ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

一般のライプニッツの法則

索引 一般のライプニッツの法則

数学の微分積分学において一般化されたライプニッツの法則 (generalized Leibniz rule), 一般のライプニッツの法則(いっぱんのライプニッツのほうそく、;一般ライプニッツ則)あるいは単にライプニッツの法則は、積の法則(これもまたライプニッツの法則と呼ばれる)の一般化であり、f と g を n 回微分可能な関数とするとき、それらの積 fg の n 階微分が (f \cdot g)^.

20 関係: 多項定理多項係数多重指数二項定理二項係数微分微分作用素微分作用素の表象微分積分学微分環パスカルの三角形ドイツベクトル空間ゴットフリート・ライプニッツ哲学者積の微分法則環 (数学)数学数学的帰納法数学者

多項定理

数学における多項定理(たこうていり、multinomial theorem)は二項定理における二項式を多項式に対して一般化するもので、多項和 (multinomial) の冪を和の各項からなる積和へ展開する方法を記述するものである。.

新しい!!: 一般のライプニッツの法則と多項定理 · 続きを見る »

多項係数

数学における多項係数(たこうけいすう、Multinomial coefficient)は二項係数の一般化である。.

新しい!!: 一般のライプニッツの法則と多項係数 · 続きを見る »

多重指数

数学において多重指数記法(たじゅうしすうきほう、multi-index notation; 多重添字記法)は、添字記法を順序組を用いて多重化(多変数に一般化)する表記法であり、多変数微分積分学、偏微分方程式論、シュヴァルツ超関数論などの分野において、主に整数冪の冪指数などの添字を多重化した多重指数、多重添字を用いて様々な式の表記を簡潔にする。.

新しい!!: 一般のライプニッツの法則と多重指数 · 続きを見る »

二項定理

初等代数学における二項定理(にこうていり、binomial theorem)または二項展開 (binomial expansion) は二項式の冪の代数的な展開を記述するものである。定理によれば、冪 は の形の項の和に展開できる。ただし、冪指数 は を満たす非負整数で、各項の係数 は と に依存して決まる特定の正整数である。例えば の項の係数 は二項係数 \tbinom (.

新しい!!: 一般のライプニッツの法則と二項定理 · 続きを見る »

二項係数

数学における二項係数(にこうけいすう、binomial coefficients)は二項展開において係数として現れる正の整数の族である。二項係数は二つの非負整数で添字付けられ、添字 を持つ二項係数はふつう \tbinom と書かれる(これは二項冪 の展開における の項の係数である。適当な状況の下で、この係数の値は \tfrac で与えられる)。二項係数を、連続する整数 に対する各行に を から まで順に並べて得られる三角形状の数の並びをパスカルの三角形と呼ぶ。 この整数族は代数学のみならず数学の他の多くの分野、特に組合せ論において現れる。-元集合から -個の元を(その順番を無視して)選ぶ方法が \tbinom nk 通りである。二項係数の性質を用いて、記号 \tbinom nk の意味を、もともとの および が なる非負整数であった場合を超えて拡張することが可能で、そのような場合もやはり二項係数と称する。.

新しい!!: 一般のライプニッツの法則と二項係数 · 続きを見る »

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: 一般のライプニッツの法則と微分 · 続きを見る »

微分作用素

数学における微分作用素(differential operator)は、微分演算 の函数として定義された作用素である。ひとまずは表記法の問題として、微分演算を(計算機科学における高階函数と同じ仕方で)入力函数を別の函数を返す抽象的な演算と考えるのが有効である。 本項では、最もよく扱われる種類である線型作用素を主に扱う。しかし、のような非線型微分作用素も存在する。.

新しい!!: 一般のライプニッツの法則と微分作用素 · 続きを見る »

微分作用素の表象

数学の分野における微分作用素の表象(びぶんさようそのひょうしょう、)とは、大雑把に言うと、各偏微分を新たな変数に置き換えることによって、微分作用素を多項式へと関連付けるものである。フーリエ解析の分野において幅広く用いられている。特に、擬微分作用素の概念は、この表象の関連付けにより導かれるものである。表象の内、最高次のものは主表象 (principal symbol) と呼ばれ、偏微分方程式の解の定性的な挙動をほぼ完全に決定付けるものである。線型の楕円型偏微分方程式は、主表象が至る所零とならないようなものとして特徴付けられる。双曲型偏微分方程式と放物型偏微分方程式の研究においては、主表象の零点は偏微分方程式の特性超曲面と対応する。したがって、表象はそれらの方程式の解に関する重要な概念であり、それらの解の特異性を調べる上で用いられる主要な道具の内の一つである。.

新しい!!: 一般のライプニッツの法則と微分作用素の表象 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 一般のライプニッツの法則と微分積分学 · 続きを見る »

微分環

数学において、微分環(びぶんかん、differential ring)、微分体(びぶんたい、differential field)、微分多元環(びぶんたげんかん、differntial algebra)は、それぞれ有限個の(加法的または線型な単項演算で積の微分法則(ライプニッツ則)を満足する)を備えた環、体、多元環である。微分環の微分はしばしば 等の記号を用いて表される。微分体の自然な例として、複素数体上の一変数有理関数体 に微分として普通の意味での微分 をとったものを挙げることができる。 そのような代数系自身の研究およびそれら代数系の微分方程式の代数的研究に対する応用を研究する分野を微分代数学 (Differntial Algebra) と呼ぶ。微分環はが導入した。.

新しい!!: 一般のライプニッツの法則と微分環 · 続きを見る »

パスカルの三角形

パスカルの三角形(パスカルのさんかくけい、英語:Pascal's triangle)は、二項展開における係数を三角形状に並べたものである。ブレーズ・パスカル(1623年 - 1662年)の名前がついているが、実際にはパスカルより何世紀も前の数学者たちも研究していた。 この三角形の作り方は単純なルールに基づいている。まず最上段に1を配置する。それより下の行はその位置の右上の数と左上の数の和を配置する。例えば、5段目の左から2番目には、左上の1と右上の3の合計である4が入る。このようにして数を並べると、上から n 段目、左から k 番目の数は、二項係数 に等しい(n-1Ck-1 と表すこともある)。これは、パスカルによって示された以下の式に基づいている。 負でない整数 n ≥ k に対して が成り立つ。 パスカルの三角形は三次元以上に拡張が可能である。3次の物は「パスカルのピラミッド」「パスカルの四面体」と呼ばれる。4次以上のものは一般に「パスカルの単体」と呼ばれる。.

新しい!!: 一般のライプニッツの法則とパスカルの三角形 · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: 一般のライプニッツの法則とドイツ · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 一般のライプニッツの法則とベクトル空間 · 続きを見る »

ゴットフリート・ライプニッツ

ットフリート・ヴィルヘルム・ライプニッツ(Gottfried Wilhelm Leibniz、1646年7月1日(グレゴリオ暦)/6月21日(ユリウス暦) - 1716年11月14日)は、ドイツの哲学者、数学者。ライプツィヒ出身。なお Leibniz の発音は、(ライプニッツ)としているものと、(ライブニッツ)としているものとがある。ルネ・デカルトやバールーフ・デ・スピノザなどとともに近世の大陸合理主義を代表する哲学者である。主著は、『モナドロジー』、『形而上学叙説』、『人間知性新論』など。.

新しい!!: 一般のライプニッツの法則とゴットフリート・ライプニッツ · 続きを見る »

哲学者

哲学者とは、広義に、哲学を研究する者のことである。「哲学者(フィロソファー)」という語は、「知恵を愛する者」を意味する古代ギリシャ語のφιλόσοφος(フィロソフォス)に由来する。ギリシャの思想家ピタゴラスによって導入された。.

新しい!!: 一般のライプニッツの法則と哲学者 · 続きを見る »

積の微分法則

微分積分学における積の法則(せきのほうそく、product rule;ライプニッツ則)は、二つ(あるいはそれ以上)の函数の積の導函数を求めるのに用いる公式で、 あるいはライプニッツの記法では と書くことができる。あるいは無限小(あるいは微分形式)の記法を用いて と書いてもよい。三つの函数の積の導函数は である。.

新しい!!: 一般のライプニッツの法則と積の微分法則 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: 一般のライプニッツの法則と環 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 一般のライプニッツの法則と数学 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: 一般のライプニッツの法則と数学的帰納法 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: 一般のライプニッツの法則と数学者 · 続きを見る »

ここにリダイレクトされます:

一般ライプニッツ則一般的なライプニッツの法則

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »