ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

四平方定理

索引 四平方定理

数学において、ラグランジュの四平方定理(Lagrange's four square theorem)は、全ての自然数が高々四個の平方数の和で表されることを主張する定理である。これはフェルマーの多角数定理の四角数の場合に当たり、ウェアリングの問題の二次の場合に当たる。ヤコビの四平方定理(Jacobi's -)は自然数を高々四個の平方数の和で表す方法の数を与える定理である。.

15 関係: 多角数定理定理三個の平方数の和平方剰余の相互法則平方数二個の平方数の和ヤコビの四平方定理ウェアリングの問題オイラーの四平方恒等式ゴッドフレイ・ハロルド・ハーディジョゼフ=ルイ・ラグランジュ高々 (数学)高木貞治背理法Q.E.D.

多角数定理

多角数定理(たかくすうていり、polygonal number theorem)とは、「すべての自然数は高々 m 個の ''m'' 角数の和である」という数論の定理である。m.

新しい!!: 四平方定理と多角数定理 · 続きを見る »

定理

定理(ていり、theorem)とは、数理論理学および数学において、証明された真なる命題をいう。 文脈によっては公理も定理に含む。また、数学においては論説における役割等から、補題(ほだい、lemma)あるいは補助定理(ほじょていり、helping theorem)、系(けい、corollary)、命題(めいだい、proposition)などとも呼ばれることがある。ここでの「命題」と冒頭文に言う命題とは意味が異なることに注意。 一般的に定理は、まずいくつかの条件を列挙し、次にその下で成り立つ結論を述べるという形をしている。例えば、次は代数学の基本定理の述べ方の1つである。 ある一定の条件(公理系)下で定理を述べそれを証明すること、というのが数学という分野の中心的な研究の形態である。 数学の多くの分野には、各々「基本定理」という名で呼ばれる中心的な定理が存在している。なお定理という名称と証明という手続きは、数学のみならず、物理や工学においても使用される。.

新しい!!: 四平方定理と定理 · 続きを見る »

三個の平方数の和

この記事は「平方数」、「三角数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっていない。日本語では「三平方和定理」などと呼ばれることもあるが、ピタゴラスの定理とは全く別のものである。 ---- 自然数Nが三個の平方数の和で表されるための必要十分条件は、n\ge0,k\ge0,a\in\により、N.

新しい!!: 四平方定理と三個の平方数の和 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: 四平方定理と平方剰余の相互法則 · 続きを見る »

平方数

平方数(へいほうすう、)とは、自然数の自乗(二乗)で表される整数のことである。正方形の形に点を並べたときにそこに並ぶ点の総数に等しいので、四角数(しかくすう)ともいい、多角数の一種である。最小の平方数として、定義に を加えることができる。平方数は無数にあり、その列は次のようになる。 平方数の列の隣接二項間についての漸化式を考えると、 から連続する正の奇数の総和は平方数に等しい:\sum_^n (2k-1).

新しい!!: 四平方定理と平方数 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: 四平方定理と二個の平方数の和 · 続きを見る »

ヤコビの四平方定理

ヤコビの四平方定理(Jacobi's four square theorem)は、自然数を高々四個の平方数の和で表す方法の数を与える定理。名称はドイツの数学者ヤコビに由来する。 自然数Nを高々四個の平方数の和で表す方法の数は で与えられる。但し、シグマ記号は4で整除されないNの約数(1とNを含む)について和を取ることを表す。N\ge1ならばr_4(N)\ge8であるから、ヤコビの四平方定理はラグランジュの四平方定理を包含する。.

新しい!!: 四平方定理とヤコビの四平方定理 · 続きを見る »

ウェアリングの問題

ウェアリングの問題 (Waring's problem) は、全ての自然数 に対して、「全ての自然数は 個の非負の 乗数の和で表される」という性質を満たす整数 が存在するかという問題である。 この問題は1770年にエドワード・ウェアリング (Edward Waring) によって提唱された。1909年、ダフィット・ヒルベルトがこの問題を肯定的に解決した。その後、各 に対して整数 の最小値 を与える公式が発見されている。現在、単にウェアリングの問題と言えば、「全ての自然数は 個の非負の 乗数の和で表される」を満足する の最小値を評価・決定する問題を指すことが多い。(例を挙げると、全ての自然数は、4個の二乗数で表されるか、あるいは、9個の 3乗数で表されるか、19個の 4乗数で表されるか、などである。)ウェアリングの問題は、数学問題の分類の、11P05、「ウェアリング問題とその変形」にある。 th powers of natural numbers.

新しい!!: 四平方定理とウェアリングの問題 · 続きを見る »

オイラーの四平方恒等式

数学において、オイラーの四平方恒等式 (Euler's four-square identity) とは、4つの平方数の和である2数の積は再び4つの平方数の和になることをいうものである。具体的は、次のようになる。.

新しい!!: 四平方定理とオイラーの四平方恒等式 · 続きを見る »

ゴッドフレイ・ハロルド・ハーディ

ッドフレイ・ハロルド・ハーディ(Godfrey Harold Hardy, 1877年2月7日 - 1947年12月1日)は、イギリスの数学者。.

新しい!!: 四平方定理とゴッドフレイ・ハロルド・ハーディ · 続きを見る »

ジョゼフ=ルイ・ラグランジュ

ョゼフ=ルイ・ラグランジュ(Joseph-Louis Lagrange, 1736年1月25日 - 1813年4月10日)は、数学者、天文学者である。オイラーと並んで18世紀最大の数学者といわれている。イタリア(当時サルデーニャ王国)のトリノで生まれ、後にプロイセン、フランスで活動した。彼の初期の業績は、微分積分学の物理学、特に力学への応用である。その後さらに力学を一般化して、最小作用の原理に基づく、解析力学(ラグランジュ力学)をつくり出した。ラグランジュの『解析力学』はラプラスの『天体力学』と共に18世紀末の古典的著作となった。.

新しい!!: 四平方定理とジョゼフ=ルイ・ラグランジュ · 続きを見る »

高々 (数学)

数学において、高々(たかだか)という表現は、英語の at most に対応した厳密な意味を持つ用語である。 「多くとも」、「以下」と同義であるが、文脈によってはこれらよりも好まれる場合もある(例:「高々可算」とは言うが「可算以下」とは言わない。).

新しい!!: 四平方定理と高々 (数学) · 続きを見る »

高木貞治

木 貞治(たかぎ ていじ、1875年(明治8年)4月21日 - 1960年(昭和35年)2月28日)は、日本の数学者。東京帝国大学教授。第1回フィールズ賞選考委員。文化勲章受章。.

新しい!!: 四平方定理と高木貞治 · 続きを見る »

背理法

背理法(はいりほう、proof by contradiction, reduction to the absurd, indirect proof, apagogical argument など、reductio ad absurdum)とは、ある命題 P を証明したいときに、P が偽であると仮定して、そこから矛盾を導くことにより、P が偽であるという仮定が誤り、つまり P は真であると結論付けることである。帰謬法(きびゅうほう)とも言う。 P を仮定すると、矛盾が導けることにより、P の否定 ¬P を結論付けることは否定の導入などと呼ばれる。これに対して ¬P を仮定すると矛盾が導けることにより P を結論付けることを狭義の背理法あるいは否定の除去ということがある。否定の導入と狭義の背理法をあわせて広義の背理法ということもある。 一般的には、背理法と言った場合広義の背理法を指す。否定の導入により、¬P から矛盾が導けた場合、¬¬P を結論できるが、いわゆる古典論理では推論規則として二重否定の除去が認められているため、結局 P が結論できることになる。排中律や二重否定の除去が成り立たない直観論理では、狭義の背理法による証明は成立しないが、否定の導入や、¬¬¬P から ¬P を結論することは、認められる。 背理法を使って証明される有名な定理には、\sqrt が無理数であること、素数が無限に存在すること、中間値の定理,ハイネ・カントールの定理などがあり、無限を相手にした証明には基本的に背理法のスタイルを取らざるを得ないものが多くある。 しかし例えば、\sqrt が無理数である(すなわち有理数でない)ことの証明は、狭義の背理法ではなく否定の導入によって証明することができる。 背理法の証明において仮定に矛盾する結論を導く場合は,容易に非背理法証明に直すことができる.たとえば,ハイネ・カントールの定理:「有界閉集合上の連続関数は一様連続である」は,有界閉集合上の連続関数 f は一様連続でないと仮定して議論を進め, f が連続でないことを導いて矛盾を出すが,これは連続性を仮定せず「有界閉集合上の関数 f が一様連続でない」と仮定し,連続でないことを示すことによって,対偶としてハイネ・カントールの定理が直接証明できる(((P かつ Q)⇒R) ⇔ ((P かつ ¬R)⇒¬Q) ということを用いる)..

新しい!!: 四平方定理と背理法 · 続きを見る »

Q.E.D.

数学、哲学などにおける Q.E.D. はラテン語の Quod Erat Demonstrandum(かく示された)が略されてできた頭字語。証明や論証の末尾におかれ、議論が終わったことを示す。ただし現代の数学において Q.E.D. はほとんど使用されていない。(#電子的な記号を参照。).

新しい!!: 四平方定理とQ.E.D. · 続きを見る »

ここにリダイレクトされます:

4平方定理ラグランジュの四平方定理ラグランジュの四平方和定理四平方数定理

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »