ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

抗力

索引 抗力

抗力(こうりょく)は、流体(液体や気体)中を移動する、あるいは流れ中におかれた物体にはたらく力の、流れの速度に平行な方向で同じ向きの成分(分力)である。流れの速度方向に垂直な成分は揚力という。 追い風で水面をかき分けて進んでいる帆船は、空気から進行方向の抗力を、それより弱い逆方向の抗力を水から受けている。また、レーシングカー等では揚力でダウンフォースを発生させている。抗力も揚力もケースバイケースで、その方向が字義通りではない場合がある。.

70 関係: 力 (物理学)垂直向き境界層失速宇宙工学密度層流帆船乱流平行人力飛行機形態係数圧力地球の大気マッハ数マグヌス効果リフティングボディルータン ボイジャーレーシングカーレイノルズ数ヘリオス (航空機)フィレットダウンフォースベルヌーイの定理アスペクト比ウィングレットエアバスA350 XWBグライダーコアンダ効果スリップストリーム回転翼機図形の相似固定翼機移動空気粘度終端速度無次元量物体相対速度音速面積衝撃波飛行機高さ超音速迎角...航空工学船舶工学自動車工学速度造波抵抗揚力水面気体気温液体成分流体流れ流線断面力方向摩擦数理モデル インデックスを展開 (20 もっと) »

力 (物理学)

物理学における力(ちから、force)とは、物体の状態を変化させる原因となる作用であり、その作用の大きさを表す物理量である。特に質点の動力学においては、質点の運動状態を変化させる状態量のことをいう。広がりを持つ物体の場合は、運動状態とともにその形状を変化させる。 本項ではまず、古代の自然哲学における力の扱いから始め近世に確立された「ニュートン力学」や、古典物理学における力学、すなわち古典力学の発展といった歴史について述べる。 次に歴史から離れ、現在の一般的視点から古典力学における力について説明し、その後に古典力学と対置される量子力学について少し触れる。 最後に、力の概念について時折なされてきた、「形而上的である」といったような批判などについて、その重要さもあり、項を改めて扱う。.

新しい!!: 抗力と力 (物理学) · 続きを見る »

垂直

初等幾何学において、垂直(すいちょく、perpendicular)であること、すなわち垂直性 は直角に交わる二つの直線の間の関係性を言う。この性質は関連するほかの幾何学的対象に対しても拡張される。 垂線 に関連して垂線の「足」() という術語がしばしば用いられる。考える図形の向きは如何様にも変えることができるから、足と謂えどもそれが必ずしも図形の下方にあるわけではない。 垂直性はより一般の数学概念である直交性の特別の場合と考えられる。すなわち、垂直性とは古典的な幾何学的対象に関する直交性を言うものである。ゆえに、より進んだ数学において、より複雑な幾何学的直交性(例えば曲面とその法線の関係など)に対して「垂直」あるいは「垂線」のような語を用いることもある。.

新しい!!: 抗力と垂直 · 続きを見る »

向き

数学における実ベクトル空間の向き(むき、orientation) または向き付けとは、基底の順序付き組に対し「正」の向きまたは「負」の向きを指定する規約のことである。3次元ユークリッド空間における2種類の向きはそれぞれ右手系や左手系(あるいは右キラル・左キラル)と呼ばれる。しばしば右手系が正の向きにとられるものの、右手系を負の向きとするような向き付けももちろんありうる。 実ベクトル空間における向きの概念を基礎として、実多様体などの様々な幾何学的対象にも向きを考えることができる。.

新しい!!: 抗力と向き · 続きを見る »

境界層

境界層(きょうかいそう、boundary layer)とは、ある粘性流れにおいて、粘性による影響を強く受ける層のことである。1904年、ドイツの物理学者ルートヴィヒ・プラントルによって発見された。.

新しい!!: 抗力と境界層 · 続きを見る »

失速

失速(しっそく)あるいはストール(Stall)とは、翼の迎え角を大きくし過ぎた際に、翼の抵抗が急増し、それに伴い翼の表面を流れていた気流が剥離し、揚力をほとんど生みだせなくなる現象である。失速になった後の状態を失速状態といい、抵抗が増えるので速度が急に落ちる。なお、失速は翼の全面積で同時に起こり始めるわけではない(#分類も参照)。.

新しい!!: 抗力と失速 · 続きを見る »

宇宙工学

宇宙工学(うちゅうこうがく、英語:astronautics、cosmonautics)は、宇宙開発を行うことに関連した工学の一分野である。地球の大気の外側を飛行するための理論および技術であり、言うなれば、宇宙飛行の科学技術である。 最近では宇宙工学は、航空工学とともに航空宇宙工学という領域をなしている。航空工学と宇宙工学は実際上重なっている領域が非常に多く、それらを分けて考えるのも作為的で不適切な面もあるので、航空宇宙工学として統合されており、学会や大学の学部なども「航空宇宙工学会」や「航空・宇宙工学科」などという名称になっていて、その中で2大柱のひとつとして宇宙工学が扱われる形になっていることが一般化してきているのである。.

新しい!!: 抗力と宇宙工学 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: 抗力と密度 · 続きを見る »

層流

層流(そうりゅう、英語:laminar flow)とは、各流体要素が揃って運動して作り出す流れのことである。.

新しい!!: 抗力と層流 · 続きを見る »

帆船

ヨット(帆船)の例、背後の帆船は海王丸II世 シップの例(ノルウェー船籍のChristian Radich号) 帆船(はんせん)とは「帆」に風を受けて推進力とする船のことである。.

新しい!!: 抗力と帆船 · 続きを見る »

乱流

乱流(らんりゅう、turbulence)は、流体の流れ場の状態の一種。乱流でない流れ場は層流と呼ばれる。 乱流の確立した定義は現時点においても存在しないが、数学的にはナヴィエ・ストークス方程式の非定常解の集合であるということができる。層流と乱流のおおよその区別はレイノルズ数によって判断され、レイノルズ数の値が大きいと乱流と判断される。また、層流が乱流に遷移するときのレイノルズ数を臨界レイノルズ数という。 生活の中でのわかりやすい例としては水道の蛇口から流れる水がある。水道の水は流れが少ないときはまっすぐに落ちるが、少し多くひねると急に乱れ出す。このとき前者が層流、後者が乱流である。生活の中で見られる空気や水の流れはほぼ全てが乱流であるだけでなく、熱や物質を輸送し拡散する効果が非常に強いので工学的にも非常に重要である。 乱流の数値シミュレーションは、気象予報や自動車等の空力設計からノートパソコンの冷却まで工学的には非常に幅広く利用されている。しかし高い計算機性能を要求するため、スーパーコンピュータなどHPC(高性能計算)の重要な用途の一つになっている。.

新しい!!: 抗力と乱流 · 続きを見る »

平行

初等幾何学、特にユークリッド幾何学における平行性(へいこうせい、parallelism)は、ユークリッド平面上の直線が互いに交わらないという関係性を抽象化するものである。三次元空間において、直線と平面や平面同士についても共有点がないことを以って平行性を考えることができる。ただし、三次元空間内の直線同士の場合には、それらが互いに平行となるためにはそれらが同一平面上にあることを要請しなければならない(交わらない二直線は、それらが同一平面上にないならばねじれの位置にあるという)。 平行線はユークリッド原論における平行線公準の主対象である。 平行性は第一義にはの性質の一つであり、ユークリッド幾何学はその種の幾何学の特別な実例である。その他の幾何学においては、例えば双曲幾何学などでは、同様の(しかしまったく同じではない)特定の性質を満たすことを「平行」と言い表す。 以下、特に言及のない限り、主にユークリッド幾何学における平行性について述べる。.

新しい!!: 抗力と平行 · 続きを見る »

人力飛行機

人力飛行機(じんりきひこうき、じんりょくひこうき/英:Human powered aircraft, Human powered airplane)は、人間の筋力のみを動力源とし飛行する飛行機のことである。純粋な人力飛行機においては推進力としてのモーター等の併用は認められないが、操縦系統などでサーボモータ等を使うことがある。人力飛行機という言葉は固定翼機の形態を指すことが多いが、広義には人力ヘリコプターや人力オーニソプターを含める場合もある。 英語では Human powered aircraft が用いられることが多いが、国際航空連盟(Fédération Aéronautique Internationale/FAI)の分類では Humanpowered Aircrafts は固定翼機である人力飛行機の他に人力ヘリコプターや人力オーニソプターも含む人力航空機を意味し、人力飛行機は Humanpowered Airplanes に分類されるFAI Sporting Code 2012 - General SectionFAIスポーツ規定 総則編(日本語版)FAI Sporting Code Section 11 Human Powered Aircraft。また英語の頭文字をとって、しばしばHPAと略される。かつてはMan powered aircraft/MPAも用いられていた。また、自転車のように足でペダルを回して動力を得る足漕ぎ式の人力飛行機を特にPedal powered airplaneのように称することもあるKeith Sherwin 2007。 本項では主に固定翼機について述べる。 山形大学Craft-Palの人力飛行機(第30回鳥人間コンテスト出場).

新しい!!: 抗力と人力飛行機 · 続きを見る »

形態

形態(けいたい)は、組織だっている物事を外観からみた有り様のこと。たとえば自転車において各種の自転車部品が組付けられていて、それらの関連が動作する仕組みや動作する様子、あるいは用途による分類における車種をも含めて指す。 形態について研究する学問を形態学()と言う。生物学では生物の形態について、自然科学では鉱物などの形態について研究を行う。また言語学にはその一分野として形態論()があり、単語やその構成要素の形態について研究を行う。.

新しい!!: 抗力と形態 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: 抗力と係数 · 続きを見る »

圧力

圧力(あつりょく、pressure)とは、.

新しい!!: 抗力と圧力 · 続きを見る »

地球の大気

上空から見た地球の大気の層と雲 国際宇宙ステーション(ISS)から見た日没時の地球の大気。対流圏は夕焼けのため黄色やオレンジ色に見えるが、高度とともに青色に近くなり、さらに上では黒色に近くなっていく。 MODISで可視化した地球と大気の衛星映像 大気の各層の模式図(縮尺は正しくない) 地球の大気(ちきゅうのたいき、)とは、地球の表面を層状に覆っている気体のことYahoo! Japan辞書(大辞泉) 。地球科学の諸分野で「地表を覆う気体」としての大気を扱う場合は「大気」と呼ぶが、一般的に「身近に存在する大気」や「一定量の大気のまとまり」等としての大気を扱う場合は「空気()」と呼ぶ。 大気が存在する範囲を大気圏(たいきけん)Yahoo! Japan辞書(大辞泉) 、その外側を宇宙空間という。大気圏と宇宙空間との境界は、何を基準に考えるかによって幅があるが、便宜的に地表から概ね500km以下が地球大気圏であるとされる。.

新しい!!: 抗力と地球の大気 · 続きを見る »

マッハ数

マッハ数(マッハすう、Mach number)は、流体の流れの速さと音速との比で求まる無次元量である。 名称は、オーストリアの物理学者エルンスト・マッハ(Ernst Mach)に由来し、航空技師のにより名付けられた。英語圏ではMachを英語読みして(マーク・ナンバ)、あるいは、(メァク・ナンバ)と呼ぶ。.

新しい!!: 抗力とマッハ数 · 続きを見る »

マグヌス効果

マグヌス効果(マグヌスこうか、Magnus effect)は、一様流中に置かれた回転する円柱または球に、一様流に対して垂直方向の力(揚力)がはたらく現象のことである。一般的にはマグナス効果とも言われる。 飛行中に回転している物体の軌道が曲がる現象がによって観察され、1852年にドイツの科学者ハインリヒ・グスタフ・マグヌスによってはじめて認識された。.

新しい!!: 抗力とマグヌス効果 · 続きを見る »

リフティングボディ

代表的なアメリカのリフティングボディ機であるX-24A。 リフティングボディ()は、極超音速での巡航を前提とした航空機、ないしはスペースプレーン等のような大気中を飛行することがある一部の宇宙機に使われる、機体を支える揚力を生み出すように空気力学的に工夫された形状を有する胴体のことである。遷音速から超音速域での飛行時に特に大きな抗力発生源となる通常の固定翼機型の翼を廃し、その分必要になる浮揚力を胴体から賄うために利用されることが多く、1960年代に開発されたアメリカの実験機M2シリーズやX-24などが本形態を採用した代表的機体である。.

新しい!!: 抗力とリフティングボディ · 続きを見る »

ルータン ボイジャー

世界一周から帰還した際のボイジャー ルータン ボイジャー (Rutan Voyager) は1986年に初めて無着陸・無給油での世界一周飛行を成し遂げたアメリカの固定翼機である。操縦はディック・ルータン (en:Dick Rutan) とジーナ・イェーガー (en:Jeana Yeager) によってなされ、機体の設計・製作はディックの弟で著名な航空技術者であるバート・ルータンを中心として行われた。エンテ型飛行機で垂直尾翼のついた双ブームを持ち、2つのプロペラとエンジンを主胴体の前後に配置した特徴的な外見を持つ機体であった。.

新しい!!: 抗力とルータン ボイジャー · 続きを見る »

レーシングカー

レーシングカー (racing car) は、モータースポーツの中でも特にレース(競走)競技目的の自動車である。.

新しい!!: 抗力とレーシングカー · 続きを見る »

レイノルズ数

レイノルズ数(Reynolds number、Re)は流体力学において慣性力と粘性力との比で定義される無次元量である。流れの中でのこれら2つの力の相対的な重要性を定量している。 概念は1851年にジョージ・ガブリエル・ストークスにより紹介されたが、レイノルズ数はオズボーン・レイノルズ (1842–1912) の名にちなんで名づけられており、1883年にその利用法について普及させた。 流体力学上の問題について次元解析を行う場合にはレイノルズ数は便利であり、異なる実験ケース間での力学的相似性を評価するのに利用される。 また、レイノルズ数は層流や乱流のように異なる流れ領域を特徴づけるためにも利用される。層流については、低いレイノルズ数において発生し、そこでは粘性力が支配的であり、滑らかで安定した流れが特徴である。乱流については、高いレイノルズ数において発生し、そこでは慣性力が支配的であり、無秩序な渦や不安定な流れが特徴である。 実際には、レイノルズ数の一致のみで流れの相似性を保証するには十分ではない。流体流れは一般的には無秩序であり、形や表面の粗さの非常に小さな変化が異なる流れをもたらすことがある。しかしながら、レイノルズ数は非常に重要な指標であり、世界中で広く使われている。.

新しい!!: 抗力とレイノルズ数 · 続きを見る »

ヘリオス (航空機)

ヘリオス」(Helios) は、アメリカ航空宇宙局 (NASA) が開発した、太陽電池と燃料電池を電源とする無人のソーラープレーン「パスファインダー」(Pathfinder) の実験機。 無人機製作に長けたエアロバイメント社 (AeroVironment, Inc.) が、NASAの「ERASTプロジェクト(環境調査飛行機およびセンサー技術プロジェクト、ERAST)の下で開発した機体である。 2001年8月13日、高度9万6863 フィート (2万9511 メートル) を達成し、プロペラ機としての高度記録を作った。この高度の空気は火星の大気と類似しており、この成果を受けてNASAの科学者は将来「パスファインダー」が火星の大気圏において使用できる機体になる可能性を研究している。 2003年6月26日、「ヘリオス」は故障し、ハワイ・カウアイ島西約16 キロの太平洋上に墜落した。.

新しい!!: 抗力とヘリオス (航空機) · 続きを見る »

フィレット

フィレット (Filetto) は、人口1,119人のイタリア共和国アブルッツォ州キエーティ県のコムーネの一つである。.

新しい!!: 抗力とフィレット · 続きを見る »

ダウンフォース

ダウンフォース (down force) は、走行する自動車に対して空力によって発生する、負の揚力、つまり自動車が地面に押さえつけられる向きに発生する力である。.

新しい!!: 抗力とダウンフォース · 続きを見る »

ベルヌーイの定理

ベルヌーイの定理(ベルヌーイのていり、Bernoulli's principle)またはベルヌーイの法則とは、非粘性流体(完全流体)のいくつかの特別な場合において、ベルヌーイの式と呼ばれる運動方程式の第一積分が存在することを述べた定理である。ベルヌーイの式は流体の速さと圧力と外力のポテンシャルの関係を記述する式で、力学的エネルギー保存則に相当する。この定理により流体の挙動を平易に表すことができる。ダニエル・ベルヌーイ(Daniel Bernoulli 1700-1782)によって1738年に発表された。なお、運動方程式からのベルヌーイの定理の完全な誘導はその後の1752年にレオンハルト・オイラーにより行われた 。 ベルヌーイの定理は適用する非粘性流体の分類に応じて様々なタイプに分かれるが、大きく二つのタイプに分類できる。外力が保存力であること、バロトロピック性(密度が圧力のみの関数となる)という条件に加えて、 である。(I)の法則は流線上(正確にはベルヌーイ面上)でのみベルヌーイの式が成り立つという制限があるが、(II)の法則は全空間で式が成立する。 最も典型的な例である 外力のない非粘性・非圧縮性流体の定常な流れに対して \fracv^2 + \frac.

新しい!!: 抗力とベルヌーイの定理 · 続きを見る »

アスペクト比

アスペクト比(アスペクトひ、 )は、矩形における長辺と短辺の比率。 タイヤのような3次元形状の中の2次元平面(トーラス面)、あるいはロッドの長さや直径のようなものにも適用される。使用される代表的な物は、映像、紙、航空機や鳥の翼の形状、微細加工における穴径と深さなどである。長辺:短辺(横縦比)または短辺:長辺(縦横比)で表されるが、ここでは長辺:短辺で統一する。なお、テレビやデジタルビデオ関係では長辺:短辺(横縦比)で表されることが多いが、映画界では伝統的に短辺:長辺(縦横比)で表されることが多い。.

新しい!!: 抗力とアスペクト比 · 続きを見る »

ウィングレット

ボーイング737におけるウィングレット有無と翼端渦の比較 ウィングレット (winglet) とは、航空機の主翼端に取り付けられる小さな翼のことである。 ウィングチップ (wingtip) についても同様である。 語源としてはwing「翼」+let「小さいもの」すなわち「小さい翼」 の意である。.

新しい!!: 抗力とウィングレット · 続きを見る »

エアバスA350 XWB

アバスA350 XWB (Airbus A350 XWB) は、A300・A330/A340の後継機としてエアバス社が発売した新世代中型ワイドボディ旅客機。 2015年1月15日、カタール航空がドーハ-フランクフルト線で世界初の営業運航を開始した。.

新しい!!: 抗力とエアバスA350 XWB · 続きを見る »

グライダー

ライダー (大阪市立科学館) 高性能複座グライダーDG1000 グライダー(glider, sailplane)または滑空機(かっくうき)は、滑空のみが可能な航空機。日本における航空法の航空機としては「滑空機」に分類される。 飛行機のように離陸・再上昇が可能なモーターグライダーの登場以降は、区別のためピュアグライダーとも呼ばれる(レトロニム)。またハンググライダーやパラグライダーを略してグライダーと呼ぶことがある。.

新しい!!: 抗力とグライダー · 続きを見る »

コアンダ効果

アンダ効果(コアンダこうか、Coandă effect)は、粘性流体の噴流(ジェット)が近くの壁に引き寄せられる効果のことである。噴流が周りの流体を引きこむ性質が原因Tritton, D.J.,『トリトン流体力学』川村哲也訳 インデックス出版 2002年4月1日初版発行 ISBN 4901092251 (原書 ISBN 0198544936), 11.6節,11.7節,12.6節。 ルーマニアの発明家アンリ・コアンダ(1886-1972)がジェット・エンジン機の実験のなかで発見したので、彼の名前にちなむ。 噴流を発生させる境界層制御装置によって翼が強い揚力を得ることができるのはコアンダ効果の重要な応用例である。 本来、コアンダ効果は噴流で発生するものだが、噴流でない流れが壁に引き寄せられる性質をもコアンダ効果と呼ぶことがある。しかし、全て同じメカニズムで働いているかは疑問である。 境界層制御装置をのせていない通常の翼においても、コアンダ効果が揚力の発生に寄与しているという説明が見られるDavid Anderson, Scott Eberhardt, "Understanding Flight, Second Edition",McGraw-Hill Professional; 2 edition (August 12, 2009), ISBN 0071626964 日本機械学会『流れの不思議』講談社ブルーバックス 2004年8月20日第一刷発行 ISBN 4062574527。ここでは「コアンダ効果によって翼の形に沿うように流れる」というように翼の流れの分布を決定する理論としてコアンダ効果が使われている。しかし、通常の翼において噴流は自然には発生しないので、通常の翼における揚力の発生をコアンダ効果で説明するのは間違いとする著者もいるhttp://newfluidtechnology.com/THE_COANDA_EFFECT_AND_LIFT.pdf Report on the Coandă Effect and lift。.

新しい!!: 抗力とコアンダ効果 · 続きを見る »

スリップストリーム

リップストリーム (slipstream / tow) とは、プロペラを使用する航空機の後方に発生する後方に向いたらせん状の空気流、高速走行する物体の直後に発生する現象、もしくはスポーツ競技においてその現象を利用し直前を走行する人物・物体を抜き去る際に用いられる技術のこと。主にモータースポーツなどのスポーツ用語として用いられ、競技やカテゴリによってはドラフトまたはドラフティングとも言われる。.

新しい!!: 抗力とスリップストリーム · 続きを見る »

回転翼機

回転翼機(かいてんよくき; rotorcraft)とは、回転する翼(回転翼)によって必要な揚力や推力の全部あるいは一部を得て飛行する航空機のことブリタニカ百科事典「回転翼航空機」。「回転翼航空機」とも。.

新しい!!: 抗力と回転翼機 · 続きを見る »

図形の相似

2つの図形 F と G が相似(そうじ、similar)であるとは、一方を適当に一様スケール変換(拡大 または縮小)して他方と合同になる(すなわち、有限回の平行移動、回転移動、対称移動により重なる)ことである。それらの「形」が等しいことであるとも言い換えられる。記号では、欧米では F ∽ G と表すが、日本では「∽」でなく S を横に倒したような記号で表すことが多い。G を r 倍に一様スケール変換して F と合同であるとき、r: 1 を F と G の相似比という。F と G の相似比は、対応する線分の長さの比(一定)に等しい。 相似な直線図形(多角形など)においては、対応する辺の長さの比は一定で相似比に等しくなり、対応する角はそれぞれ等しくなる。 特に r.

新しい!!: 抗力と図形の相似 · 続きを見る »

固定翼機

C-141 Starlifter 固定翼機(こていよくき)とは、以下の2つの定義が存在する。.

新しい!!: 抗力と固定翼機 · 続きを見る »

移動

移動(いどう)とはある場所から他の場所へと位置を変えることである。なお、地位や身分、職務が変わることは異動(いどう)の語が用いられる。.

新しい!!: 抗力と移動 · 続きを見る »

空気

気(くうき)とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。 一般に空気は、無色透明で、複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。また水蒸気が含まれるがその濃度は場所により大きく異なる。工学など空気を利用・研究する分野では、水蒸気を除いた乾燥空気(かんそうくうき, dry air)と水蒸気を含めた湿潤空気(しつじゅんくうき, wet air)を使い分ける。.

新しい!!: 抗力と空気 · 続きを見る »

粘度

粘度(ねんど、Viskosität、viscosité、viscosity)は、物質のねばりの度合である。粘性率、粘性係数、または(動粘度と区別する際には) 絶対粘度とも呼ぶ。一般には流体が持つ性質とされるが、粘弾性などの性質を持つ固体でも用いられる。 量記号にはμまたはηが用いられる。SI単位はPa·s(パスカル秒)である。CGS単位系ではP(ポアズ)が用いられた。 動粘度(後述)の単位として、cm/s.

新しい!!: 抗力と粘度 · 続きを見る »

メの翼。揚力を発生させる構造を見ることが出来る 翼(つばさ)は、鳥や航空機などの飛翔体が備え、空気中での飛行のために使用される構造。さらに広義の用法もある。文脈によっては「ヨク」とも読む。.

新しい!!: 抗力と翼 · 続きを見る »

終端速度

終端速度(しゅうたんそくど、terminal velocity)とは、物体が重力または遠心力などの体積力と、速度に依存する抗力を受けるときに、それらの力がつりあって変化しなくなったときの速度である。終末速度、終末沈降速度とも呼ばれる。.

新しい!!: 抗力と終端速度 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: 抗力と無次元量 · 続きを見る »

物体

物体(ぶったい)とは、ものとして認知しうる対象物である。すなわち、実物または実体として宇宙空間において存在するものが物体である。物理学および哲学の主要な研究対象の一つである。 物体と物質は次のように区別される。.

新しい!!: 抗力と物体 · 続きを見る »

相対速度

対速度(そうたいそくど、英語:relative velocity)とは、ある物体を別の観測者から観測したときの速度である。 二つの物体A、Bのそれぞれの速度ベクトルを\mathbf, \mathbf とする。 この場合、ニュートン力学では、Aを観測者とした場合の物体Bの相対速度\mathbfは となる。 以下にいくつかの例を示す。.

新しい!!: 抗力と相対速度 · 続きを見る »

音速

緑線はより厳密な式(20.055 (''x'' + 273.15)1/2 )による。なお、331.5に替えて331.3を当てる場合もある。 音速(おんそく、speed of sound)とは、物質(媒質)中を伝わる音の速さのこと。物質自体が振動することで伝わるため、物質の種類により決まる物性値の1種(弾性波伝播速度)である。 速度単位の「マッハ」は、音速の倍数にあたるマッハ数に由来するが、これは気圧や気温に影響される。このため、戦闘機のスペックを表す際などに、標準大気中の音速 1225 km/h が便宜上使われている。なお、英語のsonicは「音の」「音波の」から転じて、音のように速い.

新しい!!: 抗力と音速 · 続きを見る »

面積

面積(めんせき)とは、平面内の、あるいは曲面内の図形の大きさ、広さ、の量である。立体物の表面の面積の合計を特に表面積(ひょうめんせき)と呼ぶ。.

新しい!!: 抗力と面積 · 続きを見る »

衝撃波

衝撃波(しょうげきは、shock wave)は、主に流体中を伝播する、圧力などの不連続な変化のことであり、圧力波の一種である。.

新しい!!: 抗力と衝撃波 · 続きを見る »

飛行機

飛行機(ひこうき、airplane, aeroplane, plane)とは、空中を飛行する機械である航空機のうち、ジェットエンジンの噴射もしくはプロペラの回転から推力を得て加速前進し、かつ、その前進移動と固定翼によって得る揚力で滑空及び浮上するものをいう平凡社『世界大百科事典』23巻1988年版 p.409-417【飛行機】 項目執筆担当木村秀政・導入部p.409-410。 「飛行機」という表現は、森鴎外が「小倉日記」1901年(明治34年)3月1日条に記したのが初出だとされる。.

新しい!!: 抗力と飛行機 · 続きを見る »

高さ

さ(たかさ)とは、垂直方向の長さのことである。重力が働く環境下では、重力方向の長さを指す。また、空間的な物理量としての高さ以外に、温度・比率・頻度・価格なども「高さ」で表現するのが一般的である。 高さが大きいことを高い、高さが小さいことを低いと言う。.

新しい!!: 抗力と高さ · 続きを見る »

超音速

超音速(ちょうおんそく、supersonic speed)とは、媒質中で移動する物体と媒質の相対速度が、その媒質における音速を超えること、およびその速度を指す。 音速との比であるマッハ数を使えば、マッハ数が1より大きいとも定義できる。 ただし、速度単位としてのマッハは対気速度で気温や気圧によって変化する。便宜上、超音速機のカタログスペックにおいては、対地速度1225km/h(340.31m/s、15℃・1気圧)をマッハ1とすることが多いが、この場合は物理現象としての音速・超音速とは扱いが異なる。.

新しい!!: 抗力と超音速 · 続きを見る »

迎角

迎角(むかえかく、げいかく、angle of attack, AoA)は、流体 (液体や気体) 中の物体(主に翼)が、流れに対してどれだけ傾いているかという角度をあらわす値である。迎え角とも。 航空機の主翼の場合、前縁と後縁を結んだ線(翼弦線、コード)と一様流とのなす角で、前上がりをプラスとする。 一般的な航空機の主翼の場合、揚力係数と抗力係数は、概ね迎角に比例して徐々に増加していくが、抗力係数が増加し続けるのに対し、揚力係数はある点をピークを過ぎて急減少に変わる。この点を最大揚力係数といい、そのときの迎え角を失速迎え角といい、それ以降の状態を失速という。抗力の増加により減速すれば、揚力は更に小さくなるなど、不安定で危険な状態である。なお航空機に十分な速度があれば、主翼を上方に傾けても機体自体が上昇していくため、迎角が増大する事は無い。逆に航空機の速度が不十分であれば、揚力の不足によって機体自体が降下してしまうため、迎角が大きくなってしまい、失速状態に陥る事となる。あくまで1次的な原因は迎角の増大であり、速度は2次的な原因である。また、ある迎角において、揚力係数と抗力係数との比を揚抗比といい、揚抗比の大きい主翼の航空機は、滑空性能が良く航続距離が長くなる。 主翼上面には、ベルヌーイの定理により上向きの揚力分布である風圧分布が発生するが、それらの風圧分布によって発生する揚力と抗力との合力が翼弦線と交わる点を風圧中心と呼んでいる。また、風圧中心は、迎角の変化により変化するが、主翼の中心と一致しないため、風圧中心に働く揚力と抗力との合力により、主翼に頭上げ又は頭下げの回転する力(モーメント)が発生するが、迎角が変化しても、頭上げ又は頭下げの回転する力(モーメント)が発生しない翼弦線と交わる点があり、これを空力中心と呼んでいる。これは、普通の主翼では、翼弦線の25%前後にある。 殆どの翼は、迎角が0°でも揚力が発生する翼型に設計されていて、揚力が0になるマイナスの値の迎角を零揚力角という。 揚力は速度の2乗に比例するので、迎角が一定なら、低速では揚力不足で機体は降下し、高速では揚力過剰となり機体が上昇していく事となり、水平飛行は特定の速度域でしか行えなくなる。そこで、速度が不足し下降するようであれば操縦者は機首を上げ、速度が過剰なら機首を下げ、迎角を調整する事により揚力を調整し、航空機は水平の高度を保って飛行できる。 凧は失速状態で揚がっている場合もある。 帆船は進路が風下方向に近ければ、帆の迎角は失速の範囲で揚力よりも抗力を主に利用する。.

新しい!!: 抗力と迎角 · 続きを見る »

航空工学

航空工学(こうくうこうがく、aeronautical engineering)とは、航空機の設計・製造・運用・整備等に関する工学である。.

新しい!!: 抗力と航空工学 · 続きを見る »

船舶工学

船舶工学(せんぱくこうがく、英語:marine engineering)とは、船舶に関する工学である。特に設計理論や造船工作に関わる領域を指して造船学とも言う。 本項目では水上船舶の工学について説明する。潜水艦やホバークラフト、水上での表面効果を利用した航空機などは別記事を参照のこと。.

新しい!!: 抗力と船舶工学 · 続きを見る »

自動車工学

自動車工学(じどうしゃこうがく、英語:automotive engineering)は、機械工学の一分野。自動車の各構成部分の原理、 構造、設計、製造にわたる広い範囲についての研究を行う。本稿は自動車工学を学べる教育機関の一覧である。.

新しい!!: 抗力と自動車工学 · 続きを見る »

速度

速度(そくど、velocity)は、単位時間当たりの物体の位置の変化量である。.

新しい!!: 抗力と速度 · 続きを見る »

造波抵抗

造波抵抗(ぞうはていこう、Wave drag)は水の上を動く物体が受ける抵抗の1つである。造波抵抗は、英国の流体力学の科学者で船舶設計者でもあったウィリアム・フルード(William Froude、1810~1879)が考案したフルード数によって分析された。水の上を動く物体とは多くが船であるため、以下では簡単のために船で説明する。 船が航走する時の抵抗は次の3つに分解出来る。.

新しい!!: 抗力と造波抵抗 · 続きを見る »

揚力

揚力(ようりょく、英語:lift)は、流体(液体や気体)中におかれた板や翼などの物体にはたらく力のうち、流れの方向に垂直な成分のこと。 通常の場合、物体と流体に相対速度があるときに発生する力(動的揚力)のみを指し、物体が静止していてもはたらく浮力(静的揚力)は含まない。.

新しい!!: 抗力と揚力 · 続きを見る »

水面から跳ね返っていく水滴 海水 水(みず)とは、化学式 HO で表される、水素と酸素の化合物である広辞苑 第五版 p. 2551 【水】。特に湯と対比して用いられ、温度が低く、かつ凝固して氷にはなっていないものをいう。また、液状のもの全般を指すエンジンの「冷却水」など水以外の物質が多く含まれているものも水と呼ばれる場合がある。日本語以外でも、しばしば液体全般を指している。例えば、フランス語ではeau de vie(オー・ドゥ・ヴィ=命の水)がブランデー類を指すなど、eau(水)はしばしば液体全般を指している。そうした用法は、様々な言語でかなり一般的である。。 この項目では、HO の意味での水を中心としながら、幅広い意味の水について解説する。.

新しい!!: 抗力と水 · 続きを見る »

水面

水面(すいめん、 water surface)とは、水の表面のことである。 水面と書いて、古風な読み方では「みなも」「みのも」とも。.

新しい!!: 抗力と水面 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: 抗力と気体 · 続きを見る »

気温

気温(きおん)とは、大気の温度のこと。気象を構成する要素の1つ。通常は地上の大気の温度のことを指す。.

新しい!!: 抗力と気温 · 続きを見る »

液体

液体の滴は表面積が最小になるよう球形になる。これは、液体の表面張力によるものである 液体(えきたい、liquid)は物質の三態(固体・液体・気体)の一つである。気体と同様に流動的で、容器に合わせて形を変える。液体は気体に比して圧縮性が小さい。気体とは異なり、容器全体に広がることはなく、ほぼ一定の密度を保つ。液体特有の性質として表面張力があり、それによって「濡れ」という現象が起きる。 液体の密度は一般に固体のそれに近く、気体よりもはるかに高い密度を持つ。そこで液体と固体をまとめて「凝集系」などとも呼ぶ。一方で液体と気体は流動性を共有しているため、それらをあわせて流体と呼ぶ。.

新しい!!: 抗力と液体 · 続きを見る »

渦 水流が岩(石)にぶつかり発生している渦 航空機の作る渦(カラースモークで着色) 宇宙から見た台風 NASA/ESA) 渦(うず)とは、流体やそれに類する物体が回転して発生する螺旋状のパターンのこと。渦巻き(うずまき)などとも言う。.

新しい!!: 抗力と渦 · 続きを見る »

成分

成分(せいぶん).

新しい!!: 抗力と成分 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: 抗力と流体 · 続きを見る »

流れ

流れ(ながれ)は.

新しい!!: 抗力と流れ · 続きを見る »

流線

流線(りゅうせん、streamline)とは、ある瞬間における、流れ場の速度ベクトルを接線とする曲線(群)のことである。.

新しい!!: 抗力と流線 · 続きを見る »

断面力

構造物に荷重が作用すると、部材内部には、その荷重に抵抗するための力、内力(ないりょく、internal force)が発生する吉田(1967)、pp.

新しい!!: 抗力と断面力 · 続きを見る »

方向

数学における方向(ほうこう)とは、2つの向き(むき)を合わせた表現。向き(むき)を空間上の位置を極座標で表したとき、数値が持つ距離以外の情報である。向きと大きさを持つベクトルから、大きさを取り去った残りの情報と言ってもよい。 n 次元空間での向きの自由度は、n から大きさの 1 を引いた n - 1 である。向きは単位ベクトル、あるいは、単位球(2次元空間内なら単位円)上の1点で表すことができる。 なお、物理においては、方向とは、上下方向、左右方向などのように単に直線の状態を意味するが、これに対して向きとは、下向き、右向きなどのように、ある始点から一方へ向かっての進行を意味するときに用いる。「地球の重力は、鉛直方向にはたらいており、向きは下向きである」などのように、方向と向きを使い分ける。 以下では、数学における方向について述べる。.

新しい!!: 抗力と方向 · 続きを見る »

摩擦

フラクタル的な粗い表面を持つ面どうしが重なり、静止摩擦がはたらいている様子のシミュレーション。 摩擦(まさつ、friction)とは、固体表面が互いに接しているとき、それらの間に相対運動を妨げる力(摩擦力)がはたらく現象をいう。物体が相対的に静止している場合の静止摩擦と、運動を行っている場合の動摩擦に分けられる。多くの状況では、摩擦力の強さは接触面の面積や運動速度によらず、荷重のみで決まる。この経験則はアモントン=クーロンの法則と呼ばれ、初等的な物理教育の一部となっている。 摩擦力は様々な場所で有用なはたらきをしている。ボルトや釘が抜けないのも、結び目や織物がほどけないのも摩擦の作用である。マッチに点火する際には、マッチ棒の頭とマッチ箱の側面との間の摩擦熱が利用される。自動車や列車の車輪が駆動力を得るのも、地面との間にはたらく摩擦力(トラクション)の作用である。 摩擦力は基本的な相互作用ではなく、多くの要因が関わっている。巨視的な物体間の摩擦は、物体表面の微細な突出部()がもう一方の表面と接することによって起きる。接触部では、界面凝着、表面粗さ、表面の変形、表面状態(汚れ、吸着分子層、酸化層)が複合的に作用する。これらの相互作用が複雑であるため、第一原理から摩擦を計算することは非現実的であり、実証研究的な研究手法が取られる。 動摩擦には相対運動の種類によって滑り摩擦と転がり摩擦の区別があり、一般に前者の方が後者より大きな摩擦力を生む。また、摩擦面が流体(潤滑剤)を介して接している場合を潤滑摩擦といい、流体がない場合を乾燥摩擦という。一般に潤滑によって摩擦や摩耗は低減される。そのほか、流体内で運動する物体が受けるせん断抵抗(粘性)を流体摩擦もしくは摩擦抵抗ということがあり、また固体が変形を受けるとき内部の構成要素間にはたらく抵抗を内部摩擦というが、固体界面以外で起きる現象は摩擦の概念の拡張であり、本項の主題からは離れる。 摩擦力は非保存力である。すなわち、摩擦力に抗して行う仕事は運動経路に依存する。そのような場合には、必ず運動エネルギーの一部が熱エネルギーに変換され、力学的エネルギーとしては失われる。たとえば木切れをこすり合わせて火を起こすような場合にこの性質が顕著な役割を果たす。流体摩擦(粘性)を受ける液体の攪拌など、摩擦が介在する運動では一般に熱が発生する。摩擦熱以外にも、多くのタイプの摩擦では摩耗という重要な現象がともなう。摩耗は機械の性能劣化や損傷の原因となる。摩擦や摩耗はトライボロジーという科学の分野の一領域である。.

新しい!!: 抗力と摩擦 · 続きを見る »

数理モデル

数理モデル(すうりモデル、mathematical model)とは、通常は、時間変化する現象の計測可能な主要な指標の動きを模倣する、微分方程式などの「数学の言葉で記述した系」のことを言う。モデルは「模型」と訳され「数理模型」と呼ばれることもある。元の現象を表現される複雑な現実とすれば、モデル(模型)はそれの特別な一面を簡略化した形で表現した「言語」(いまの場合は数学)で、より人間に理解しやすいものとして構築される。構築されたモデルが、元の現象を適切に記述しているか否かは、数学の外の問題で、原理的には論理的には真偽は判定不可能である。人間の直観によって判定するしかない。どこまで精緻にモデル化を行ったとしても、得た観察を近似する論理的な説明に過ぎない。 数理モデルは、対象とする現象や、定式化の抽象度などによって様々なものがある。.

新しい!!: 抗力と数理モデル · 続きを見る »

ここにリダイレクトされます:

Cd値干渉抗力形状抵抗形状抗力圧力抵抗圧力抗力有害抗力抗力係数摩擦抵抗摩擦抗力空気抵抗空気抵抗係数誘導抵抗誘導抗力

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »