ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

遺伝学

索引 遺伝学

遺伝学(いでんがく、)は、生物の遺伝現象を研究する生物学の一分野である。遺伝とは世代を超えて形質が伝わっていくことであるが、遺伝子が生物の設計図的なものであることが判明し、現在では生物学のあらゆる分野に深く関わるものとなっている。.

95 関係: 実験実験発生学中央公論新社中公新書中沢信午世代一遺伝子一酵素説人工授粉二重らせん伝令RNA形質形質転換保全遺伝学ネオダーウィニズムハーマン・J・マラーハーシーとチェイスの実験バーバラ・マクリントックポリメラーゼ連鎖反応メンデルの法則モデル生物ユーゴー・ド・フリースヨーゼフ・ゴットリープ・ケールロイタートランスポゾントーマス・ハント・モーガントーマス・アンドルー・ナイトヒポクラテスヒトゲノムテロメアデオキシリボ核酸フランシス・クリックフランシス・ゴルトンフレデリック・グリフィスフェニルケトン尿症分子生物学分子遺伝学分類学アリストテレスアカパンカビイチジクウィリアム・ベイトソンウォルター・S・サットンエーリヒ・フォン・チェルマクエドワード・ローリー・タータムオランダ王立芸術科学アカデミーカール・ピアソンカール・エーリヒ・コレンスカール・ゲルトナーグレゴール・ヨハン・メンデルゲノミクスコドン...ショウジョウバエジョージ・ウェルズ・ビードルジェームズ・ワトソンセントラルドグマタンパク質品種改良優生学優性粒子系統学細胞核生物生物学生物統計学独立の法則発生学発生生物学DNAシークエンシング遺伝遺伝子遺伝子工学遺伝子地図遺伝子発現遺伝医学遺伝的組換え遺伝的連鎖表現型誘導転移RNA農業胚発生育種学肺炎レンサ球菌自然選択説酵素雌雄同体雑種集団遺伝学逆遺伝学染色体染色体説栄養要求株減数分裂日本遺伝学会数理生物学 インデックスを展開 (45 もっと) »

実験

実験(じっけん、)は、構築された仮説や、既存の理論が実際に当てはまるかどうかを確認することや、既存の理論からは予測が困難な対象について、さまざまな条件の下で様々な測定を行うこと。知識を得るための手法の一つ。 実験は観察(測定も含む)と共に科学の基本的な方法のひとつである。ただ、観察が対象そのものを、その姿のままに知ろうとするのに対して、実験ではそれに何らかの操作をくわえ、それによって生じる対象に起こる変化を調べ、そこから何らかの結論を出そうとするものである。ある実験の結果が正しいかどうかを確かめることを追試という。 工学においては、規範的実験と設計的実験とに分類できる。.

新しい!!: 遺伝学と実験 · 続きを見る »

実験発生学

実験発生学(じっけんはっせいがく)とは、発生の研究を実験的手法を使って行おう、という発生生物学の分野である。19世紀末にヴィルヘルム・ルーによって主張され、その後の発生学を大きく動かすことになった。.

新しい!!: 遺伝学と実験発生学 · 続きを見る »

中央公論新社

株式会社中央公論新社(ちゅうおうこうろんしんしゃ)は、日本の出版社である。読売新聞グループ本社の傘下。略称は中公(ちゅうこう)。 本項では、旧法人の株式会社中央公論社(ちゅうおうこうろんしゃ)についても述べる。.

新しい!!: 遺伝学と中央公論新社 · 続きを見る »

中公新書

中公新書(ちゅうこうしんしょ)は、中央公論新社(読売新聞グループ)が発行している新書レーベルの1つ。現行の新書レーベルでは岩波新書に次ぐ歴史がある。サブレーベルとして中公PC新書、中公新書ラクレがある。.

新しい!!: 遺伝学と中公新書 · 続きを見る »

中沢信午

中澤 信午(なかざわ しんご、1918年5月17日 - 2002年5月30日)は、日本の生物学者。山形大学理学部教授をつとめた。.

新しい!!: 遺伝学と中沢信午 · 続きを見る »

世代

世代(せだい、generation).

新しい!!: 遺伝学と世代 · 続きを見る »

一遺伝子一酵素説

一遺伝子一酵素説(いちいでんしいちこうそせつ、英語:one gene-one enzyme hypothesis)とは、遺伝子研究の過程で唱えられた仮説で、個々の遺伝子はそれぞれ一つの酵素を指定するものであるとする説である。 遺伝子が酵素に関わっているとの見方はそれ以前からもあったが、生物学の分野で広く認められるようになったのはビードルとテイタムによる研究以降である。彼らはアカパンカビの栄養要求株という生理的形質に関する突然変異と、その遺伝について研究することで、この説の根拠を確定した。この説は遺伝子の役割を酵素を通じてタンパク質という特定の物質に結びつけた点で重要である。.

新しい!!: 遺伝学と一遺伝子一酵素説 · 続きを見る »

人工授粉

人工授粉または人工受粉(じんこうじゅふん、英語:artificial pollination, hand pollination, mechanical pollination)は、人間が植物の花粉を媒介する行為(受粉)のこと。送粉者が外部から到達しにくい温室やビニールハウスで農産物の生産を行う場合、人工授粉技術なしでは産業として成立しない。 ビニールハウスなどの閉鎖環境内での虫媒は、人が主導的に関与することから広義の人工授粉である。 自家不和合性をもつ作物の生産、特に果樹生産では人工授粉を行う例が多い。商業栽培される果樹では、一つの品種の苗や穂木は同一クローンであることが多々あり、その場合に自家不和合性であると自家受精ができない。バラ科果樹の多くは自家不和合性であり松本正雄, 大垣智昭, 大川清「受粉樹」『園芸事典』、受精・結実させるためには花粉源となる別の植物が必要となる。花粉源として栽培される植物を受粉樹"pollinizer"と呼び、果樹園の中に混植する。 また、育種では新品種育成のための交配・遺伝的に固定する交配・戻し交配で人工授粉を行う。.

新しい!!: 遺伝学と人工授粉 · 続きを見る »

二重らせん

二重らせん(にじゅうらせん)は、.

新しい!!: 遺伝学と二重らせん · 続きを見る »

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

新しい!!: 遺伝学と伝令RNA · 続きを見る »

形質

形質(けいしつ、trait, character)とは、生物のもつ性質や特徴のこと。 遺伝によって子孫に伝えられる形質を特に遺伝形質と呼ぶが、単に形質と言えば遺伝形質のことを指すことが多い。たとえば髪の色は形質であり、遺伝形質である。また髪の色そのもののこと(黒や白や茶色など)を形質状態と言う。元々は種を見分けるための形態を意味する言葉であった。.

新しい!!: 遺伝学と形質 · 続きを見る »

形質転換

分子生物学において形質転換(けいしつてんかん、Transformation)は、細胞外部からDNA を導入し、その遺伝的性質を変える、またその操作を意味する。 英語のtransformation には上記の意味に加えて、正常な動物細胞が無制限に分裂を行うようになる、つまりがん化の意味(悪性形質転換を参照)や、化生の中で特にダイナミックなもの(幹細胞まで脱分化したり組織の基本形の壁を越えて変化したりするもの)の意味を含み、混同を避けるため、動物細胞への遺伝子導入はトランスフェクション(英:transfection)が通常使用される。またファージやウイルスを用いた遺伝子導入は形質導入(英:transduction)と呼ばれる。 形質転換は、1928年フレデリック・グリフィス(Frederick Griffith)によって肺炎双球菌に対する実験(グリフィスの実験)により発見された。自然界において普通に起こりうる形質転換は実験室内においては人為的に作成出来るようになった。 バクテリアに対する形質転換としては、電気パルスにより瞬間的に細胞に穴を開けるエレクトロポレーション法や、塩化カルシウム存在下でコンピテントセル化した菌を用いる方法が広く使用されている。通常はファージ、プラスミドなどのベクターを用いて外来遺伝子を導入する。植物細胞に対してはアグロバクテリウム、パーティクル・ガン法やエレクトロポレーションがよく使用される。糸状菌などに対してはプロトプラスト-PEG法やエレクトロポレーション法、酵母に対してはLi法などがよく使用される。また、この他にもBiolistic法などもある。 これらの形質転換法は、生物学の研究にとって欠かすことのできないツールである。この形質転換法の開発によって、現在のバイオテクノロジーの発展があった。 応用としては発現誘導プロモーターを用いた転換、ジーントラップ法、エンハンサートラップ法、アクティベーションタギング法などが挙げられる。.

新しい!!: 遺伝学と形質転換 · 続きを見る »

保全遺伝学

保全遺伝学(ほぜんいでんがく、Conservation genetics)とは、遺伝学的手法を生物多様性の保全、および修復に活用することを目的とした学際的研究分野である。保全遺伝学に関わる研究者の専攻分野は、集団遺伝学、分子生態学、分子生物学、進化生物学、系統学と様々である。 遺伝的多様性は、生物多様性を構成する3つの基礎水準の一つであり、生物多様性の保全において直接的に重要である。また、その他の遺伝的要因も同様に、種多様性、生態系多様性の保全において重要である。 例えば、集団の遺伝的状態の変化のしやすさ(Genetic variability) の減少は、近親交配が起こる可能性を高め、適応度の減少につながる。このように集団の遺伝的状態は、集団の健康全般にかかわる問題である。 この分野で重要なことは、保全生物学と共通しており、保全の決定は科学の範疇を超えた多くの要因によってなされるということである。つまり最大の課題は、社会的、文化的、政治的論点が絡み合う中で、遺伝学上の知見を生物保全決定にどう貢献させるかということである。.

新しい!!: 遺伝学と保全遺伝学 · 続きを見る »

ネオダーウィニズム

ネオダーウィニズム(neo-Darwinism)または新ダーウィン主義(しんダーウィンしゅぎ)は生物学において、自然選択説と遺伝学を中心に生物学諸分野のアイディアの結合によって形成されている理論的なフレームワークで、しばしば現代進化論 (英: modern evolutionary synthesis)と同一視される。総合進化説、総合説、現代の総合とも呼ばれる。現在では単にダーウィン主義といった場合には新ダーウィン主義/総合説を指す場合が多い。本項では新ダーウィン主義と総合説を同じものとして扱う。1920年から1930年代にかけて成立した集団遺伝学を刺激として、 1940年代に成立した。 遺伝学の成果により、新ダーウィン主義はダーウィニズムが進化の原動力とした自然選択に加えて倍数化、雑種形成なども進化の原動力として視野に入れるようになった。さらに、ダーウィニズムの選択説とは異質な説として議論を呼んだ中立進化説なども取り込んだ総合説が現代進化論の主流であり、これも含めて新ダーウィン主義と称する。近年では生態学や発生学(進化発生学)の知見なども取り入れており、自然選択と突然変異を中心とはするがそれだけで進化を説明しようとするのではなく、より大きな枠組みとなっている。 「現代の総合(Modern synthesis)」という呼称はジュリアン・ハクスリーが1942年に提唱した。1930年以降、ロナルド・フィッシャー、J・B・S・ホールデン、シューアル・ライト、テオドシウス・ドブジャンスキーといった集団生物学者が自然選択説と遺伝学が統合できることを示した。さらにエルンスト・マイヤー、エドモンド・フォードなどの生態学者、古生物学者ジョージ・ゲイロード・シンプソン、植物学者レッドヤード・ステビンズ、そのほか細胞学者や分類学者などの生物諸分野の研究者たちが、集団遺伝学に新たな広範な洞察を加えた。.

新しい!!: 遺伝学とネオダーウィニズム · 続きを見る »

ハーマン・J・マラー

ハーマン・ジョーゼフ・マラー(Hermann Joseph Muller、1890年12月21日 - 1967年4月5日)はアメリカの遺伝学者。ショウジョウバエに対するX線照射の実験で人為突然変異を誘発できることを発見した。この業績により1946年にノーベル生理学・医学賞を受賞している。精子バンクの提唱者でもある。.

新しい!!: 遺伝学とハーマン・J・マラー · 続きを見る »

ハーシーとチェイスの実験

ハーシーとチェイスの実験(ハーシーとチェイスのじっけん)は、1952年にアルフレッド・ハーシーとマーサ・チェイスによって行われた一連の実験である。1944年のによって最初に実証された「デオキシリボ核酸 (DNA) が遺伝物質である」ことを裏付けた。1869年以来DNAの存在こそ生物学者の間でよく知られていたが、当時はその大多数が、遺伝情報の担い手となる物質はタンパク質であろうと考えていた。.

新しい!!: 遺伝学とハーシーとチェイスの実験 · 続きを見る »

バーバラ・マクリントック

バーバラ・マクリントック(Barbara McClintock, 1902年6月16日 - 1992年9月2日)はアメリカ合衆国の細胞遺伝学者。トウモロコシを用いた染色体の研究で知られる。トランスポゾンの発見により1983年にノーベル生理学・医学賞を受賞している。 コネチカット州ハートフォードに生まれる。1923年にコーネル大学を卒業し、1927年に同大学で植物学の分野で博士号を得る。コーネル大学やNRCで研究員を務めた後、1936年から1941年までミズーリ大学で助手になる。1942年から1967年にワシントン・カーネギー協会の遺伝子部門のコールド・スプリング・ハーバー研究所の研究員となる。 マクリントックがトランスポゾンの存在を発見したのはDNAの構造が判明する以前の時代であり、余りに先駆的な学説に長らく学会で無視されていた時代もあった。その学説が後年の分子生物学の技術の発展により証明されるに至り、81歳と高齢でのノーベル賞受賞となったが、その一報を聞いたマクリントックは「まあ!」と一言つぶやいて、いつもの様にトウモロコシ畑に帰って行ったという。 また1970年には、ニクソン大統領よりアメリカ国家科学賞を、1982年には、利根川進(1987年ノーベル医学賞受賞者)と共にコロンビア大学よりルイザ・グロス・ホロウィッツ賞を授与されている。.

新しい!!: 遺伝学とバーバラ・マクリントック · 続きを見る »

ポリメラーゼ連鎖反応

ポリメラーゼ連鎖反応(ポリメラーゼれんさはんのう、polymerase chain reaction, PCR)は、DNAを増幅するための原理またはそれを用いた手法で、手法を指す場合はPCR法と呼ばれることの方が多い。英語をそのまま片仮名読みにして「ポリメラーゼ・チェーン・リアクション」とも呼ばれる。次の特徴を持つ。.

新しい!!: 遺伝学とポリメラーゼ連鎖反応 · 続きを見る »

メンデルの法則

メンデルの法則(メンデルのほうそく)は、遺伝学を誕生させるきっかけとなった法則であり、グレゴール・ヨハン・メンデルによって1865年に報告された。分離の法則、独立の法則、優性の法則の3つからなる。.

新しい!!: 遺伝学とメンデルの法則 · 続きを見る »

モデル生物

モデル生物(モデルせいぶつ)とは生物学、特に分子生物学とその周辺分野において、普遍的な生命現象の研究に用いられる生物のこと。.

新しい!!: 遺伝学とモデル生物 · 続きを見る »

ユーゴー・ド・フリース

1890年当時の肖像 1907年当時の肖像 ユーゴー・マリー・ド・フリースまたはヒューゴー・マリー・デ・ヴリース(、 1848年2月16日 - 1935年5月21日)は、オランダの植物学者・遺伝学者。なお、ドフリスと呼称している日本の理科の教科書もある。オオマツヨイグサの栽培実験によって、1900年にカール・エーリヒ・コレンスやエーリヒ・フォン・チェルマクらと独立にメンデルの法則を再発見した。さらにその後も研究を続け、1901年には突然変異を発見した。この成果に基づいて、進化は突然変異によって起こるという「突然変異説」を提唱した。.

新しい!!: 遺伝学とユーゴー・ド・フリース · 続きを見る »

ヨーゼフ・ゴットリープ・ケールロイター

ヨーゼフ・ゴットリーブ・ケールロイター(Joseph Gottlieb Kölreuter、1733年4月27日 - 1806年11月11日)はドイツの植物学者。メンデル以前の遺伝学の先駆的研究者で、花は植物の生殖器官であり、受精によって種子が生ずること、雑種は両親の中間的性質を示すことなどを説いた。 ベルリン大学、ライプツィヒ大学、シュトラスブルク大学、テュービンゲン大学で植物学と医学を学び、1755年にテュービンゲン大学で医学の学位を得た。1764年からカルルスルーエ植物園の博物学教授となり、カメラリウスの研究を受け継ぐ。植物の有性生殖について研究し、広範囲にわたる交雑実験を行った。.

新しい!!: 遺伝学とヨーゼフ・ゴットリープ・ケールロイター · 続きを見る »

トランスポゾン

トランスポゾン (transposon) は細胞内においてゲノム上の位置を転移 (transposition) することのできる塩基配列である。動く遺伝子、転移因子 (transposable element) とも呼ばれる。DNA断片が直接転移するDNA型と、転写と逆転写の過程を経るRNA型がある。トランスポゾンという語は狭義には前者のみを指し、後者はレトロポゾン (retroposon) と呼ばれる。レトロポゾンはレトロウイルスの起源である可能性も示唆されている。レトロポゾンのコードする逆転写酵素はテロメアを複製するテロメラーゼと進化的に近い。 転移はゲノムのDNA配列を変化させることで突然変異の原因と成り得、多様性を増幅することで生物の進化を促進してきたと考えられている。トランスポゾンは遺伝子導入のベクターや変異原として有用であり、遺伝学や分子生物学において様々な生物で応用されている。.

新しい!!: 遺伝学とトランスポゾン · 続きを見る »

トーマス・ハント・モーガン

トーマス・ハント・モーガン(Thomas Hunt Morgan、1866年9月25日 - 1945年12月4日)はアメリカ合衆国の遺伝学者。キイロショウジョウバエを用いた研究で古典遺伝学の発展に貢献し、染色体が遺伝子の担体であるとする染色体説を実証した。その業績により、1933年、ノーベル生理学・医学賞を受賞した。.

新しい!!: 遺伝学とトーマス・ハント・モーガン · 続きを見る »

トーマス・アンドルー・ナイト

トーマス・アンドルー・ナイト(Thomas Andrew Knight, FRS, 1759年8月12日 - 1838年5月11日)は、イギリスの園芸家、植物学者である。 ラドローに生まれた。兄弟に美術学者のリチャード・ペイン・ナイトがいる。10,000エーカー(40 km2)の農園で、イチゴやキャベツ、豆などの品種改良を行い、大きい温室も作った。1797年にリンゴや豆の栽培に関する論文を発表した。18世紀から19世紀にかけての栽培技術に関する指導的な研究者であったが、研究結果は彼の死後失われた。 植物の基礎的な実験を行ったパイオニアであった。苗にたあいする重力の影響などの研究した。研究の目的は実用的なもので食用植物の品質を改良するための品種改良や栽培技術の改良に取り組んだ。ナイトの作った「ダウントンイチゴ」は長い間、イチゴの大半の栽培品種の祖先となった。 あまり知られていないが、メンデルの遺伝の実験と同じ結果を見出していたが、形質の変化の原因についての考察を行うことはなかった。学問の世界に興味を示さず、他人の論文を読むようになったのはジョセフ・バンクスにそうするように言われてからであった。バンクスとは密接なつきあいをした。ナイトの論文は王立協会紀要に掲載された。 1811年から1838年の間、ロンドン園芸協会(London Horticultural Society、1804年設立)の会長を務めた。ロンドン園芸協会は王立協会の会長のバンクスの尽力により1864年に王立園芸協会として認められた。.

新しい!!: 遺伝学とトーマス・アンドルー・ナイト · 続きを見る »

ヒポクラテス

ヒポクラテス(ヒッポクラテース、古代ギリシア語: Ἱπποκράτης、Hippocrates, 紀元前460年ごろ - 紀元前370年ごろ)は古代ギリシアの医者。 エーゲ海に面したイオニア地方南端のコス島に生まれ、医学を学びギリシア各地を遍歴したと言い伝えられるが、その生涯について詳しいことは分かっていない。ヒポクラテスの名を冠した『ヒポクラテス全集』が今日まで伝わるが、その編纂はヒポクラテスの死後100年以上経ってからとされ、内容もヒポクラテス派(コス派)の他、ライバル関係であったクニドス派の著作や、ヒポクラテスの以後の著作も多く含まれると見られている。 ヒポクラテス(或いはヒポクラテス派)の最も重要な功績のひとつに、医学を原始的な迷信や呪術から切り離し、臨床と観察を重んじる経験科学へと発展させたことが挙げられる。さらに医師の倫理性と客観性について『誓い』と題した文章が全集に収められ、現在でも『ヒポクラテスの誓い』として受け継がれている。 人生は短く、術のみちは長い "ὁ βίος βραχύς, ἡ δὲ τέχνη μακρή." と言う有名な言葉もヒポクラテスのものとされており、これは「ars longa, vita brevis アルスロンガ、ウィータブレウィス」というラテン語訳で現代でも広く知られている。病気は4種類の体液の混合に変調が生じた時に起こるという四体液説を唱えた。また人間のおかれた環境(自然環境、政治的環境)が健康に及ぼす影響についても先駆的な著作をのこしている。 これらヒポクラテスの功績は古代ローマの医学者ガレノスを経て後の西洋医学に大きな影響を与えたことから、ヒポクラテスは「医学の父」、「医聖」、「疫学の祖」などと呼ばれる。.

新しい!!: 遺伝学とヒポクラテス · 続きを見る »

ヒトゲノム

ヒトゲノムは、その名の通りヒト (Homo sapiens) のゲノム、すなわち、遺伝情報の1セットである。ヒトゲノムは核ゲノムとミトコンドリアゲノムから成る。.

新しい!!: 遺伝学とヒトゲノム · 続きを見る »

テロメア

テロメア (telomere) は真核生物の染色体の末端部にある構造。染色体末端を保護する役目をもつ。telomere はギリシア語で「末端」を意味する τέλος (telos) と「部分」を意味する μέρος (meros) から作られた語である。末端小粒(まったんしょうりゅう)とも訳される。 染色体(左)とテロメア(右・拡大):詳細は本文を参照.

新しい!!: 遺伝学とテロメア · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 遺伝学とデオキシリボ核酸 · 続きを見る »

フランシス・クリック

フランシス・ハリー・コンプトン・クリック(Francis Harry Compton Crick, 1916年6月8日 - 2004年7月28日)は、イギリスの科学者。DNAの二重螺旋構造の発見者。.

新しい!!: 遺伝学とフランシス・クリック · 続きを見る »

フランシス・ゴルトン

フランシス・ゴルトン(Sir Francis Galton、1822年2月16日 - 1911年1月17日)は、イギリスの人類学者、統計学者、探検家、初期の遺伝学者。フランシス・ゴールトンとも。母方の祖父は医者・博物学者のエラズマス・ダーウィンで、進化論で知られるチャールズ・ダーウィンは従兄にあたる。.

新しい!!: 遺伝学とフランシス・ゴルトン · 続きを見る »

フレデリック・グリフィス

フレデリック・グリフィス(Frederick Griffith、1879年 - 1941年)は、イギリスのウェールズ系医師、細菌学者、遺伝学者である。.

新しい!!: 遺伝学とフレデリック・グリフィス · 続きを見る »

フェニルケトン尿症

フェニルケトン尿症 (ふぇにるけとんにょうしょう、Phenylketonuria) とは、先天的な酵素(または補酵素)の異常によって、フェニルアラニンの代謝が阻害され起こる疾病である。頭字語のPKUで呼ばれることもある。.

新しい!!: 遺伝学とフェニルケトン尿症 · 続きを見る »

分子生物学

分子生物学(ぶんしせいぶつがく、:molecular biology)は、生命現象を分子を使って説明(理解)することを目的とする学問である。.

新しい!!: 遺伝学と分子生物学 · 続きを見る »

分子遺伝学

分子遺伝学(ぶんしいでんがく、英語:molecular genetics)は生物学の研究分野であるが、二つの異なる分野を指す。塩基配列の比較から生物の進化を議論する分野と、遺伝現象の仕組みを分子のレベルで理解しようとする分野である。.

新しい!!: 遺伝学と分子遺伝学 · 続きを見る »

分類学

分類学(ぶんるいがく、taxonomy)とは、生物を分類することを目的とした生物学の一分野。生物を種々の特徴によって分類し、体系的にまとめ、生物多様性を理解する。 なお、広義の分類学では無生物も含めた事物(観念も含めて)を対象とする。歴史的には博物学にその起源があり、古くは、鉱物などもその対象としたが、それらの分野は分類学という形で発展することがなかった。以下の叙述では狭義の分類学(生物の分類学)についておこなう。 分類学は、この世に存在する、あるいは存在したすべての生物をその対象とする。現在存在しない生物については古生物学が分担するが、現在の生物の分類にも深く関わりがあるため、それらはまとめて考える必要がある。実際には、個々の分類学者はその中の特定の分類群を研究対象とし、全体を見渡した分類体系をその対象にすることのできる人はあまりいない。 分類学は本来は進化論とは無関係であったが、現在では近いどうしを集め分類群を作成することで系統樹が作成され、分類学は進化を理解する上で重要な役割をもっている。.

新しい!!: 遺伝学と分類学 · 続きを見る »

アリストテレス

アリストテレス(アリストテレース、Ἀριστοτέλης - 、Aristotelēs、前384年 - 前322年3月7日)は、古代ギリシアの哲学者である。 プラトンの弟子であり、ソクラテス、プラトンとともに、しばしば「西洋」最大の哲学者の一人とされ、その多岐にわたる自然研究の業績から「万学の祖」とも呼ばれる。特に動物に関する体系的な研究は古代世界では東西に類を見ない。イスラーム哲学や中世スコラ学、さらには近代哲学・論理学に多大な影響を与えた。また、マケドニア王アレクサンドロス3世(通称アレクサンドロス大王)の家庭教師であったことでも知られる。 アリストテレスは、人間の本性が「知を愛する」ことにあると考えた。ギリシャ語ではこれをフィロソフィア()と呼ぶ。フィロは「愛する」、ソフィアは「知」を意味する。この言葉がヨーロッパの各国の言語で「哲学」を意味する言葉の語源となった。著作集は日本語版で17巻に及ぶが、内訳は形而上学、倫理学、論理学といった哲学関係のほか、政治学、宇宙論、天体学、自然学(物理学)、気象学、博物誌学的なものから分析的なもの、その他、生物学、詩学、演劇学、および現在でいう心理学なども含まれており多岐にわたる。アリストテレスはこれらをすべてフィロソフィアと呼んでいた。アリストテレスのいう「哲学」とは知的欲求を満たす知的行為そのものと、その行為の結果全体であり、現在の学問のほとんどが彼の「哲学」の範疇に含まれている立花隆『脳を究める』(2001年3月1日 朝日文庫)。 名前の由来はギリシア語の aristos (最高の)と telos (目的)から 。.

新しい!!: 遺伝学とアリストテレス · 続きを見る »

アカパンカビ

アカパンカビ(学名: )は、子嚢菌門に属する糸状菌の一種。モデル生物としても重要である。.

新しい!!: 遺伝学とアカパンカビ · 続きを見る »

イチジク

イチジク(無花果、映日果)は、クワ科イチジク属の落葉高木、またはその果実のことである。原産地はアラビア南部。不老長寿の果物とも呼ばれる。.

新しい!!: 遺伝学とイチジク · 続きを見る »

ウィリアム・ベイトソン

ウィリアム・ベイトソン(William Bateson, 1861年8月8日 - 1926年2月8日)は、イギリスの遺伝学者。メンデルの法則を英語圏の研究者に紹介し、その普及の先頭に立った人物である。英語で遺伝学を意味する "genetics" という語を考案したことでも有名。 人類学者グレゴリー・ベイトソンは彼の息子である。ウィリアムのいとこの孫、パトリック・ベイトソンは進化生物学者。.

新しい!!: 遺伝学とウィリアム・ベイトソン · 続きを見る »

ウォルター・S・サットン

ウォルター・S・サットン ウォルター・S・サットン(Walter Stanborough Sutton, 1877年4月5日 - 1916年3月10日)はアメリカの生物学者・医学者。バッタ Brachystola magna の生殖細胞を用いて減数分裂における染色体の観察から、染色体説を提唱したことで知られる。 1898年にカンザス大学の細胞学者クラレンス・E・マクラング(C.

新しい!!: 遺伝学とウォルター・S・サットン · 続きを見る »

エーリヒ・フォン・チェルマク

ーリヒ・フォン・チェルマク エーリヒ・フォン・チェルマク(Erich von Tschermak-Seysenegg、1871年11月15日 - 1962年10月11日)は、オーストリア、ウィーン出身の農学者(遺伝、育種)である。日本語では名をエーリッヒ、姓をチェルマックなどと表記する場合もある。初期は園芸品種の改良に関心を示した。 フライブルクの農場で従事し、病害に強い品種の開発を行い、その中には交雑種を含むムギの品種改良が含まれている。 1896年に学位を取得する。1900年、オーストリアの国営農場でエンドウの交配実験を行い、チェルマクはユーゴー・ド・フリース、カール・エーリヒ・コレンスと並び、グレゴール・ヨハン・メンデルが1860年に発表したメンデルの法則を再発見した人物とされ、1906年にはウィーン農科大学の教授を務めた。.

新しい!!: 遺伝学とエーリヒ・フォン・チェルマク · 続きを見る »

エドワード・ローリー・タータム

ドワード・ローリー・タータム(Edward Lawrie Tatum、1909年12月14日 - 1975年11月5日)は、アメリカ合衆国の遺伝学者。代謝過程に対する遺伝子による調節に関して研究し、ジョージ・ウェルズ・ビードルとともに1958年度のノーベル生理学・医学賞を受賞した。同年にはジョシュア・レダーバーグも受賞している。.

新しい!!: 遺伝学とエドワード・ローリー・タータム · 続きを見る »

オランダ王立芸術科学アカデミー

ランダ王立芸術科学アカデミーはアムステルダムの Trippenhuisis にある。 オランダ王立芸術科学アカデミー(蘭: 、KNAW)は、オランダにおける科学と文学の振興を専門とする組織である。アムステルダムの Trippenhuis にある。 各種諮問機能と管理機能に加えて、社会史国際研究所を含む多数の研究所を運営しており、さらに多数の賞を主催している。例えば、理論物理学の賞であるローレンツメダル、微生物学の賞であるレーウェンフック・メダルなどがある。.

新しい!!: 遺伝学とオランダ王立芸術科学アカデミー · 続きを見る »

カール・ピアソン

ール・ピアソン(Karl Pearson, 1857年3月27日 - 1936年4月27日)はイギリスの数理統計学者、優生学者で、記述統計学の大成者である。.

新しい!!: 遺伝学とカール・ピアソン · 続きを見る »

カール・エーリヒ・コレンス

ール・エーリヒ・コレンス カール・エーリヒ・コレンス(Carl Erich Correns, 1864年9月10日 - 1933年2月14日)はドイツの植物学者・遺伝学者。彼は第一に、彼自身の遺伝学における法則の発見によって、そして遺伝学に関するグレゴール・ヨハン・メンデルの初期の論文を、植物学者である エーリヒ・チェルマック及びユーゴー・ド・フリースとほぼ同時に、しかしそれぞれ独立して再発見した(いわゆるメンデルの法則の再発見)ことによって知られる。 コレンスは、当初はカール・ネーゲリの学生であった。ネーゲリは、メンデルが自分のエンドウマメで行った遺伝の研究について論文を送ったにもかかわらず、その研究の重要性を理解できなかった著名な植物学者である。また、チェルマックはメンデルのウィーンでの学生時代に植物学を教えた人物の孫であった。.

新しい!!: 遺伝学とカール・エーリヒ・コレンス · 続きを見る »

カール・ゲルトナー

ール・ゲルトナー カール・ゲルトナー(Karl Friedrich von Gärtner, 1772年5月1日 - 1850年9月1日)は、ドイツの植物学者、医師である。19世紀半ばに植物の交雑実験を行った遺伝学のパイオニアの一人である。 ゲッピンゲンに生まれた。父親のヨーゼフ・ゲルトナーもサンクトペテルブルクの植物園の園長を務めた植物学者である。ゲッティンゲン大学、テュービンゲン大学で医学を学び、1796年にカルフで開業医となった。1800年から植物学者となり、特に植物の生殖の実験を行った。ヨーロッパを旅した後、1824年頃から植物の交雑実験を始めた。イギリスのトーマス・アンドルー・ナイトやジョン・ゴス (John Goss)、フランスのオーギュスタン・サジュレ (Augustin Sageret) らとともに、交雑一代目は親のどちらかの性質を受け継ぎ、交雑二代目に、交雑に用いた元の植物のそれぞれの性質が現れることを見出した1人である。1826年にドイツ自然科学アカデミー・レオポルディーナの会員に選ばれ、1846年にヴュルテンベルクの王冠章 (Orden der Württembergischen Krone) の勲章を得た。 父親の著書『植物の果実と種子』(De fructibus et seminibus plantarum) の改訂を行い、自らも多くの著書を残した。カルフにて没。.

新しい!!: 遺伝学とカール・ゲルトナー · 続きを見る »

グレゴール・ヨハン・メンデル

レゴール・ヨハン・メンデル(Gregor Johann Mendel、1822年7月20日 - 1884年1月6日)は、オーストリア帝国・ブリュン(現在のチェコ・ブルノ)の司祭。植物学の研究を行い、メンデルの法則と呼ばれる遺伝に関する法則を発見したことで有名。遺伝学の祖。 当時、遺伝現象は知られていたが、遺伝形質は交雑とともに液体のように混じりあっていく(混合遺伝)と考えられていた。メンデルの業績はこれを否定し、遺伝形質は遺伝粒子(後の遺伝子)によって受け継がれるという粒子遺伝を提唱したことである。.

新しい!!: 遺伝学とグレゴール・ヨハン・メンデル · 続きを見る »

ゲノミクス

ノミクス(英語:genomics、ジェノミクス、ゲノム学、ゲノム科学)とは、ゲノムと遺伝子について研究する生命科学の一分野。 ゲノミクスは1980年代に現れ、1990年代のゲノムプロジェクトの開始とともに発展した。初めて完全長のゲノムが解読されたのはバクテリオファージFX174 (5,368 kb) で1980年のことである。自由生活生物としてはインフルエンザ菌で1995年。以来、猛烈な速さでゲノム解読が進行している。ヒトゲノムのおおまかな配列はヒトゲノムプロジェクトによって2001年前半に解読されている。 ポストゲノムプロジェクトのゲノミクスとして、さまざまな生物種のゲノムを比較することで、進化の解明を試みる比較ゲノミクスや、RNAiなどによる遺伝子阻害から、全体論的な機構解明を行う機能ゲノミクスなどがある。ゲノミクスではバイオインフォマティクスや遺伝学、分子生物学をツールとして用いるとともに、システム生物学のツールとしても用いられる。またゲノミクスは医療の分野に新たな治療法を提供してきている(ファーマコゲノミクス)。食品(ニュートリゲノミクス)や農業の分野へも応用される。.

新しい!!: 遺伝学とゲノミクス · 続きを見る »

コドン

mRNA分子に沿って一連のコドンを示している。各コドンは3ヌクレオチドからなり、一つのアミノ酸を指定している。 コドン(英: codon)とは、核酸の塩基配列が、タンパク質を構成するアミノ酸配列へと生体内で翻訳されるときの、各アミノ酸に対応する3つの塩基配列のことで、特に、mRNAの塩基配列を指す。DNAの配列において、ヌクレオチド3個の塩基の組み合わせであるトリプレットが、1個のアミノ酸を指定する対応関係が存在する。この関係は、遺伝暗号、遺伝コード(genetic code)等と呼ばれる。 ほぼ全ての遺伝子は厳密に同じコードを用いるから(#RNAコドン表を参照)、このコードは、しばしば基準遺伝コード(canonical genetic code)とか、標準遺伝コード(standard genetic code)、あるいは単に遺伝コードと呼ばれる。ただし、実際は変形コードは多い。つまり、基準遺伝コードは普遍的なものではない。例えば、ヒトではミトコンドリア内のタンパク質合成は基準遺伝コードの変形したものを用いている。 遺伝情報の全てが遺伝コードとして保存されているわけではないということを知ることは重要である。全ての生物のDNAは調節性塩基配列、遺伝子間断片、染色体の構造領域を含んでおり、これらは表現型の発現に寄与するが、異なった規則のセットを用いて作用する。これらの規則は、すでに十分に解明された遺伝コードの根底にあるコドン対アミノ酸パラダイムのように明解なものかも知れないし、それほど明解なものではないかも知れない。.

新しい!!: 遺伝学とコドン · 続きを見る »

ショウジョウバエ

ョウジョウバエ(猩猩蠅)は、ハエ目(双翅目)・ショウジョウバエ科 (Drosophilidae) に属するハエの総称である。科学の分野では、その一種であるキイロショウジョウバエ (Drosophila melanogaster) のことをこう呼ぶことが多い。この種に関しては非常に多くの分野での研究が行われているが、それらに関してはキイロショウジョウバエの項を参照。本項ではこの科全般を扱う。.

新しい!!: 遺伝学とショウジョウバエ · 続きを見る »

ジョージ・ウェルズ・ビードル

ョージ・ウェルズ・ビードル(George Wells Beadle、1903年10月22日 - 1989年6月9日)は、アメリカ合衆国の遺伝学者で、遺伝子が細胞内の生化学過程を制御していることを発見し、エドワード・ローリー・タータムとともに1958年度のノーベル生理学・医学賞を受賞した。また同年にはジョシュア・レダーバーグも受賞している。 ビードルとタータムは、アカパンカビ(Neurospora crassa)にX線を照射し、突然変異を起こさせた。それらの仲から代謝系路上の特定の酵素が変異しているものを探し、その生理と遺伝について研究を行った。1941年の実験で遺伝子と酵素反応が直接関連していることをあきらかにし、これが後に「一遺伝子一酵素説」として知られるようになった。.

新しい!!: 遺伝学とジョージ・ウェルズ・ビードル · 続きを見る »

ジェームズ・ワトソン

ェームズ・デューイ・ワトソン(James Dewey Watson, 1928年4月6日 - )は、DNAの分子構造における共同発見者の一人として知られる、アメリカ出身の分子生物学者である。ワトソン及び、フランシス・クリック、モーリス・ウィルキンスらは、「核酸の分子構造および生体における情報伝達に対するその意義の発見」に対して、1962年にノーベル生理学・医学賞を受賞した。.

新しい!!: 遺伝学とジェームズ・ワトソン · 続きを見る »

セントラルドグマ

ントラルドグマ()とは、遺伝情報は「DNA→(転写)→mRNA→(翻訳)→タンパク質」の順に伝達される、という、分子生物学の概念である。フランシス・クリックが1958年に提唱したCrick, F.H.C. (1958): Symp.

新しい!!: 遺伝学とセントラルドグマ · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 遺伝学とタンパク質 · 続きを見る »

品種改良

品種改良(ひんしゅかいりょう)とは、栽培植物や家畜などにおいて、より人間に有用な品種を作り出すこと。具体的な手法としては、人為的な選択、交雑、突然変異を発生させる手法などを用いる。 公的な農業試験場や畜産試験場などで進められているほか、穀物メジャーなどに代表される民間企業もビジネスとして参入している。.

新しい!!: 遺伝学と品種改良 · 続きを見る »

優生学

優生学(ゆうせいがく、eugenics)は、応用科学に分類される学問の一種で、一般に「生物の遺伝構造を改良する事で人類の進歩を促そうとする科学的社会改良運動」と定義される。1883年にフランシス・ゴルトンが定義した造語である。 優生学は20世紀初頭に大きな支持を集めた。その最たるものがナチス政権による人種政策である。しかし、多くの倫理的問題を引き起こしたことから、優生学は人権問題としてタブーとなり、第二次世界大戦後は公での支持を失っていった。.

新しい!!: 遺伝学と優生学 · 続きを見る »

優性

トウモロコシの草丈の遺伝の研究(1917年) 優性は、有性生殖の遺伝に関する現象である。一つの遺伝子座に異なる遺伝子が共存したとき、形質の現れやすい方(優性、)と現れにくい方(劣性、)がある場合、優性の形質が表現型として表れる。 「優性」「劣性」という表現は、優れた遺伝子、劣った遺伝子、といった誤解を招きやすいことから、2017年9月より、日本遺伝学会は優性を「顕性」、劣性を「潜性」という表現に変更することを決定し、教科書の記述も変更するよう、関連学会と文部科学省に要望している。 一般的な植物や動物においては、遺伝子は両親からそれぞれ与えられ、ある表現型について一対を持っている。この時、両親から同じ遺伝子が与えられた場合、その子はその遺伝子をホモ接合で持つから、その遺伝形質を発現する。しかし、両親から異なる遺伝子を与えられた場合には、子はヘテロ接合となり異なる遺伝子を持つが、必ずどちらか一方の形質が発現するとき、その形質を優性形質という。 2倍体の生物において、性染色体以外の常染色体は雄親と雌親から受け継いだ対の遺伝子を有する。対立遺伝子をAとaの二種とした場合、子の遺伝型はAA・Aa・aaの3通りがある。Aとaの影響が等しければ子の表現型がAaであったときにAAとaaの中間等になるはずだが、多くの場合そうはならず、一方に偏った表現型となる。この時にAaの表現型がAAと同様の場合、aaの表現型を劣性形質といい、Aはaに対して優性遺伝子、aはAに対して劣性遺伝子という。優性遺伝子に対して大文字を使い、劣性遺伝子に対して小文字を使う表記法はよくある慣習である。 優性は優れた形質を受け継ぐ、という意味ではなく、次世代でより表現されやすいという意味である。「劣った性質」という意味ではなく、表現型として表れにくい事を意味する。 しかし、優生学のように、この言葉をそのまま優れた形質の意味に使う例もある。このような場合、それは遺伝学の用語とは全く異なるものである。 雌雄で性染色体の数が異なるために生じる伴性遺伝の場合、雌雄で形質の発現に差が出る。例えば多くの哺乳類では、雄にはX染色体が1つしか存在しないため、劣性遺伝子があれば必ず形質が発現する。その一方で雌はX染色体を2つ持つため、その両方に劣性遺伝子が存在しなければ発現しない。例えばヒトの色覚異常がある。 優性という言葉は、広い意味では、対立遺伝子の組み合わせで表現型が変わる現象全般に対して用いられる(例えば、不完全優性、半優性、超優性、量的遺伝学における優性など)。.

新しい!!: 遺伝学と優性 · 続きを見る »

粒子

粒子(りゅうし、particle)は、比較的小さな物体の総称である。大きさの基準は対象によって異なり、また形状などの詳細はその対象によって様々である。特に細かいものを指す微粒子といった語もある。.

新しい!!: 遺伝学と粒子 · 続きを見る »

系統学

系統学(けいとうがく、英語:phylogenetics)とは、生物の種の系統的な発生、つまり生物の進化による系統分化の歴史を研究する学問。種や系統群の分化と進化を研究目的とする。 研究技術として、比較解剖学、比較発生学などによって得られた形態などの情報を、統計学を駆使した分岐学などを用いて解析する。生化学的手法も古くから植物の色素などの代謝産物の比較研究が系統解析の手法として用いられてきたが、これに加えて1980年代以降は、DNAやRNAといった情報高分子の塩基配列の解析などによる分子系統学も発達してきた。.

新しい!!: 遺伝学と系統学 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: 遺伝学と細胞核 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: 遺伝学と生物 · 続きを見る »

生物学

生物学(せいぶつがく、、biologia)とは、生命現象を研究する、自然科学の一分野である。 広義には医学や農学など応用科学・総合科学も含み、狭義には基礎科学(理学)の部分を指す。一般的には後者の意味で用いられることが多い。 類義語として生命科学や生物科学がある(後述の#「生物学」と「生命科学」参照)。.

新しい!!: 遺伝学と生物学 · 続きを見る »

生物統計学

生物統計学(せいぶつとうけいがく、英語:biostatistics)または生物測定学(せいぶつそくていがく、biometry)は、統計学の生物学に対する応用領域で、様々な生物学領域を含む。特に医学と農学への応用が重要である。医学では生物統計学、農学では生物測定学の名を用いることが多い。古くは"biometrics"の名が使われたが、現在バイオメトリクスという呼称は異なる分野を指す語となっている。しかしバイオメトリクスの基本的な理念や方法論(例えば指紋による個人識別)は古典的な生物統計学にルーツを求めることができる。また理論生物学とも密接な関係がある。.

新しい!!: 遺伝学と生物統計学 · 続きを見る »

独立の法則

立の法則は、メンデルの法則の1つで、2つの遺伝子は配偶子への分離に関して互いに何の影響も及ぼさないとするものである。.

新しい!!: 遺伝学と独立の法則 · 続きを見る »

発生学

生学(はっせいがく、Embryology)は、胚の発生を研究する学問である。胚とは、動物では誕生や孵化の前、植物では発芽の段階にある全ての組織と定義できる。 発生学では主に、受精卵の発生と組織や器官への分化を扱っている。分割が起こると、桑実胚から端に極のある胞胚となる。 左右相称動物では、胞胚の発達の仕方には大きく2通りあり、これによって動物界が二分されている。胞胚の最初にできた極が口になるのが旧口動物であり、肛門になるのが新口動物である。旧口動物には、昆虫などの多くの無脊椎動物が含まれ、新口動物には脊椎動物などの進化した動物の多くが含まれる。また、この過程を原腸形成という。 原腸形成が起こるとすぐに細胞は3つの層に分かれ、全ての器官や組織はここから作られる。.

新しい!!: 遺伝学と発生学 · 続きを見る »

発生生物学

生生物学(はっせいせいぶつがく, Developmental biology)とは多細胞生物の個体発生を研究対象とする生物学の一分野である。個体発生とは配偶子の融合(受精)から、配偶子形成を行う成熟した個体になるまでの過程のことである。広義には老化や再生も含む。.

新しい!!: 遺伝学と発生生物学 · 続きを見る »

DNAシークエンシング

DNAシークエンシング (DNA sequencing) とは、DNAを構成するヌクレオチドの結合順序(塩基配列)を決定することである。DNAは生物の遺伝情報のほとんど全てを担う分子であり、基本的には塩基配列の形で符号化されているため、DNAシークエンシングは遺伝情報を解析するための基本手段となっている。手法としては1977年に開発されたサンガー法が改良を加えながら用いられているが、最近新しい方法も開発されており中には実用化されているものもある。 DNAの塩基配列には生命体に必要な情報が符号化されているので、配列決定はミクロなレベルの生物学の基盤となっており、分類学や生態学のようなマクロな生物学でも盛んに応用されている。また医学面でも遺伝病や感染症の診断や治療法の開発などに役立っている。ウォルター・ギルバートとフレデリック・サンガーは、DNAシークエンシングの手法を開発した功績により1980年のノーベル化学賞を受賞している。.

新しい!!: 遺伝学とDNAシークエンシング · 続きを見る »

遺伝

遺伝(いでん、)は、生殖によって、親から子へと形質が伝わるという現象のことであり、生物の基本的な性質の一つである。素朴な意味では、親子に似通った点があれば、「遺伝によるものだ」、という言い方をする。しかし、生命現象としての遺伝は、後天的な母子感染による疾患や、非物質的情報伝達(学習など)による行動の類似化などを含まない。.

新しい!!: 遺伝学と遺伝 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 遺伝学と遺伝子 · 続きを見る »

遺伝子工学

遺伝子工学(いでんしこうがく、英:genetic engineering)とは、遺伝子を人工的に操作する技術を指し、特に生物の自然な生育過程では起こらない人為的な型式で行うことを意味している。遺伝子導入や遺伝子組換え(いでんしくみかえ:組換えDNA(くみかえDNA))などの技術で生物に遺伝子操作(いでんしそうさ)を行う事を一般に指す。.

新しい!!: 遺伝学と遺伝子工学 · 続きを見る »

遺伝子地図

遺伝子地図(いでんしちず)とは染色体上の遺伝子の位置を示した地図のこと。染色体地図とも言う。 モーガンがショウジョウバエでこれを作り、遺伝子が染色体上にあるという、当時は仮説であったことを証明したことでよく知られ、遺伝子研究の歴史で大きな意味を持つ。 ただし現在でも作られることがある。金銭的な問題や効率面からゲノムプロジェクトの前段階として各種の地図が作られる他、実際の研究では塩基配列全ての情報よりも、こういった簡略化された地図が有用な場合も多い。そういった地図のひとつ。 組み換えや交差から遺伝子間の距離を基に作成する遺伝地図(連鎖地図ともいう)、制限酵素切断部位やDNAマーカーの位置、距離を基にした物理的地図、形質を支配する遺伝子座(QTL→Quantitative Trait Loci)を配したQTL地図などがある。ゲノムプロジェクトで行われているのは塩基配列に基づく塩基配列地図作りである。 組み替え頻度を基に遺伝地図を作る場合は、染色体上の位置に関係なく交差が無作為に同じ確率で起こり、遺伝子間距離と組み替え頻度が比例すると仮定しているが、 DNAの塩基配列を基に作成された遺伝地図と比較すると違いがある。これは染色体上には組み替えスポットと呼ばれる交差頻度が高い部位があり、実際には染色体の領域によって組み換え頻度が異なるからである。.

新しい!!: 遺伝学と遺伝子地図 · 続きを見る »

遺伝子発現

遺伝子発現(いでんしはつげん)とは、単に発現ともいい、遺伝子の情報が細胞における構造および機能に変換される過程をいう。具体的には、普通は遺伝情報に基づいてタンパク質が合成されることを指すが、RNAとして機能する遺伝子(ノンコーディングRNA)に関してはRNAの合成が発現ということになる。また発現される量(発現量)のことを発現ということもある。.

新しい!!: 遺伝学と遺伝子発現 · 続きを見る »

遺伝医学

遺伝医学 (いでんいがく) または医科遺伝学 (いかいでんがく) とは、遺伝子疾患の診断や治療を扱う医学の一分野である。は医学に応用されるか否か不明の科学領域であるが、遺伝医学 (genetic medicine) は遺伝学 (genetics) を医療 (medicine) に応用することをその名自体が言及している。この点において二者は異なると言えよう。例えば、遺伝子疾患の原因と継承性はヒト遺伝学と遺伝医学の両方の分野に含まれるが、遺伝子疾患を持つ人の診断、治療、カウンセリングは遺伝医学の一部であり、ヒト遺伝学には含まれないだろう。一方、目の色の遺伝学といったような非医学的な表現型の研究はヒト遺伝学に含まれるが、それは必ずしも遺伝医学とは関連しない (アルビノ等の場合はその限りでない)。"genetic medicine" (直訳: 遺伝医学) は "medical genetics" (直訳: 医科遺伝学) の新しい用語であり、遺伝子治療、個別化医療、急速に発達している新たな医学分野である予防医学などの領域を包括している。 Category:医学 Category:遺伝学 Category:医療.

新しい!!: 遺伝学と遺伝医学 · 続きを見る »

遺伝的組換え

遺伝的組換え(いでんてきくみかえ)は、狭義には、生物自身が遺伝子をコードするDNA鎖を途中で組み変える現象を差す。英語のRecombinationに相当する言葉として用いられる。広義には人工的な遺伝子組み換えも遺伝的組換えと記述される。.

新しい!!: 遺伝学と遺伝的組換え · 続きを見る »

遺伝的連鎖

遺伝的連鎖(いでんてきれんさ、英: genetic linkage)または連関(れんかん)とは、特定の対立遺伝子の組合せ(ハプロタイプ)が、メンデルの独立の法則に従わずに親から子へ一緒に遺伝する遺伝学的現象をいう。.

新しい!!: 遺伝学と遺伝的連鎖 · 続きを見る »

表現型

表現型(ひょうげんがた、ひょうげんけい、)とは、ある生物のもつ遺伝子型が形質として表現されたものである。その生物の形態、構造、行動、生理的性質などを含む。獲得形質は含まない。.

新しい!!: 遺伝学と表現型 · 続きを見る »

誘導

誘導(ゆうどう 英:induction)とは、生物の発生における現象で、ある部位が別の部位に対して、特定の構造への分化を促す働きかけをすることである。シュペーマンによって発見された。.

新しい!!: 遺伝学と誘導 · 続きを見る »

転移RNA

転移RNA(てんい-、transfer RNA)は73〜93塩基の長さの小さなRNAである。リボソームのタンパク質合成部位でmRNA上の塩基配列(コドン)を認識し、対応するアミノ酸を合成中のポリペプチド鎖に転移させるためのアダプター分子である。運搬RNA、トランスファーRNAなどとも呼ぶが、通常tRNAと略記される。.

新しい!!: 遺伝学と転移RNA · 続きを見る »

農業

農業(のうぎょう)とは、土地の力を利用して有用な植物を栽培し、また、有用な動物を飼養する、有機的な生産業のこと広辞苑 第六版「農業」。.

新しい!!: 遺伝学と農業 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

新しい!!: 遺伝学と胚発生 · 続きを見る »

育種学

育種(いくしゅ)とは生物を遺伝的に改良することであり、育種学(いくしゅがく)とは育種の理論・技術に関する研究を行う農学の一分野。.

新しい!!: 遺伝学と育種学 · 続きを見る »

肺炎レンサ球菌

肺炎レンサ球菌(はいえんレンサきゅうきん、)とは、肺炎などの呼吸器の感染症や全身性感染症を引き起こす細菌。日本の臨床医療現場では肺炎球菌と呼ばれることが多い。また、かつては肺炎双球菌 と呼ばれていた。病原菌であるとともに、遺伝学の発展に大きな影響を与えた実験材料としてもよく知られる。.

新しい!!: 遺伝学と肺炎レンサ球菌 · 続きを見る »

自然選択説

自然選択説(しぜんせんたくせつ、)とは、進化を説明するうえでの根幹をなす理論。厳しい自然環境が、生物に無目的に起きる変異(突然変異)を選別し、進化に方向性を与えるという説。1859年にチャールズ・ダーウィンとアルフレッド・ウォレスによってはじめて体系化された。自然淘汰説(しぜんとうたせつ)ともいう。日本では時間の流れで自然と淘汰されていくという意味の「自然淘汰」が一般的であるが、本項では原語に従って「自然選択」で統一する。.

新しい!!: 遺伝学と自然選択説 · 続きを見る »

酵素

核酸塩基代謝に関与するプリンヌクレオシドフォスフォリラーゼの構造(リボン図)研究者は基質特異性を考察するときに酵素構造を抽象化したリボン図を利用する。 酵素(こうそ、enzyme)とは、生体で起こる化学反応に対して触媒として機能する分子である。酵素によって触媒される反応を“酵素的”反応という。このことについて酵素の構造や反応機構を研究する古典的な学問領域が、酵素学 (こうそがく、enzymology)である。.

新しい!!: 遺伝学と酵素 · 続きを見る »

雌雄同体

同体(しゆうどうたい)とは、一般に、雄の生殖器官と雌の生殖器官を一個体に持っているものを言う。そうでないものは雌雄異体(しゆういたい)という。植物の場合にはそれぞれ、雌雄同株(しゆうどうしゅ)、雌雄異株(しゆういしゅ)という。 雌雄同体の場合、雄の生殖器官と雌の生殖器官が別々に存在し、機能する。.

新しい!!: 遺伝学と雌雄同体 · 続きを見る »

雑種

雑種(ざっしゅ)とは交雑から得られる生物で、交雑種、交配種、異種交配種、ミックスとも呼称する。遺伝学上とその他では異なる内容を意味する場合がある。.

新しい!!: 遺伝学と雑種 · 続きを見る »

集団遺伝学

集団遺伝学(しゅうだんいでんがく、)は、生物集団内における遺伝子の構成・頻度の変化に関する遺伝学の一分野。チャールズ・ダーウィンの自然選択説とグレゴール・ヨハン・メンデルの遺伝法則の融合から誕生した分野と呼ぶこともできる。 個体群や生物群集の遺伝子プールを対象とし、進化と遺伝を確率論や統計学などの数学的手法を用いて研究する。ロナルド・フィッシャー、シューアル・ライトや J・B・S・ホールデンらによって考えだされた近代進化論を、ジョン・メイナード=スミス、ウィリアム・ドナルド・ハミルトンらが発展させ、現在に至る。 扱われる進化のプロセスとしては、突然変異(mutation)、遺伝的浮動(genetic drift)、自然選択(natural selection)、遺伝子流動 (gene flow)、遺伝的組み換え(recombination)、集団構造などがある。そのようなプロセスが適応や種分化に及ぼす影響を論じる。 理論的なアプローチの他、ショウジョウバエを用いた実験的なアプローチも行われている。デオキシリボ核酸(DNA)の二重らせん構造が解明されるまでは、主に数理生物学的な理論的アプローチがとられてきたが、分子生物学の発展に従って、木村資生の中立進化説のように、分子遺伝学的手法もとられるようになった。今日的なテーマとしては、自然集団の遺伝的過程において進化がどのように起こるか研究することも可能となった。 集団遺伝学の手法や理論は、交配実験が不可能な人類集団の遺伝学的組成に関する研究や、動植物の育種学などに寄与している。.

新しい!!: 遺伝学と集団遺伝学 · 続きを見る »

逆遺伝学

逆遺伝学(ぎゃくいでんがく、)とは、着目した遺伝子の発現を抑制あるいは亢進することによって起こる表現型の変化を調べ、その遺伝子の機能を解析しようとする研究手法である。従来の遺伝学と全く逆の手順を踏んでいることから、「逆」遺伝学と呼ばれる。ただし、ウイルス学の分野においては、合成したウイルス核酸を使って、完全なウイルス粒子を人工的に作り出すことも と呼び、この場合の方法論は、他の生物のものとは異なる。 逆遺伝学は、ゲノム計画により塩基配列が網羅的に解析されたことから可能となった。一般に、研究者が破壊を試みる遺伝子は、他の生物で機能が明らかにされているものや、既知の因子と相同性の高いものが多い。 現在では、モデル生物を中心に、様々な変異体を逆遺伝学的に作製されている。.

新しい!!: 遺伝学と逆遺伝学 · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: 遺伝学と染色体 · 続きを見る »

染色体説

染色体説(せんしょくたいせつ、chromosome theory (of inheritance))とは、遺伝の様式を染色体の性質や挙動によって説明する学説。この学説は遺伝子が染色体上にあることを示しており、現在生物学では当然の前提とされる。メンデルの法則の実証、古典遺伝学の発展、分子遺伝学の基礎形成に深く関連したことで、生物学において重要である。ただしミトコンドリアDNAなど細胞核外の遺伝因子による細胞質遺伝はこれに従わない。 染色体説はバッタの染色体を用いた細胞学的観察からウォルター・サットン(Walter Sutton)によって1902年に提唱され、トーマス・ハント・モーガン(Thomas Hunt Morgan)らのショウジョウバエを用いた遺伝学的研究により、1920年代ごろ確立された。もうひとりの提唱者テオドール・ボヴェリ(Theodor Boveri)の名前と併せて「サットン-ボヴェリの染色体説」ともいう。発癌のメカニズムについてもボヴェリによる染色体説があり、これと区別する必要がある場合は「遺伝の染色体説」と呼ばれる。.

新しい!!: 遺伝学と染色体説 · 続きを見る »

栄養要求株

栄養要求株(えいようようきゅうかぶ; auxotroph)とは、微生物における用語で、普通は栄養要求の異なる突然変異株のことをさす。 一般に菌類や細菌類等の微生物を培養する際、その微生物が成長するために必要な栄養分を含んだ培地を準備する。微生物は、その培地から栄養を吸収して成長する。培地に余計な栄養分があってもたいていはかまわないが、どうしても必要な成分が足りなければ、成長できなくなる。そこで、培地から余分な栄養を取り除いて行けば、最低限必要な栄養の種類というものが見つかる。これを栄養要求と言う。これに基づいて構成された培地組成が最少培地である。 栄養要求は種によって異なる。多くの種類を必要とするものもあれば、ごく少数の成分だけで十分なものもある。例えばアカパンカビの場合、炭素源として糖類、窒素源として硝酸塩とビオチン、それに若干の無機塩類だけで十分に成長する。これは栄養要求としては最低限に近い例である。 ところが、例えばアカパンカビであっても、アミノ酸が培地に含まれなければ生育しない株が見つかることがある。そのようなものは通常の株からの突然変異によっても生じる。このような、栄養要求に変化を生じたものを栄養要求株といい、特に要求する栄養素の名を取って、たとえばアミノ酸要求株などという。これに対して、本来の栄養要求を持つものを野性株、あるいは原栄養株 (prototroph) という。 このような変異は、突然変異による酵素の欠失等から起こるものと考えられている。先の例でいえば、アカパンカビは培地にアミノ酸が含まれなくても生育可能であるが、これは上記の成分からアミノ酸を合成する能力があるということになり、そのような化学反応を進められる酵素群を持っているということになる。もし、その経路に関わる酵素のどれかが作れないような変異株があれば、その株はその栄養素を外部から取り込まなければならなくなるのである。 また、この場合、その栄養素の合成経路が分かれば、その経路の中間産物を適宜与えることで、どの段階で齟齬(そご:食い違いのこと)が生じているかを確かめる事が可能である。一遺伝子一酵素説は,このような過程を経て出されたものである。 えいようようきゆうかふ えいようようきゆうかふ.

新しい!!: 遺伝学と栄養要求株 · 続きを見る »

減数分裂

減数分裂 (げんすうぶんれつ、Meiose、meiosis) は真核生物の細胞分裂の様式の一つ。動物では配偶子(コケ・シダ類などでは胞子)を形成する際に行われ、生じた娘細胞では染色体数が分裂前の細胞の半分になる。一方、細胞が通常増殖する際に取る形式は有糸分裂あるいは体細胞分裂と呼ばれる。様式において体細胞分裂と異なる点は、染色体の複製の後に相同染色体が対合し、中間でDNAを複製することなしに二回連続して細胞分裂(減数第一分裂、第二分裂)が起こることである。英語で減数分裂を意味する はギリシャ語で「減少」の意。 減数分裂は19世紀後半に予見されていた現象である。受精では卵子と精子から一組ずつ染色体が供給され、二倍体細胞は母系由来と父系由来の染色体を一セット持っていることが明らかにされると、受精に先立ってあらかじめ染色体の減数が行われる必要があることが考えられた。実際の観察は、ウォルター・S・サットンによってバッタの生殖細胞で報告された。ここから遺伝子が染色体上にあるとする染色体説が提唱されている。.

新しい!!: 遺伝学と減数分裂 · 続きを見る »

日本遺伝学会

日本遺伝学会(にほんいでんがっかい、英文名 THE GENETICS SOCIETY OF JAPAN、略称GSJ)は遺伝に関する研究を奨め、その知識の普及を図ることを目的として、1920年に安藤広太郎や田中義麿らによって設立された学会。男女共同参画学協会連絡会に加盟している。2013年時点の会員数は923名。 事務所を静岡県三島市谷田1111国立遺伝学研究所内に置いている。.

新しい!!: 遺伝学と日本遺伝学会 · 続きを見る »

数理生物学

数理理論生物学(すうりりろんせいぶつがく、mathematical and theoretical biology)とは、生物学、バイオテクノロジーおよび医学にまたがる学際的な研究分野の一つである。 数理生物学(すうりせいぶつがく、mathematical biology)、または生物数学(せいぶつすうがく、biomathematics)と呼ばれることもあり、その場合は、数学的側面を強調している。また、理論生物学(理論生物学、theoretical biology)と呼ばれることもあり、その場合には、生物学的側面を強調している。 少なくとも4つの主要な亜領域、生物数学モデリング(biological mathematical modeling)、複雑システムバイオロジー(relational biology/complex systems biology(CBS))、バイオインフォマティクス(bioinformatics)、および計算機数学モデリング(computational biomodeling/biocomputing)を含む。.

新しい!!: 遺伝学と数理生物学 · 続きを見る »

ここにリダイレクトされます:

細胞遺伝学遺伝子学遺伝学者

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »