ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

メンデルの法則

索引 メンデルの法則

メンデルの法則(メンデルのほうそく)は、遺伝学を誕生させるきっかけとなった法則であり、グレゴール・ヨハン・メンデルによって1865年に報告された。分離の法則、独立の法則、優性の法則の3つからなる。.

68 関係: 単為生殖卵細胞形質ミトコンドリアマツヨイグサ属チャールズ・ダーウィンメンデルの法則ユーゴー・ド・フリースロナルド・フィッシャーロシアブリタニカ百科事典フリーミング・ジェンキンドイツニワトリアメリカ合衆国イギリスウィリアム・ベイトソンウォルター・S・サットンエンドウエーリヒ・フォン・チェルマクオレンジジュースカール・エーリヒ・コレンスカイコグレゴール・ヨハン・メンデルシロイヌナズナシワスウェーデン優性確証バイアス種の起源精子細胞小器官細胞質細胞質遺伝物理学独立の法則花粉遺伝遺伝子遺伝子型遺伝学黄色葉緑体致死遺伝子...雌蕊雑種染色体染色体説法則減数分裂数学数式1865年1895年1898年1899年1900年19世紀3月26日4月21日4月24日5月23日 インデックスを展開 (18 もっと) »

単為生殖

単為生殖(たんいせいしょく、英語:parthenogenesis)とは、一般には有性生殖する生物で雌が単独で子を作ることを指す。有性生殖の一形態に含まれる生化学辞典第2版、p.1369 【有性生殖】。なお、単為生殖によって産まれる子の性が、雌のみならば産雌単為生殖(セイヨウタンポポ、増殖中のアブラムシやミジンコ等)、雄のみならば産雄単為生殖(ハチ、ハダニ等)、雄も雌も生産可能ならば、両性単為生殖(休眠卵生産直前のアブラムシやミジンコ等)と区別される。また、卵子が精子と受精することなく、新個体が発生することを単為発生(たんいはっせい)と呼ぶ。.

新しい!!: メンデルの法則と単為生殖 · 続きを見る »

卵細胞

卵細胞(らんさいぼう、、複数形: )は、雌性で不動の配偶子である。卵(らん)または卵子(らんし)とも呼ばれる。.

新しい!!: メンデルの法則と卵細胞 · 続きを見る »

子(訓: こ、漢音: し、、唐音: す、普通話: ツー・ツ) 以下、読み方によって節を分ける。.

新しい!!: メンデルの法則と子 · 続きを見る »

庭(にわ)は、住宅などの施設の敷地内に設けられた、建造物のない広場である。 木や植物、草花を植えたり、石や池などを配して花壇として住民の安らぎや慰みとして利用されることが多い。住宅敷地の小さな空間に設けられる庭を「坪庭(つぼにわ)」と、またその本格的で規模の大きなものは、「庭園(ていえん)」と呼ばれることもある。現代においては、屋根のある庭、室内庭園、全く植物を用いない庭(平庭)なども、「庭」と称されることもある。 一戸建て住宅の庭は、そのほか荷物収納のための倉庫、農家であれば納屋が設けられたり、幼い子どもの遊び場となって、三輪車などが放置されたり、あるいは洗濯物を干すための物干し台が設置されたり、家の中では果たすことの出来ない生活上の様々な用途に活用されている。また年間の様々な行事を執り行うための場所としても大切な役割を担っている。たとえば、新年を迎えるにあたっての準備としての餅つき、学校への入学時の家族そろっての記念写真、端午の節句の鯉のぼり、夏休みのビニールプールでの水浴びなど。また犬小屋、自家用車の駐車場など。 一戸建て住宅の庭は、隣家との間を生垣やコンクリート・ブロックの塀で囲まれて、個人の私有地を形成している。.

新しい!!: メンデルの法則と庭 · 続きを見る »

形質

形質(けいしつ、trait, character)とは、生物のもつ性質や特徴のこと。 遺伝によって子孫に伝えられる形質を特に遺伝形質と呼ぶが、単に形質と言えば遺伝形質のことを指すことが多い。たとえば髪の色は形質であり、遺伝形質である。また髪の色そのもののこと(黒や白や茶色など)を形質状態と言う。元々は種を見分けるための形態を意味する言葉であった。.

新しい!!: メンデルの法則と形質 · 続きを見る »

ミトコンドリア

ミトコンドリアの電子顕微鏡写真。マトリックスや膜がみえる。 ミトコンドリア(mitochondrion、複数形: mitochondria)は真核生物の細胞小器官であり、糸粒体(しりゅうたい)とも呼ばれる。二重の生体膜からなり、独自のDNA(ミトコンドリアDNA=mtDNA)を持ち、分裂、増殖する。mtDNAはATP合成以外の生命現象にも関与する。酸素呼吸(好気呼吸)の場として知られている。また、細胞のアポトーシスにおいても重要な役割を担っている。mtDNAとその遺伝子産物は一部が細胞表面にも局在し突然変異は自然免疫系が特異的に排除 する。ヒトにおいては、肝臓、腎臓、筋肉、脳などの代謝の活発な細胞に数百、数千個のミトコンドリアが存在し、細胞質の約40%を占めている。平均では1細胞中に300-400個のミトコンドリアが存在し、全身で体重の10%を占めている。ヤヌスグリーンによって青緑色に染色される。 9がミトコンドリア典型的な動物細胞の模式図: (1) 核小体(仁)、(2) 細胞核、(3) リボソーム、(4) 小胞、(5) 粗面小胞体、(6) ゴルジ体、(7) 微小管、(8) 滑面小胞体、(9) '''ミトコンドリア'''、(10) 液胞、(11) 細胞質基質、(12) リソソーム、(13) 中心体.

新しい!!: メンデルの法則とミトコンドリア · 続きを見る »

マツヨイグサ属

マツヨイグサ属(まつよいぐさぞく、学名:)はアカバナ科の属のひとつ。北アメリカ大陸・南アメリカ大陸原産の一年草または多年草。花の美しい種が多く、日本には観賞用・園芸用として導入されたが、逸出の結果現在では14種が帰化している。「マツヨイグサ」は分類上は本属中の一種 Oenothera stricta を指すが、口語においてはオオマツヨイグサやメマツヨイグサなども含め、本属中の黄色の花を咲かせる複数の種を大まかに指す語として用いられる。.

新しい!!: メンデルの法則とマツヨイグサ属 · 続きを見る »

チャールズ・ダーウィン

チャールズ・ロバート・ダーウィン(Charles Robert Darwin, 1809年2月12日 - 1882年4月19日)は、イギリスの自然科学者。卓越した地質学者・生物学者で、種の形成理論を構築。 全ての生物種が共通の祖先から長い時間をかけて、彼が自然選択と呼んだプロセスを通して進化したことを明らかにした。進化の事実は存命中に科学界と一般大衆に受け入れられた一方で、自然選択の理論が進化の主要な原動力と見なされるようになったのは1930年代であり、自然選択説は現在でも進化生物学の基盤の一つである。また彼の科学的な発見は修正を施されながら生物多様性に一貫した理論的説明を与え、現代生物学の基盤をなしている。 進化論の提唱の功績から今日では生物学者と一般的に見なされる傾向にあるが、自身は存命中に地質学者を名乗っており、現代の学界でも地質学者であるという認識が確立している。.

新しい!!: メンデルの法則とチャールズ・ダーウィン · 続きを見る »

メンデルの法則

メンデルの法則(メンデルのほうそく)は、遺伝学を誕生させるきっかけとなった法則であり、グレゴール・ヨハン・メンデルによって1865年に報告された。分離の法則、独立の法則、優性の法則の3つからなる。.

新しい!!: メンデルの法則とメンデルの法則 · 続きを見る »

ユーゴー・ド・フリース

1890年当時の肖像 1907年当時の肖像 ユーゴー・マリー・ド・フリースまたはヒューゴー・マリー・デ・ヴリース(、 1848年2月16日 - 1935年5月21日)は、オランダの植物学者・遺伝学者。なお、ドフリスと呼称している日本の理科の教科書もある。オオマツヨイグサの栽培実験によって、1900年にカール・エーリヒ・コレンスやエーリヒ・フォン・チェルマクらと独立にメンデルの法則を再発見した。さらにその後も研究を続け、1901年には突然変異を発見した。この成果に基づいて、進化は突然変異によって起こるという「突然変異説」を提唱した。.

新しい!!: メンデルの法則とユーゴー・ド・フリース · 続きを見る »

ロナルド・フィッシャー

ー・ロナルド・エイルマー・フィッシャー Sir Ronald Aylmer Fisher(1890年2月17日 – 1962年7月29日)はイギリスの統計学者、進化生物学者、遺伝学者で優生学者である。現代の推計統計学の確立者であるとともに、集団遺伝学の創始者の1人であり、またネオダーウィニズムを代表する遺伝学者・進化生物学者でもあった。王立協会フェロー。.

新しい!!: メンデルの法則とロナルド・フィッシャー · 続きを見る »

ロシア

ア連邦(ロシアれんぽう、Российская Федерация)、またはロシア (Россия) は、ユーラシア大陸北部にある共和制及び連邦制国家。.

新しい!!: メンデルの法則とロシア · 続きを見る »

ブリタニカ百科事典

ブリタニカ百科事典(ブリタニカひゃっかじてん、)は、英語で書かれた百科事典である。110人のノーベル賞受賞者と5人のアメリカ合衆国大統領を含む4,000人以上の寄稿者と専任の編集者約100人によって書かれており、学術的に高い評価を受けている。 英語の百科事典としては最古のものであり、今もなお製作されている。1768年から1771年にかけて、エディンバラで3巻の百科事典として発行されたのが始まりである。収録された記事は増えていき、巻数は第2版で10巻、第4版(1801年から1810年)では20巻となった。学術的な地位の向上は高名な寄稿者を招くのに役立ち、第9版(1875年から1889年)と第11版(1911年)は、文体と学術的知識において画期的なものとなった。版権が米国に移った第11版からは北米市場に売り込むため短く簡潔な記事となっていった。1933年、ブリタニカは百科事典としては初めて継続的な改訂が行われるようになった。2012年3月ブリタニカ社は、紙の書籍としての発行を取り止めオンライン版 に注力すると発表し、2010年に32巻で印刷されたものが紙の書籍としては最後となった。 1972年より日本語版もあり、『ブリタニカ国際大百科事典』(Britannica International Encyclopædia)として出版されている。 第15版からは三部構成となっている。短い記事(ほとんどが750語以下からなる)のマイクロペディア(小項目事典)12巻、長い記事(2~310ページ)のマクロペディア(大項目事典)19巻、そして知識を系統立てる、もしくは概観を示すプロペディア(総論・手引き)1巻である。マイクロペディアは簡単な調べ物やマクロペディアの手引書としての役割を担っている。記事の概観や詳細を知るためにはプロペディアを閲覧することが推奨されている。ブリタニカはおよそ50万の記事が約4000万語で記述されており、70年以上ほぼ一定に保たれている。1901年以降は米国を拠点に出版されてきたが、主にイギリス英語で書かれている。.

新しい!!: メンデルの法則とブリタニカ百科事典 · 続きを見る »

フリーミング・ジェンキン

フリーミング・ジェンキン(Henry Charles Fleeming Jenkin 、1833年3月25日 - 1885年6月12日)はイギリスの電気技術者、エディンバラ大学の教授である。進化論の歴史の中では1867年に『種の起源』の書評を書き、チャールズ・ダーウィンの自然淘汰説を批判したことでも知られている。 ケント州のDungenessに海軍の軍人の息子に生まれた。母親とスコットランドに近いJedburghで育ち、エディンバラ・アカデミーで学んだ。学友には、有名な物理学者となるジェームズ・クラーク・マクスウェルやピーター・ガスリー・テイトがいる。父親の引退した、1847年からドイツのフランクフルトや、フランスのパリで暮らした。イタリアのジェノアの大学でPadre Bancalariに電磁気学を学び、学位を得た。1850年にマルセイユの工場で働き、1851年にイギリスに戻り、著名なエンジニアのウイリアム・フェアバーン(William Fairbairn)のもとで働いた。その後各地の鉄道の仕事や海底ケーブル敷設の技術開発を行った。1859年の初めに、ウィリアム・トムソン(後のケルビン卿)と知り合い1961年から海中ケーブルの絶縁材の応用、ケーブルの抵抗などの開発にトムソンと協力した。1965年に、王立協会の会員に選ばれ、ロンドン・ユニバシティ・カレッジの教授となった。1868にエディンバラ大学の教授となった。 1867年にチャールズ・ダーウィンの『種の起源』(1859年刊行)の書評を書き、ある個体に有用な変異が起こっても、通常の個体と交雑することによって、その特徴は薄められていつかはその特徴が消えてしまうという論旨で批判した。ジェンキンの批判はメンデルの遺伝の実験が「混合遺伝」を否定することによって自然消滅することになった。.

新しい!!: メンデルの法則とフリーミング・ジェンキン · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: メンデルの法則とドイツ · 続きを見る »

ニワトリ

ニワトリ(鶏、学名:Gallus gallus domesticus「仮名転写:ガルス・ガルス・ドメスティカス」)は、鳥類の種のひとつ。代表的な家禽として世界中で飼育されている。ニワトリを飼育することを養鶏と呼ぶ。.

新しい!!: メンデルの法則とニワトリ · 続きを見る »

アメリカ合衆国

アメリカ合衆国(アメリカがっしゅうこく、)、通称アメリカ、米国(べいこく)は、50の州および連邦区から成る連邦共和国である。アメリカ本土の48州およびワシントンD.C.は、カナダとメキシコの間の北アメリカ中央に位置する。アラスカ州は北アメリカ北西部の角に位置し、東ではカナダと、西ではベーリング海峡をはさんでロシアと国境を接している。ハワイ州は中部太平洋における島嶼群である。同国は、太平洋およびカリブに5つの有人の海外領土および9つの無人の海外領土を有する。985万平方キロメートル (km2) の総面積は世界第3位または第4位、3億1千7百万人の人口は世界第3位である。同国は世界で最も民族的に多様かつ多文化な国の1つであり、これは多くの国からの大規模な移住の産物とされているAdams, J.Q.;Strother-Adams, Pearlie (2001).

新しい!!: メンデルの法則とアメリカ合衆国 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: メンデルの法則とイギリス · 続きを見る »

ウィリアム・ベイトソン

ウィリアム・ベイトソン(William Bateson, 1861年8月8日 - 1926年2月8日)は、イギリスの遺伝学者。メンデルの法則を英語圏の研究者に紹介し、その普及の先頭に立った人物である。英語で遺伝学を意味する "genetics" という語を考案したことでも有名。 人類学者グレゴリー・ベイトソンは彼の息子である。ウィリアムのいとこの孫、パトリック・ベイトソンは進化生物学者。.

新しい!!: メンデルの法則とウィリアム・ベイトソン · 続きを見る »

ウォルター・S・サットン

ウォルター・S・サットン ウォルター・S・サットン(Walter Stanborough Sutton, 1877年4月5日 - 1916年3月10日)はアメリカの生物学者・医学者。バッタ Brachystola magna の生殖細胞を用いて減数分裂における染色体の観察から、染色体説を提唱したことで知られる。 1898年にカンザス大学の細胞学者クラレンス・E・マクラング(C.

新しい!!: メンデルの法則とウォルター・S・サットン · 続きを見る »

エンドウ

ンドウ(豌豆、学名:Pisum sativum L.)は、マメ科の一・二年草。広く栽培され、食用となっている。一般に、エンドウマメとも。別名にノラマメ、グリーンピース(未熟の種子を食用とする場合の呼び方)、サヤエンドウ(莢豌豆・絹莢、未熟の莢を食用とする場合の呼び方)。日本での栽培種には、ウスイエンドウ(うすい豆)、キヌサヤエンドウ、オランダエンドウがある。 古代オリエント地方や地中海地方で麦作農耕の発祥とともに栽培化された豆で、原産地域であるフェルガナから漢に伝来した際に、フェルガナの中国名が大宛国であることから豌豆(えんどう=宛の豆)と名付けられたことが名の由来となっている。原種は近東地方に今日でも野生している P. humile Boiss.

新しい!!: メンデルの法則とエンドウ · 続きを見る »

エーリヒ・フォン・チェルマク

ーリヒ・フォン・チェルマク エーリヒ・フォン・チェルマク(Erich von Tschermak-Seysenegg、1871年11月15日 - 1962年10月11日)は、オーストリア、ウィーン出身の農学者(遺伝、育種)である。日本語では名をエーリッヒ、姓をチェルマックなどと表記する場合もある。初期は園芸品種の改良に関心を示した。 フライブルクの農場で従事し、病害に強い品種の開発を行い、その中には交雑種を含むムギの品種改良が含まれている。 1896年に学位を取得する。1900年、オーストリアの国営農場でエンドウの交配実験を行い、チェルマクはユーゴー・ド・フリース、カール・エーリヒ・コレンスと並び、グレゴール・ヨハン・メンデルが1860年に発表したメンデルの法則を再発見した人物とされ、1906年にはウィーン農科大学の教授を務めた。.

新しい!!: メンデルの法則とエーリヒ・フォン・チェルマク · 続きを見る »

オレンジジュース

レンジジュースは、オレンジの果実を搾るなどして得られる果汁飲料(ジュース)である。 日本では、農林物資の規格化及び品質表示の適正化に関する法律(以下「JAS法」)の通達により、オレンジ、及び規定の添加物のみが配合された飲料と定められている。そのため、温州みかん100%のジュースは、JAS法における表示は「うんしゅうみかんジュース」、温州みかん果汁とオレンジ果汁を混合した果汁100%ジュースは、同じく「ミックス果汁ジュース」と表示することとなっている。果汁100%でなければ、オレンジの断面を印刷したパッケージを使用してはいけないと定められている。本稿ではこれらのジュースのほか、オレンジ果汁を混合した「果汁入り飲料」や「清涼飲料水」についても記す。.

新しい!!: メンデルの法則とオレンジジュース · 続きを見る »

カール・エーリヒ・コレンス

ール・エーリヒ・コレンス カール・エーリヒ・コレンス(Carl Erich Correns, 1864年9月10日 - 1933年2月14日)はドイツの植物学者・遺伝学者。彼は第一に、彼自身の遺伝学における法則の発見によって、そして遺伝学に関するグレゴール・ヨハン・メンデルの初期の論文を、植物学者である エーリヒ・チェルマック及びユーゴー・ド・フリースとほぼ同時に、しかしそれぞれ独立して再発見した(いわゆるメンデルの法則の再発見)ことによって知られる。 コレンスは、当初はカール・ネーゲリの学生であった。ネーゲリは、メンデルが自分のエンドウマメで行った遺伝の研究について論文を送ったにもかかわらず、その研究の重要性を理解できなかった著名な植物学者である。また、チェルマックはメンデルのウィーンでの学生時代に植物学を教えた人物の孫であった。.

新しい!!: メンデルの法則とカール・エーリヒ・コレンス · 続きを見る »

カイコ

イコ(蚕、蠶)はチョウ目(鱗翅目)・カイコガ科に属する昆虫の一種。正式和名はカイコガで、カイコは本来この幼虫の名称だが、一般的にはこの種全般をも指す。クワ(桑)を食餌とし、絹を産生して蛹(さなぎ)の繭(まゆ)を作る。有史以来養蚕の歴史と共に各国の文化と共に生きてきた昆虫。 学名(ラテン語名)は「(仮名転写の一例:ボムビークス・モリー)」。.

新しい!!: メンデルの法則とカイコ · 続きを見る »

グレゴール・ヨハン・メンデル

レゴール・ヨハン・メンデル(Gregor Johann Mendel、1822年7月20日 - 1884年1月6日)は、オーストリア帝国・ブリュン(現在のチェコ・ブルノ)の司祭。植物学の研究を行い、メンデルの法則と呼ばれる遺伝に関する法則を発見したことで有名。遺伝学の祖。 当時、遺伝現象は知られていたが、遺伝形質は交雑とともに液体のように混じりあっていく(混合遺伝)と考えられていた。メンデルの業績はこれを否定し、遺伝形質は遺伝粒子(後の遺伝子)によって受け継がれるという粒子遺伝を提唱したことである。.

新しい!!: メンデルの法則とグレゴール・ヨハン・メンデル · 続きを見る »

シロイヌナズナ

イヌナズナ(白犬薺、学名:Arabidopsis thaliana)は、アブラナ科シロイヌナズナ属の一年草。植物のモデル生物として有名。.

新しい!!: メンデルの法則とシロイヌナズナ · 続きを見る »

シワ

ワ.

新しい!!: メンデルの法則とシワ · 続きを見る »

スウェーデン

ウェーデン王国(スウェーデンおうこく、スウェーデン語: )、通称スウェーデンは、北ヨーロッパのスカンディナヴィア半島に位置する立憲君主制国家。首都はストックホルム。西にノルウェー、北東にフィンランドと国境を接し、南西にカテガット海峡を挟んでデンマークと近接する。東から南にはバルト海が存在し、対岸のロシアやドイツとの関わりが深い。法定最低賃金は存在しておらず、スウェーデン国外の大企業や機関投資家に経済を左右されている。.

新しい!!: メンデルの法則とスウェーデン · 続きを見る »

優性

トウモロコシの草丈の遺伝の研究(1917年) 優性は、有性生殖の遺伝に関する現象である。一つの遺伝子座に異なる遺伝子が共存したとき、形質の現れやすい方(優性、)と現れにくい方(劣性、)がある場合、優性の形質が表現型として表れる。 「優性」「劣性」という表現は、優れた遺伝子、劣った遺伝子、といった誤解を招きやすいことから、2017年9月より、日本遺伝学会は優性を「顕性」、劣性を「潜性」という表現に変更することを決定し、教科書の記述も変更するよう、関連学会と文部科学省に要望している。 一般的な植物や動物においては、遺伝子は両親からそれぞれ与えられ、ある表現型について一対を持っている。この時、両親から同じ遺伝子が与えられた場合、その子はその遺伝子をホモ接合で持つから、その遺伝形質を発現する。しかし、両親から異なる遺伝子を与えられた場合には、子はヘテロ接合となり異なる遺伝子を持つが、必ずどちらか一方の形質が発現するとき、その形質を優性形質という。 2倍体の生物において、性染色体以外の常染色体は雄親と雌親から受け継いだ対の遺伝子を有する。対立遺伝子をAとaの二種とした場合、子の遺伝型はAA・Aa・aaの3通りがある。Aとaの影響が等しければ子の表現型がAaであったときにAAとaaの中間等になるはずだが、多くの場合そうはならず、一方に偏った表現型となる。この時にAaの表現型がAAと同様の場合、aaの表現型を劣性形質といい、Aはaに対して優性遺伝子、aはAに対して劣性遺伝子という。優性遺伝子に対して大文字を使い、劣性遺伝子に対して小文字を使う表記法はよくある慣習である。 優性は優れた形質を受け継ぐ、という意味ではなく、次世代でより表現されやすいという意味である。「劣った性質」という意味ではなく、表現型として表れにくい事を意味する。 しかし、優生学のように、この言葉をそのまま優れた形質の意味に使う例もある。このような場合、それは遺伝学の用語とは全く異なるものである。 雌雄で性染色体の数が異なるために生じる伴性遺伝の場合、雌雄で形質の発現に差が出る。例えば多くの哺乳類では、雄にはX染色体が1つしか存在しないため、劣性遺伝子があれば必ず形質が発現する。その一方で雌はX染色体を2つ持つため、その両方に劣性遺伝子が存在しなければ発現しない。例えばヒトの色覚異常がある。 優性という言葉は、広い意味では、対立遺伝子の組み合わせで表現型が変わる現象全般に対して用いられる(例えば、不完全優性、半優性、超優性、量的遺伝学における優性など)。.

新しい!!: メンデルの法則と優性 · 続きを見る »

確証バイアス

証バイアス(かくしょうバイアス、confirmation bias)とは、認知心理学や社会心理学における用語で、仮説や信念を検証する際にそれを支持する情報ばかりを集め、反証する情報を無視または集めようとしない傾向のこと。認知バイアスの一種。また、その結果として稀な事象の起こる確率を過大評価しがちであることも知られている。.

新しい!!: メンデルの法則と確証バイアス · 続きを見る »

種の起源

『種の起源』(しゅのきげん、)は、チャールズ・ダーウィンにより1859年11月24日に出版された進化論についての著作である。 題名は岩波文庫版のように『種の起原』と表記する場合、と、光文社古典新訳文庫版のように『種の起源』と表記する場合、がある。.

新しい!!: メンデルの法則と種の起源 · 続きを見る »

精子

精子(せいし)とは、雄性の生殖細胞の一つ。動物、藻類やコケ植物、シダ植物、一部の裸子植物(イチョウなど)にみられる。 卵子(右下)に到達した精子 頭部と尾部が見分けられる '''精子の構造''' 細胞核からなる頭部(青)、ミトコンドリアを含みエネルギーを生成する中片部、推進運動を行う尾部からなる。.

新しい!!: メンデルの法則と精子 · 続きを見る »

細胞小器官

細胞小器官(さいぼうしょうきかん、)とは、細胞の内部で特に分化した形態や機能を持つ構造の総称である。細胞内器官、あるいはラテン語名であるオルガネラとも呼ばれる。細胞小器官が高度に発達していることが、真核細胞を原核細胞から区別している特徴の一つである。 細胞小器官の呼称は、顕微鏡技術の発達に従い、それぞれの器官の同定が進むとともに産まれた概念である。したがってどこまでを細胞小器官に含めるかについては同定した経過によって下記のように混乱が見られる。細胞小器官を除いた細胞質基質についても、新たな構造や機能が認められ、細胞小器官を分類して論じることは今日ではあまり重要な意味をなさなくなってきつつある。 第一には、最も早い時期に同定された核、小胞体、ゴルジ体、エンドソーム、リソソーム、ミトコンドリア、葉緑体、ペルオキシソーム等の生体膜で囲まれた構造体だけを細胞小器官と呼ぶ立場があり、またこれらはどの場合でも細胞小器官に含められている。これらを膜系細胞小器官と呼ぶ場合もある。膜系細胞小器官が内を区画することにより、色々な化学環境下での生反応を並行することを可能にしている。また膜の内外で様々な物資の濃度差を作ることができ、このことを利用してエネルギー生産(電子伝達系)や、物質の貯蔵などを行っている。さらに小胞体、ゴルジ体、エンドソーム、リソソームは、小胞を介して細胞膜と連絡しあっており、このEndomembrane systemと呼ばれるネットワークを通じて物質の取込み(エンドサイトーシス)や放出(分泌)を行うことで、他の細胞や細胞外とのコミュニケーションを達成している。 なおこれらのうちミトコンドリアは、独自の遺伝構造を持つことから、生物進化の過程や種の拡散において注目される場合があり、例えばヒトではミトコンドリア・イブのような共通祖先も想定される。ミトコンドリアに関しては、元来別の細胞が細胞内共生したものに由来するとの説(細胞内共生説)が有力視されている。葉緑体に関しても共生に由来するのではないかという見方もあるが、その起源は依然不明である。 第二には、細胞骨格や、中心小体、鞭毛、繊毛といった非膜系のタンパク質の超複合体からなる構造体までを細胞小器官に含める場合もある。 さらには、核小体、リボソームまで細胞小器官と呼んでいる例も見いだされる。.

新しい!!: メンデルの法則と細胞小器官 · 続きを見る »

細胞質

滑面小胞体 (9)ミトコンドリア (10)液胞 (11)'''細胞質''' (12)リソソーム (13)中心小体 細胞質(さいぼうしつ、cytoplasm)は、細胞の細胞膜で囲まれた部分である原形質のうち、細胞核以外の領域のことを指す。細胞質は細胞質基質の他、特に真核生物の細胞では様々な細胞小器官を含む。細胞小器官の多くは生体膜によって他の部分と隔てられている。細胞質は生体内の様々な代謝や、細胞分裂などの細胞活動のほとんどが起こる場所である。細胞質基質を意図して誤用される場合も多い。 細胞質のうち、細胞小器官以外の部分を細胞質基質または細胞質ゲルという。細胞質基質は複雑な混合物であり、細胞骨格、溶解した分子、水分などからなり、細胞の体積の大きな部分を占めている。細胞質基質はゲルであり、繊維のネットワークが溶液中に散らばっている。この細孔状のネットワークと、タンパク質などの高分子の濃度の高さのため、細胞質基質の中では分子クラウディングと呼ばれる現象が起こり、理想溶液にはならない。このクラウディングの効果はまた細胞質基質内部の反応も変化させる。.

新しい!!: メンデルの法則と細胞質 · 続きを見る »

細胞質遺伝

細胞質遺伝(さいぼうしついでん)とは細胞質に存在する遺伝因子によっておこる遺伝のこと。遺伝の多くは細胞核に存在する染色体に依存するが、ミトコンドリアや葉緑体などの細胞小器官に由来する遺伝もあり、これらを細胞質遺伝と言う。これは細胞小器官が独自にゲノムをもっているためである。発見したのは、メンデルの法則の再発見でも知られるカール・エーリヒ・コレンスである。 一般的な遺伝の法則の基本である、メンデルの法則は、核の減数分裂と融合のしくみに基づいたものであるが、細胞小器官に由来する遺伝形質はそれとは独立して伝わるため、その形質はメンデルの法則に従わずに遺伝する。 例えば、動物の受精において、精子のミトコンドリアはほぼ排除されるため、その形質は雌親の持つ形質を伝えることになる。同様に、植物の葉緑体に関する遺伝形質も、雌親の形質が伝わることが知られている。細胞質遺伝因子の突然変異による遺伝病も知られている。 Category:遺伝学 Category:細胞生物学.

新しい!!: メンデルの法則と細胞質遺伝 · 続きを見る »

緑色の葉 苔むした石段 緑(みどり、綠)は、寒色の一つ。植物の葉のような色で、黄色と青緑の中間色。光の三原色の一つは緑であり、1931年、国際照明委員会は546.1nmの波長を緑 (G) と規定した。500-570nmの波長の色相はおよそ緑である。色材においては例えば、シアンとイエローを混合して作ることができる。緑色(リョクショク、みどりいろ)は同義語。 緑は(緑色の、特に新緑のころの)草・木、新芽・若葉、植物一般、転じて、森林、自然などを指す語としても用いられる。.

新しい!!: メンデルの法則と緑 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: メンデルの法則と物理学 · 続きを見る »

独立の法則

立の法則は、メンデルの法則の1つで、2つの遺伝子は配偶子への分離に関して互いに何の影響も及ぼさないとするものである。.

新しい!!: メンデルの法則と独立の法則 · 続きを見る »

桜の花 いろいろな花 花(はな、華とも書く。花卉-かき=漢字制限のため、「花き」と書かれることが多い)とは植物が成長してつけるもので、多くは綺麗な花びらに飾られる。花が枯れると果実ができて、種子ができる。多くのものが観賞用に用いられる。生物学的には種子植物の生殖器官である。また、植物の代表的器官として、「植物(種)」そのものの代名詞的に使われることも多い。なお、植物の花を生花(せいか)、紙や布・金属などで作られた花を造花(ぞうか)という。.

新しい!!: メンデルの法則と花 · 続きを見る »

花粉

花粉(かふん)とは、種子植物門の植物の花の雄蘂(おしべ)から出る粉状の細胞。花粉がめしべの先端(柱頭)につくことにより受粉が行われる。種子植物が有性生殖を行う際に必要となる。大きさは数10μmほどである。種により大きさは異なるが、同一種ではほぼ同じ大きさになる。 ラン科植物では花粉が塊になり、はなはだしい場合にはプラスチック片状にすらなる花粉塊を形成する。 花粉は一見では1個の細胞に見えるが共通の細胞壁内で細胞分裂が進んでおり、栄養細胞と生殖細胞が分化している。これはシダ植物の小胞子が発芽した雄性配偶体にあたるものである。.

新しい!!: メンデルの法則と花粉 · 続きを見る »

遺伝

遺伝(いでん、)は、生殖によって、親から子へと形質が伝わるという現象のことであり、生物の基本的な性質の一つである。素朴な意味では、親子に似通った点があれば、「遺伝によるものだ」、という言い方をする。しかし、生命現象としての遺伝は、後天的な母子感染による疾患や、非物質的情報伝達(学習など)による行動の類似化などを含まない。.

新しい!!: メンデルの法則と遺伝 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: メンデルの法則と遺伝子 · 続きを見る »

遺伝子型

遺伝子型(いでんしがた、いでんしけい、、ジェノタイプ、ジーノタイプ)は、ある生物個体が持つ遺伝子の構成のこと。 ある遺伝子が存在しても、その形質が発現しない場合もあり、表出する形質(表現型)と遺伝子型は必ずしも 1:1 に対応しない。例えば、ヒトのABO式血液型ならば、A型というひとつの表現型に対してAAとAOという二つの遺伝子型があり得る。.

新しい!!: メンデルの法則と遺伝子型 · 続きを見る »

遺伝学

遺伝学(いでんがく、)は、生物の遺伝現象を研究する生物学の一分野である。遺伝とは世代を超えて形質が伝わっていくことであるが、遺伝子が生物の設計図的なものであることが判明し、現在では生物学のあらゆる分野に深く関わるものとなっている。.

新しい!!: メンデルの法則と遺伝学 · 続きを見る »

親(おや、parent)とは、子を持つ人のことである広辞苑第五版。父と母の汎称である。 親と子の関係を親子関係という。.

新しい!!: メンデルの法則と親 · 続きを見る »

鳩(はと)は、ハト目・ハト科に属する鳥類の総称である。体に比べて頭が小さく、胸骨、胸筋が発達してずんぐりとした体型が特徴である。ハト目には世界では約42属290種あり、そのうち日本の在来種は、カラスバト属(カラスバト、アカガシラカラスバト、ヨナクニカラスバト、リュウキュウカラスバト、オガサワラカラスバト)、キジバト属(キジバト、リュウキュウキジバト、シラコバト)、ベニバト属(ベニバト)、キンバト属(リュウキュウキンバト)、アオバト属(アオバト、リュウキュウズアカアオバト、チュウダイズアカアオバト)の5属13種があげられる。 このうち、リュウキュウカラスバトとオガサワラカラスバトの2種は、絶滅したと考えられていたが、近年、DNA調査により亜種がいくつかの諸島部で生存していることが確認された。 なお、カワラバト(ドバト)は、1500年程前に日本に渡来した外来種であるとともに、5000年以上前より世界各地で家禽化され広まった飼養品種であるため、学術的には日本ネイティブな在来種ではない。このため、現在でも野鳥とみなされないことがある。また、ジュズカケバトについては、広義にはシラコバトのうち飼養品種となったものとされるため、上記リストからは省かれている。ジュズカケバトの白色変種である銀鳩も同様である。.

新しい!!: メンデルの法則と鳩 · 続きを見る »

黄色

色い花。自然界におけるフィボナッチ数の例として使われる、ヒマワリ。 黄色(黃色、きいろ、オウショク)は、基本色名の一つであり、色の三原色の一つである。ヒマワリの花弁のような色。英語では yellow と言う。暖色の一つ。波長 570〜585 nm の単色光は黄色であり、長波長側は橙色に、短波長側は黄緑色に近付く。RGBで示すと赤と緑の中間の色。黄(き、オウ、コウ)は同義語。 現代日本語では一般に「黄色」(名詞)、「黄色い」(形容詞)と呼ぶ。これは小学校学習指導要領で使われ、母語として最初に学ぶ色名の一つである。しかし JIS 基本色名やマンセル色体系における公式名称は一般に黄色ではなく黄(黃、き)である。複合語内の形態素としては、黄緑、黄身、黄信号など、「黄」が少なくない。.

新しい!!: メンデルの法則と黄色 · 続きを見る »

葉緑体

ATPを合成する。 Plagiomnium affineの細胞内に見える葉緑体 葉緑体の模型の一例 透過型電子顕微鏡による葉緑体の画像 葉緑体(ようりょくたい、Chloroplast)とは、光合成をおこなう、半自律性の細胞小器官のこと。カタカナでクロロプラストとも表記する。.

新しい!!: メンデルの法則と葉緑体 · 続きを見る »

致死遺伝子

致死遺伝子(ちしいでんし)とは、その遺伝子を持つ個体を死に至らしめる遺伝子のこと。 個体を死に至らしめる遺伝子は子孫に遺伝する可能性がないように思われるかもしれないが、致死性について劣性の遺伝子をヘテロに持った個体では致死性が発現しない場合があり、その個体を通じて遺伝し得る。両親がそのような遺伝子を持っていた場合、雑種個体のうちで、その遺伝子をホモに持った個体は生まれることなく死亡する。その結果、出生した個体の表現型の分離比を見るとホモ個体が欠けているため、通常のメンデルの法則から期待される分離比とは異なった結果となる。 致死遺伝子の表現型発現のタイミングには様々なものがあり、配偶子で発現するものや個体で発現するものがある。また個体で発現する致死遺伝子においても、胎児期に発現するもの、繁殖期を迎える前に発現するもの、繁殖期を迎えたあとに発現するものがある。 致死遺伝子の表現型の強さについても様々なものがあり、死亡から生存に不利になるものまで、幅がある。.

新しい!!: メンデルの法則と致死遺伝子 · 続きを見る »

雌蕊

蕊(雌蘂、しずい、Pistil)は、被子植物の花(両性花または雌花)に1個または複数ある雌性生殖器官で、一般には「めしべ」と呼ばれる。雌性配偶体である胚嚢をその内部に保護し、雄性配偶体である花粉を受け入れて、両者が形成する配偶子の間で受精が成立するためのなかだちをする機能を持つ。また、その内部で種子が発育した後には、その周囲に形成される果実の原器となる。 花の中に1個または複数ある(複数ある場合は全体をまとめて雌器:Gynoeciumともいう)。雌蕊を構成している、葉に相同の単位を心皮(しんぴ:Carpel)といい、1個の雌蕊は1個(離生心皮)または複数の心皮(合生心皮:この場合は花には1個の雌蕊しかない)からなる。心皮はシダ植物や裸子植物の大胞子葉に相当する。.

新しい!!: メンデルの法則と雌蕊 · 続きを見る »

雑種

雑種(ざっしゅ)とは交雑から得られる生物で、交雑種、交配種、異種交配種、ミックスとも呼称する。遺伝学上とその他では異なる内容を意味する場合がある。.

新しい!!: メンデルの法則と雑種 · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: メンデルの法則と染色体 · 続きを見る »

染色体説

染色体説(せんしょくたいせつ、chromosome theory (of inheritance))とは、遺伝の様式を染色体の性質や挙動によって説明する学説。この学説は遺伝子が染色体上にあることを示しており、現在生物学では当然の前提とされる。メンデルの法則の実証、古典遺伝学の発展、分子遺伝学の基礎形成に深く関連したことで、生物学において重要である。ただしミトコンドリアDNAなど細胞核外の遺伝因子による細胞質遺伝はこれに従わない。 染色体説はバッタの染色体を用いた細胞学的観察からウォルター・サットン(Walter Sutton)によって1902年に提唱され、トーマス・ハント・モーガン(Thomas Hunt Morgan)らのショウジョウバエを用いた遺伝学的研究により、1920年代ごろ確立された。もうひとりの提唱者テオドール・ボヴェリ(Theodor Boveri)の名前と併せて「サットン-ボヴェリの染色体説」ともいう。発癌のメカニズムについてもボヴェリによる染色体説があり、これと区別する必要がある場合は「遺伝の染色体説」と呼ばれる。.

新しい!!: メンデルの法則と染色体説 · 続きを見る »

法則

法則(ほうそく)とは、ある現象とある現象の関係を指す言葉である。 自然現象についてだけでなく、法規上の規則を法則と呼ぶこともある。また文法上の規則(例えば係り結びの法則など)も法則とされる。 法則を大別し、自然現象に焦点が当てられているものが「自然法則」、人間の行動についての規範・規則は「道徳法則」、と分けられることもある。.

新しい!!: メンデルの法則と法則 · 続きを見る »

減数分裂

減数分裂 (げんすうぶんれつ、Meiose、meiosis) は真核生物の細胞分裂の様式の一つ。動物では配偶子(コケ・シダ類などでは胞子)を形成する際に行われ、生じた娘細胞では染色体数が分裂前の細胞の半分になる。一方、細胞が通常増殖する際に取る形式は有糸分裂あるいは体細胞分裂と呼ばれる。様式において体細胞分裂と異なる点は、染色体の複製の後に相同染色体が対合し、中間でDNAを複製することなしに二回連続して細胞分裂(減数第一分裂、第二分裂)が起こることである。英語で減数分裂を意味する はギリシャ語で「減少」の意。 減数分裂は19世紀後半に予見されていた現象である。受精では卵子と精子から一組ずつ染色体が供給され、二倍体細胞は母系由来と父系由来の染色体を一セット持っていることが明らかにされると、受精に先立ってあらかじめ染色体の減数が行われる必要があることが考えられた。実際の観察は、ウォルター・S・サットンによってバッタの生殖細胞で報告された。ここから遺伝子が染色体上にあるとする染色体説が提唱されている。.

新しい!!: メンデルの法則と減数分裂 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: メンデルの法則と数学 · 続きを見る »

数式

数式(すうしき、)は、数・演算記号・不定元などの数学的な文字・記号(および約物)が一定の規則にのっとって結合された、文字列である。 一般に数式には、その値 が定められており、数式はその値を表現すると考えられている。数式の値の評価 は、その数式に用いられる記号の定義あるいは値によって決まる。すなわち、数式はそれが現れる文脈に完全に依存した形で決まる。.

新しい!!: メンデルの法則と数式 · 続きを見る »

1865年

記載なし。

新しい!!: メンデルの法則と1865年 · 続きを見る »

1895年

記載なし。

新しい!!: メンデルの法則と1895年 · 続きを見る »

1898年

記載なし。

新しい!!: メンデルの法則と1898年 · 続きを見る »

1899年

記載なし。

新しい!!: メンデルの法則と1899年 · 続きを見る »

1900年

19世紀最後の年である。100で割り切れるが400では割り切れない年であるため、閏年ではなく、4で割り切れる平年となる。.

新しい!!: メンデルの法則と1900年 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: メンデルの法則と19世紀 · 続きを見る »

3月26日

3月26日(さんがつにじゅうろくにち)はグレゴリオ暦で年始から85日目(閏年では86日目)にあたり、年末まであと280日ある。.

新しい!!: メンデルの法則と3月26日 · 続きを見る »

4月21日

4月21日(しがつにじゅういちにち)は、グレゴリオ暦で年始から111日目(閏年では112日目)にあたり、年末まではあと254日ある。誕生花はミヤコワスレ、ムルチコーレ。.

新しい!!: メンデルの法則と4月21日 · 続きを見る »

4月24日

4月24日(しがつにじゅうよっか、しがつにじゅうよんにち)はグレゴリオ暦で年始から114日目(閏年では115日目)にあたり、年末まではあと251日ある。誕生花はシャクヤク。.

新しい!!: メンデルの法則と4月24日 · 続きを見る »

5月23日

5月23日(ごがつにじゅうさんにち)はグレゴリオ暦で年始から143日目(閏年では144日目)にあたり、年末まではあと222日ある。誕生花はアマドコロ。.

新しい!!: メンデルの法則と5月23日 · 続きを見る »

ここにリダイレクトされます:

メンデルの独立の法則メンデル遺伝分離の法則遺伝の法則

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »