水頭液体流体摩擦損失摩擦損失係数

定義

定義(ていぎ)は、一般にコミュニケーションを円滑に行うために、ある言葉の正確な意味や用法について、人々の間で共通認識を抱くために行われる作業。一般的にそれは「○○とは・・・・・である」という言い換えの形で行われる。基本的に定義が決められる場合は1つである。これは、複数の場合、矛盾が生じるからである。.

新しい!!: 圧力損失と定義 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 圧力損失と密度 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 圧力損失と圧力 · 続きを見る »

レイノルズ数

レイノルズ数(Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。 概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが、レイノルズ数はオズボーン・レイノルズ (1842–1912) の名にちなんで名づけられており、1883年にその利用法について普及させた。 流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。 また、レイノルズ数は層流や乱流のように異なる流れ領域を特徴づけるためにも利用される。層流については、低いレイノルズ数において発生し、そこでは粘性力が支配的であり、滑らかで安定した流れが特徴である。乱流については、高いレイノルズ数において発生し、そこでは慣性力が支配的であり、無秩序な渦や不安定な流れが特徴である。 実際には、レイノルズ数の一致のみで流れの相似性を保証するには十分ではない。流体流れは一般的には無秩序であり、形や表面の粗さの非常に小さな変化が異なる流れをもたらすことがある。しかしながら、レイノルズ数は非常に重要な指標であり、世界中で広く使われている。.

新しい!!: 圧力損失とレイノルズ数 · 続きを見る »

ダルシー・ワイスバッハの式

流体力学において、ダルシー・ワイスバッハの式(英:Darcy–Weisbach Equation)は流れが十分に発達した円管内定常流の管壁による摩擦損失を与える式である。この式は、配管に流れる流体と管壁の摩擦に起因する損失水頭、もしくは圧力損失を記述している。この式はヘンリー・ダルシーにより開発され、1845年にユリウス・ワイスバッハにより修正されているが、式の原型はプロニーの式である。式の名はヘンリー・ダルシー及びユリウス・ワイスバッハの名をとって名づけられた。.

新しい!!: 圧力損失とダルシー・ワイスバッハの式 · 続きを見る »

ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

新しい!!: 圧力損失とベルヌーイの定理 · 続きを見る »

エネルギー

ネルギー(、)とは、.

新しい!!: 圧力損失とエネルギー · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

新しい!!: 圧力損失と空気 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: 圧力損失と粘度 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: 圧力損失と無次元量 · 続きを見る »

熱力学第二法則

熱力学第二法則(ねつりきがくだいにほうそく、)は、エネルギーの移動の方向とエネルギーの質に関する法則である。またエントロピーという概念に密接に関係するものである。この法則は科学者ごとにさまざまな言葉で表現されているが、どの表現もほぼ同じことを示している。 例えば、電気エネルギーが電熱線を使って熱エネルギーに変換するが、電熱線に熱エネルギーを与えても、電気エネルギーには変換しないことは経験上知られている。つまり、電気エネルギーは質の高いエネルギーであるが、熱エネルギーの質は低い。.

新しい!!: 圧力損失と熱力学第二法則 · 続きを見る »

装置

装置(そうち)とは、ある一定の機能を持った機構のひとまとまりのこと。また装置するという形で動詞としてそのような機構を、備え附ける事を指す。 装置という言葉は、その物単体である程度定まった用途を持つ比較的規模の大きな構造を指す場合に用いられる。装置が土木・建築構造物や車輌や船舶などの大規模な機械類の構成要素となるとき、設備と呼ばれる。 もともとは、apparatusの訳語として、明治期に考案されたものである。.

新しい!!: 圧力損失と装置 · 続きを見る »

重力加速度

重力加速度(じゅうりょくかそくど、gravitational acceleration)とは、重力により生じる加速度である。.

新しい!!: 圧力損失と重力加速度 · 続きを見る »

配管

配管(はいかん)は、液体・気体・粉体などの流体を輸送・密閉・畜圧することや配線などの保護を目的に管(パイプ)、チューブ、ホースを取り付けることである。また管自体を指していう場合もある。.

新しい!!: 圧力損失と配管 · 続きを見る »

抗力

抗力(こうりょく)は、流体(液体や気体)中を移動する、あるいは流れ中におかれた物体にはたらく力の、流れの速度に平行な方向で同じ向きの成分(分力)である。流れの速度方向に垂直な成分は揚力という。 追い風で水面をかき分けて進んでいる帆船は、空気から進行方向の抗力を、それより弱い逆方向の抗力を水から受けている。また、レーシングカー等では揚力でダウンフォースを発生させている。抗力も揚力もケースバイケースで、その方向が字義通りではない場合がある。.

新しい!!: 圧力損失と抗力 · 続きを見る »

機械

この記事では機械、器械(きかい、フランス語、英語、オランダ語:machine、ドイツ語:Maschine)について説明する。 なお、日本語で「機械」は主に人力以外の動力で動く複雑で大規模なものを言い、「器械」のほうは、人力で動く単純かつ小規模なものや道具を指すことが多い。.

新しい!!: 圧力損失と機械 · 続きを見る »

次元

次元(じげん)は、空間の広がりをあらわす一つの指標である。座標が導入された空間ではその自由度を変数の組の大きさとして表現することができることから、要素の数・自由度として捉えることができ、数学や計算機において要素の配列の長さを指して次元ということもある。自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。 直感的に言えば、ある空間内で特定の場所や物を唯一指ししめすのに、どれだけの変数があれば十分か、ということである。たとえば、地球は3次元的な物体であるが、表面だけを考えれば、緯度・経度で位置が指定できるので2次元空間であるとも言える。しかし、人との待ち合わせのときには建物の階数や時間を指定する必要があるため、この観点からは我々は4次元空間に生きているとも言える。 超立方体正八胞体は四次元図形の例である。数学と無縁な人は「正八胞体は四つの次元を持つ」というような「次元」という言葉の使い方をしてしまうこともあるが、専門用語としての通常の使い方は「正八胞体は次元(として) 4 を持つ」とか「正八胞体の次元は 4 である」といった表現になる(図形の次元はひとつの数値であって、いくつもあるようなものではない)。 また、転じて次元は世界の構造を意味することがある。.

新しい!!: 圧力損失と次元 · 続きを見る »

水頭

水頭(すいとう、英語:hydraulic head)またはヘッド(head)は、水の持つエネルギーを水柱の高さに置き換えたものである。水の単位重量あたりのエネルギーということもできる。長さの次元を持つ。 流体のエネルギーには圧力エネルギー、運動エネルギー、位置エネルギーがあるが、これを高さに置き換えたものをそれぞれ圧力水頭(pressure head)、速度水頭(velocity head)、位置水頭(elevation head)という。このほかに、管の摩擦、曲がり、出入口などで失われるエネルギーとして各種の損失水頭がある(速度水頭に比例)。これらのすべての水頭の総和を全水頭(total head)という。特に、圧力水頭と位置水頭の和はピエゾ水頭と呼ばれる。 圧力水頭=\frac, 速度水頭=\frac, 位置水頭=h ここに、p:水圧、\rho:水の密度、g:重力加速度、v:流速、h:水深.

新しい!!: 圧力損失と水頭 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 圧力損失と液体 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: 圧力損失と流体 · 続きを見る »

摩擦損失

摩擦損失(まさつそんしつ)とは、摩擦(摩擦力、摩擦抵抗)によって、運動エネルギー(の一部)が、熱となって失われること。また、その転化量。 圧力損失など。.

新しい!!: 圧力損失と摩擦損失 · 続きを見る »

摩擦損失係数

摩擦損失係数とは流体力学でのダルシー・ワイスバッハの式に使われる無次元数であり、配管流れや開水路流れでの流体エネルギーの摩擦損失を記述している。基本的な流れであり、産業的にも重要であるため、数多くの式が提案されている。 次元解析により無次元化された式で表現されており、提案されている式は全て次の2つの無次元変数によって表されている:.

新しい!!: 圧力損失と摩擦損失係数 · 続きを見る »

ここにリダイレクトされます:

圧損損失水頭

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »