ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

光学機器

索引 光学機器

光学機器(こうがくきき、、)とは、光の作用や性質を利用した機器の総称である。レンズやミラー、プリズムなどで構成され、光の直進や屈折、反射、干渉などを利用する器械で、視覚に絡んだものや計測機器のようなものが多い。.

49 関係: 培風館偏光半導体レーザー反射双眼鏡変調方式学術用語集屈折屈折率干渉強誘電体信号ミラーレンズプラネタリウムプリズムファラデー効果ファイバースコープインダクタンスカメラコイル内視鏡光学光学機器光源磁場素子結晶白熱電球顕微鏡視覚計測計測機器の一覧電場電圧通信MEMS格子定数機械波長液晶溶媒望遠鏡文部省日本天文学会日本学術振興会日本分光学会放電灯

培風館

株式会社培風館(ばいふうかん)は、理学、工学、心理学などの大学向け教科書を中心とした出版社である。 創業者は山本慶治(1881-1963)。山本は兵庫県の豪農の家に生まれ、1908年東京高等師範学校英語科卒、1910年同教育研究科修了、奈良女子高等師範学校講師。岡本米蔵の紐育土地会社に勤務、その出版部門常務となり、1938年培風館として独立。当初は東京高等師範学校の教科書を刊行していた。1962年その長男の山本俊一(1910-2008、東大工学部卒)が社長となり、67年次男の山本健二(1912-93)が継ぐ。健二の死後その子の山本格が社長となる。.

新しい!!: 光学機器と培風館 · 続きを見る »

偏光

偏光(へんこう、polarization)は、電場および磁場が特定の(振動方向が規則的な)方向にのみ振動する光のこと。電磁波の場合は偏波(へんぱ)と呼ぶ。光波の偏光に規則性がなく、直交している電界成分の位相関係がでたらめな場合を非偏光あるいは自然光と呼ぶ。 光電界の振幅は直交する2方向の振動成分に分解できることが分かっている。普通の光は、あらゆる方向に振動している光が混合しており、偏光と自然光の中間の状態(部分偏光)にある。このような光は一部の結晶や光学フィルターを通すことによって偏光を得ることができる。.

新しい!!: 光学機器と偏光 · 続きを見る »

半導体レーザー

レーザーダイオード本体。非常に小さい。 赤色レーザーダイオードの発振 半導体レーザー 半導体レーザー(はんどうたいレーザー、semiconductor laser)は、半導体の再結合発光を利用したレーザーである。 同じものを指すのに、ダイオードレーザー (diode laser) や、レーザーダイオードという名称も良く用いられLDと表記されることも多い。半導体の構成元素によって発振する中心周波数、つまりレーザー光の色が決まる。常温で動作するものの他に、共振器構造や出力電力によっては冷却が必要なものもある。.

新しい!!: 光学機器と半導体レーザー · 続きを見る »

反射

反射(はんしゃ、reflection)は、光や音などの波がある面で跳ね返る反応のことである。.

新しい!!: 光学機器と反射 · 続きを見る »

双眼鏡

双眼鏡 双眼鏡(そうがんきょう、binoculars)とは、望遠鏡の一種で、二つの鏡胴 (対物レンズと接眼レンズを連結して保持し、レンズ以外からの光線の入射を防ぐ筒)を平行にならべ遠方のものを両眼で拡大して見る光学器械である。古くは望遠鏡とともに遠眼鏡と呼ばれた。 風景観察、観劇・スポーツ観戦(#オペラグラス参照)、天体観測・天体観望、動物観察(野鳥観察など)、船舶における安全のための監視、漁船における魚群等の確認、軍事用などに用いられる。 付加機能として防水双眼鏡や防振双眼鏡(手ぶれ補正機能つき)がある。.

新しい!!: 光学機器と双眼鏡 · 続きを見る »

変調方式

変調方式(へんちょうほうしき)の記事では、電気通信などにおいて「搬送」と呼ばれる通信方式、すなわち、搬送波を媒体としてその振幅や周波数や位相などを変動させる(変調する)ことによる方式における、各種の方式について解説する。 歴史的に先に現れた有線の電信や電話では、当初は、信号電力の断続や、音波をそのまま電気信号としたものを通信していた。 それに対し無線通信では、「搬送波」と呼ばれる基本信号(素朴には正弦波であることを理想とする)の電波を発生し、それを変調することにより「情報を乗せる」必要がある。これは20世紀の始め頃、三極管に始まる各種の増幅作用を持つ真空管の発明により始まった、エレクトロニクスにより実用的に可能になったものである。有線においても同じ頃に、多重化による設備(電話ケーブル)の有効利用などを目的とし、無線と同様にして搬送波を変調する方式の通信が始まった。現代の、媒体として光ケーブルを用いる光通信でも、搬送波が電気信号でなく光になる以外は同様である。 通信以外にも、磁気記録などのような物理メディアの特性が非線形な場合などにも、高周波の変調によって記録する、といった手法は使われる。例えばビデオテープでは5MHz前後のキャリアに周波数変調でNTSCを記録している。 以上のような伝送方式に対して、音声などを原信号のまま(ベースバンドで)伝送する方法をベースバンド伝送と呼んでいる。 またベースバンド伝送の一種として、ディジタル通信では、0と1の列を、どのようなLとHの列による電気信号とするか、という方式が目的などに応じて各種あり、それらを伝送路符号(line code)という。さらにそれをディジタル変調に乗せることもある。.

新しい!!: 光学機器と変調方式 · 続きを見る »

学術用語集

学術用語集(がくじゅつようごしゅう)とは、.

新しい!!: 光学機器と学術用語集 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: 光学機器と屈折 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: 光学機器と屈折率 · 続きを見る »

干渉

干渉(かんしょう).

新しい!!: 光学機器と干渉 · 続きを見る »

強誘電体

強誘電体(きょうゆうでんたい、Ferroelectrics)とは誘電体の一種で、外部に電場がなくても電気双極子が整列しており、かつ双極子の方向が電場によって変化できる物質を指す。また、このように電気双極子モーメントが自発的に整列した状態を強誘電状態、この性質を強誘電性と呼ぶ。 代表的な物質としてチタン酸バリウム BaTiO3 やチタン酸ジルコン酸鉛 Pb(Zr,Ti)O3 があり、FeRAM(強誘電体メモリ)などに使用されている。また強誘電体は全て圧電効果を有するため、アクチュエータなどとして使用されるものも多い。.

新しい!!: 光学機器と強誘電体 · 続きを見る »

信号

信号 (しんごう).

新しい!!: 光学機器と信号 · 続きを見る »

ミラー

ミラー.

新しい!!: 光学機器とミラー · 続きを見る »

レンズ

レンズ レンズの断面形状の種類 レンズ()とは、.

新しい!!: 光学機器とレンズ · 続きを見る »

プラネタリウム

ドーム内部中央に設置されたプラネタリウム本体 プラネタリウム施設の外観。ベラルーシ、ミンスク プラネタリウム(planetarium)は、投影機から発した光をドーム状の天井の内側に設置された曲面スクリーンに映し出すことで星の像およびその運動を再現する設備あるいは施設を指す。プラネタリューム、プラネタリュウム、天象儀(てんしょうぎ)ともいう。プラネと略すこともある。 惑星(planet)に由来する言葉であるが、惑星のみならず恒星を含む星空全体とその運動を再現する。また、地球上の任意の場所・時代の星空を投影したり、曲面スクリーンに投影されることを前提に撮影された映画を上映したりするなど、様々な機能を持つ。公的な機関が天文台、あるいは、科学館や博物館に併置する例がしばしば見られるが、民間企業が集客の目玉として商業施設に設置する例もある。.

新しい!!: 光学機器とプラネタリウム · 続きを見る »

プリズム

プリズム()とは、光を分散・屈折・全反射・複屈折させるための、周囲の空間とは屈折率の異なるガラス・水晶などの透明な媒質でできた多面体。 光学部品の1つであり、もとは「角柱」という意味。日本語では三稜鏡(さんりょうきょう)とも呼ばれた。.

新しい!!: 光学機器とプリズム · 続きを見る »

ファラデー効果

ファラデー効果(ファラデーこうか)あるいは磁気旋光(じきせんこう)とは、磁場に平行な進行方向に、直線偏光を物質に透過させたときに偏光面が回転する現象のことである。また、この回転をファラデー回転(Faraday Rotation)と呼ぶ。 1845年にマイケル・ファラデーによって発見された。.

新しい!!: 光学機器とファラデー効果 · 続きを見る »

ファイバースコープ

ファイバースコープ(fiberscope)とは、柔軟性のある光ファイバーを束にして、その一端にレンズを、もう一端にアイピースを取り付けたものである。先端から取り入れた画像を管を通して反対側から手に入れることができる。不透明な物体の内部を見る際に、わずかなすき間がある場合、そのすき間からこれを挿入すると内部の様子を見ることができる。また、柔軟性を持っているため、見る対象の内部が曲がっていてもそれに沿って入れることができる。 レンズには広角レンズが使われていることが多く、アイピースの代わりにカメラが接続されることもある。外部から導光して目標物を照明するための光ファイバーを持ち、より鮮明な視野を得られるファイバースコープもある。 現代のナイトビジョンと同様に、どのファイバースコープでも、ある程度は映像に歪みを生じる。 1990年代には光ファイバーの束で映像を投影するファイバースコープから、超小型撮像素子(CCD)をスコープ先端に配置したビデオスコープに世代交代が進んでいる。一般的にビデオスコープの解像度はファイバースコープの10倍以上と言われ、より精細な検査が出来るようになった。ビデオスコープは映像をケーブルで電送するため、ファイバースコープでは実現できなかった10メートルを超える長さが可能になり、使用用途が大きく広がっている。また、2005年頃からランプを使った光源の代わりに高輝度LED照明をスコープ先端に配置することで、低消費電力バッテリ駆動、画像記録機能付き小型化、挿入部の耐久性向上が実現している。.

新しい!!: 光学機器とファイバースコープ · 続きを見る »

インダクタンス

インダクタンス(inductance)は、コイルなどにおいて電流の変化が誘導起電力となって現れる性質である。誘導係数、誘導子とも言う。インダクタンスを目的とするコイルをインダクタといい、それに使用する導線を巻線という。.

新しい!!: 光学機器とインダクタンス · 続きを見る »

カメラ

一眼レフカメラ、ニコンF カメラ店に並ぶさまざまなカメラ(一眼レフカメラ、レンジファインダーカメラなど) カメラ()とは、広義には「像を結ぶための光学系(レンズ等)を持ち、映像を撮影するための装置」である。また、狭義には「写真(静止画像)を撮影するための道具」である。 本項では、狭義の静止画撮影機器に関して記述する。 被写体の像を感光材料(写真フィルムなど)の上に投影し、適正な露光を与えるための装置を備えている。写真機(しゃしんき)またはキャメラともいう。また、ビデオカメラや映画用カメラ(シネカメラ)等動画を撮影するカメラと区別する意味合いから、スチル(スティル)カメラと呼ぶ場合もある。.

新しい!!: 光学機器とカメラ · 続きを見る »

コイル

レノイド コイル(coil)とは、針金などひも状のものを、螺旋状や渦巻状に巻いたもののことで、以下のようなものにその性質が利用され、それらを指して呼ばれることもある。明治末から昭和前期には線輪(せんりん)とも言われた。.

新しい!!: 光学機器とコイル · 続きを見る »

内視鏡

内視鏡(ないしきょう、Endoscope.)は、主に人体内部を観察することを目的とした医療機器である。 本体に光学系を内蔵し、先端を体内に挿入することによって内部の映像を手元で見ることができる。細長い形状をしている一般的なものの他、カプセル型のものもある。また、観察以外に、ある程度の手術や標本採取ができる性能をもつものもある。 同様の製品は医療分野にとどまらず、直接に観察しにくい構造物の内部の観察用に学術・産業あるいは災害時の被災者発見などに用いられている。ただし一般に「内視鏡」というと医療用のものを意味し、ここでは医療用に限って説明する。.

新しい!!: 光学機器と内視鏡 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: 光学機器と光 · 続きを見る »

光学

光学(こうがく、)は、光の振舞いと性質および光と物質の相互作用について研究する、物理学のひとつの部門。光学現象を説明し、またそれによって裏付けられる。 光学で通常扱うのは、電磁波のうち光と呼ばれる波長域(可視光、あるいはより広く赤外線から紫外線まで)である。光は電磁波の一種であるため、光学は電磁気学の一部門でもあり、電波やX線・マイクロ波などと類似の現象がみられる。光の量子的性質による光学現象もあり、量子力学に関連するそのような分野は量子光学と呼ばれる。.

新しい!!: 光学機器と光学 · 続きを見る »

光学機器

光学機器(こうがくきき、、)とは、光の作用や性質を利用した機器の総称である。レンズやミラー、プリズムなどで構成され、光の直進や屈折、反射、干渉などを利用する器械で、視覚に絡んだものや計測機器のようなものが多い。.

新しい!!: 光学機器と光学機器 · 続きを見る »

光源

光源(こうげん)は、自ら光を発する発光体。ただし、広義には他から光を受けた反射や屈折等により光を放つ物体も光源に含む。.

新しい!!: 光学機器と光源 · 続きを見る »

磁場

磁場(じば、Magnetic field)は、電気的現象・磁気的現象を記述するための物理的概念である。工学分野では、磁界(じかい)ということもある。 単に磁場と言った場合は磁束密度Bもしくは、「磁場の強さ」Hのどちらかを指すものとして用いられるが、どちらを指しているのかは文脈により、また、どちらの解釈としても問題ない場合も多い。後述のとおりBとHは一定の関係にあるが、BとHの単位は国際単位系(SI)でそれぞれWb/m², A/m であり、次元も異なる独立した二つの物理量である。Hの単位はN/Wbで表すこともある。なお、CGS単位系における、磁場(の強さ)Hの単位は、Oeである。 この項では一般的な磁場の性質、及びHを扱うこととする。 磁場は、空間の各点で向きと大きさを持つ物理量(ベクトル場)であり、電場の時間的変化または電流によって形成される。磁場の大きさは、+1のN極が受ける力の大きさで表される。磁場を図示する場合、N極からS極向きに磁力線の矢印を描く。 小学校などの理科の授業では、砂鉄が磁石の周りを囲むように引きつけられる現象をもって、磁場の存在を教える。このことから、磁場の影響を受けるのは鉄だけであると思われがちだが、強力な磁場の中では、様々な物質が影響を受ける。最近では、磁場や電場(電磁場、電磁波)が生物に与える影響について関心が寄せられている。.

新しい!!: 光学機器と磁場 · 続きを見る »

素子

素子(そし).

新しい!!: 光学機器と素子 · 続きを見る »

結晶

結晶(けっしょう、crystal)とは原子や分子が空間的に繰り返しパターンを持って配列しているような物質である。より厳密に言えば離散的な空間並進対称性をもつ理想的な物質のことである。現実の物質の大きさは有限であるため、そのような理想的な物質は厳密には存在し得ないが、物質を構成する繰り返し要素(単位胞)の数が十分大きければ(アボガドロ定数個程度になれば)結晶と見なせるのである。 この原子の並びは、X線程度の波長の光に対して回折格子として働き、X線回折と呼ばれる現象を引き起こす。このため、固体にX線を当てて回折することを確認できれば、それが結晶していると判断できる。現実に存在する結晶には格子欠陥と呼ばれる原子の配列の乱れが存在し、これによって現実の結晶は理想的な性質から外れた状態となる。格子欠陥は、文字通り「欠陥」として物性を損ねる場合もあるが、逆に物質を特徴付けることもあり、例えば、一般的な金属が比較的小さな力で塑性変形する事は、結晶欠陥の存在によって説明される。 準結晶と呼ばれる構造は、並進対称性を欠くにもかかわらず、X線を回折する高度に規則的な構造を持っている。数学的には高次元結晶の空間への射影として記述される。また、液晶は3次元のうちの一つ以上の方向について対称性が失われた状態である。そして、規則正しい構造をもたない物質をアモルファス(非晶質)と呼び、これは結晶の対義語である。.

新しい!!: 光学機器と結晶 · 続きを見る »

白熱電球

白熱電球(はくねつでんきゅう、、filament lamp)とは、ガラス球内のフィラメント(抵抗体)のジュール熱による輻射を利用した電球である。フィラメント電球ともいう。ジョゼフ・スワンが発明・実用化したが、本格的な商用化はトーマス・エジソンによるものが最初。.

新しい!!: 光学機器と白熱電球 · 続きを見る »

顕微鏡

顕微鏡(けんびきょう)とは、光学的もしくは電子的な技術を用いることによって、微小な物体を視覚的に拡大し、肉眼で見える大きさにする装置である。単に顕微鏡というと、光学顕微鏡を指すことが多い。 光学顕微鏡は眼鏡屋のヤンセン父子によって発明された。その後、顕微鏡は科学の様々な分野でこれまで多大な貢献をしてきた。その中で様々な改良を受け、また新たな形式のものも作られ、現在も随所に使用されている。顕微鏡を使用する技術のことを顕微鏡法、検鏡法という。また、試料を顕微鏡で観察できる状態にしたものをプレパラートという。.

新しい!!: 光学機器と顕微鏡 · 続きを見る »

視覚

視覚(しかく、)とは、眼を受容器とする感覚のこと。.

新しい!!: 光学機器と視覚 · 続きを見る »

計測

計測(けいそく、measurement and instrumentation)とは、日本の技術分野において、測定(measurement)の代わりに使われる用語を指す南茂夫、木村一郎、荒木勉『はじめての計測工学』改定第2版、講談社、2012年12月、ISBN 9784061565111。.

新しい!!: 光学機器と計測 · 続きを見る »

計測機器の一覧

計測機器の一覧(けいそくききのいちらん)は科学者がそれぞれの物理量に対して用いる測定機器のリストである。 測定(計測)とは「実在の状態や物体を物理量で表す」行為である。基準となる物体を確立することで単位が決められ、この単位に従って測定結果は数値として表される。測定機器はこの測定をするための道具である。全ての測定機器は「測定誤差」とよばれる誤差を持つ。 実用的な範囲で確からしい統計的な基準を元に、物理量を算出する機器も挙げる。.

新しい!!: 光学機器と計測機器の一覧 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 光学機器と電場 · 続きを見る »

電圧

電圧(でんあつ、voltage)とは直観的には電気を流そうとする「圧力のようなもの」である-->。単位としては, SI単位系(MKSA単位系)ではボルト(V)が使われる。電圧を意味する記号には、EやVがよく使われる。 電圧は電位差ないしその近似によって定義される。 電気の流れに付いては「電流」を参照の事。.

新しい!!: 光学機器と電圧 · 続きを見る »

通信

通信(つうしん)とは、情報の伝達を意味する言葉である。有史以前から徐々に発展し、近代における様々なそして急激な技術的発展によって、より多様で利便性の高い、大衆的なものに発展してきた。.

新しい!!: 光学機器と通信 · 続きを見る »

MEMS

MEMS(メムス、Micro Electro Mechanical Systems)は、機械要素部品、センサ、アクチュエータ、電子回路を一つのシリコン基板、ガラス基板、有機材料などの上に微細加工技術によって集積化したデバイスを指す。プロセス上の制約や材料の違いなどにより、機械構造と電子回路が別なチップになる場合があるが、このようなハイブリッドの場合もMEMSという。 主要部分はLIGAプロセスや半導体集積回路作製技術にて作るが、立体形状や可動構造を形成するための犠牲層エッチングプロセスをも含む。 本来、MEMSはセンサなどの既存のデバイスの代替を主な目的として研究開発が進められていたが、近年はMEMSにしか許されない環境下での実験手段として注目されている。例えば、電子顕微鏡の中は高真空で微小な空間だが、MEMSならばその小ささと機械的性質を利用して電子顕微鏡下での実験を行うことができる。また、DNAや生体試料などのナノ・マイクロメートルの物質を操作・捕獲・分析するツールとしても活躍している。 現在、製品として市販されている物としては、インクジェットプリンタのヘッド、圧力センサ、加速度センサ、ジャイロスコープ、プロジェクタ・写真焼付機等に利用されるDMD、光造形式3Dプリンターやレーザープロジェクタ等に使用されるガルバノメータなどがあり、徐々に応用範囲は拡大しつつある。 市場規模が拡大して応用分野も多岐にわたるため、期待は大きく、第二のDRAMと言われたこともある。.

新しい!!: 光学機器とMEMS · 続きを見る »

格子定数

格子定数(こうしていすう、こうしじょうすう、lattice constant)とは、結晶軸の長さや軸間角度のこと。単位格子の各稜間の角度 α,β,γ と、各軸の長さ a,b,c を表す6個の定数である。格子の形状等によっては、aの値のみを表すこともある。 軸の長さの単位は普通オングストロームを用い、自明として単位を付けずに数値のみを書く場合が多い。.

新しい!!: 光学機器と格子定数 · 続きを見る »

機械

この記事では機械、器械(きかい、フランス語、英語、オランダ語:machine、ドイツ語:Maschine)について説明する。 なお、日本語で「機械」は主に人力以外の動力で動く複雑で大規模なものを言い、「器械」のほうは、人力で動く単純かつ小規模なものや道具を指すことが多い。.

新しい!!: 光学機器と機械 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: 光学機器と波長 · 続きを見る »

液晶

液晶(えきしょう)は、固体と液体の両方の性質を示す状態の一つにある物質である。また、その状態を示す場合もある。 これを利用したディスプレイ・テレビ受像機については、液晶ディスプレイ・薄型テレビを参照のこと。.

新しい!!: 光学機器と液晶 · 続きを見る »

溶媒

水は最も身近で代表的な溶媒である。 溶媒(ようばい、solvent)は、他の物質を溶かす物質の呼称。工業分野では溶剤(ようざい)と呼ばれることも多い。最も一般的に使用される水のほか、アルコールやアセトン、ヘキサンのような有機物も多く用いられ、これらは特に有機溶媒(有機溶剤)と呼ばれる。 溶媒に溶かされるものを溶質(solute)といい、溶媒と溶質を合わせて溶液(solution)という。溶媒としては、目的とする物質を良く溶かすこと(溶解度が高い)、化学的に安定で溶質と化学反応しないことが最も重要である。目的によっては沸点が低く除去しやすいことや、可燃性や毒性、環境への影響などを含めた安全性も重視される。水以外の多くの溶媒は、きわめて燃えやすく、毒性の強い蒸気を出す。また、化学反応では、溶媒の種類によって反応の進み方が著しく異なることが知られている(溶媒和効果)。 一般的に溶媒として扱われる物質は常温常圧では無色の液体であり、独特の臭気を持つものも多い。有機溶媒は一般用途としてドライクリーニング(テトラクロロエチレン)、シンナー(トルエン、テルピン油)、マニキュア除去液や接着剤(アセトン、酢酸メチル、酢酸エチル)、染み抜き(ヘキサン、石油エーテル)、合成洗剤(オレンジオイル)、香水(エタノール)あるいは化学合成や樹脂製品の加工に使用される。また抽出に用いる。.

新しい!!: 光学機器と溶媒 · 続きを見る »

望遠鏡

望遠鏡(ぼうえんきょう)とは、遠くにある物体を可視光線・赤外線・X線・電波などの電磁波を捕えて観測する装置である。古くは「遠眼鏡(とおめがね)」とも呼ばれた。 観測に用いられる電磁波の波長により、光学望遠鏡と電波望遠鏡に大別される。電磁波を捕える方式による分類では反射望遠鏡と屈折望遠鏡がある。.

新しい!!: 光学機器と望遠鏡 · 続きを見る »

文部省

文部省(もんぶしょう、Ministry of Education, Science and Culture)は、かつて存在した日本の行政機関の1つで、教育、文化、学術などを担当していた。2001年(平成13年)の中央省庁再編にともない、総理府の外局であった科学技術庁と統合し文部科学省となった。日本以外の国で教育行政を担当する官庁は、文部省と訳されることがある。しかし、多くは「教育」と訳されることが多く「文部」が使われることはない(教育省を参照)。.

新しい!!: 光学機器と文部省 · 続きを見る »

日本天文学会

公益社団法人日本天文学会(にほんてんもんがっかい)は、日本の天文学研究者を中心とする学会である。天文学の進歩及び普及を目的とする。事務局は東京都三鷹市の国立天文台三鷹キャンパス内にある。.

新しい!!: 光学機器と日本天文学会 · 続きを見る »

日本学術振興会

立行政法人日本学術振興会(にほんがくじゅつしんこうかい、英名:Japan Society for the Promotion of Science)は、文部科学省所管の中期目標管理法人たる独立行政法人である。同省の外郭団体である。学術研究の助成、研究者の養成のための資金の支給、学術に関する国際交流の促進、学術の応用に関する研究等を行うことにより、学術の振興を図ることを目的とする(独立行政法人日本学術振興会法3条)。日本学術会議と緊密な連絡を図るものとされている(16条)。.

新しい!!: 光学機器と日本学術振興会 · 続きを見る »

日本分光学会

公益社団法人日本分光学会(にほんぶんこうがっかい、The Spectroscopical Society of Japan、略称:SPSJ)は、日本の学術団体。1951年の分光化学研究会、分光学研究会の発足を経て1953年の正式発足以来、半世紀以上の歴史を有する。現在は天文学、物理学、光学、化学、生物化学、生物学など広範な学問領域を横断する研究者が集う。.

新しい!!: 光学機器と日本分光学会 · 続きを見る »

放電灯

放電灯(ほうでんとう、discharge lamp)は、アーク放電またはグロー放電を利用した光源の総称。 主な発光体によりガス放電灯と炭素アーク灯に区分できる。.

新しい!!: 光学機器と放電灯 · 続きを見る »

ここにリダイレクトされます:

ケルセル光学器械光像式照準器音響光学素子

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »