ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

マルティン・クヌーセン

索引 マルティン・クヌーセン

マルティン・ハンス・クリスチャン・クヌーセン(Martin Hans Christian Knudsen、1871年2月15日 - 1949年5月27日)は、デンマークの物理学者・海洋学者。 海水中の「塩分」を定義するなど海洋化学の分野で多くの貢献を行い、「近代海洋学の開祖」と呼ばれる。また物理学者としても希薄な気体に関する研究を行い、流体力学で用いられる無次元量のひとつであるクヌーセン数に名前を残している。.

45 関係: 塩分濃度塩素実験式密度平均自由行程ラジオメーター効果パーミルパスカルデンマークアレキザンダー・アガシークヌーセン数コペンハーゲン大学国際連合教育科学文化機関真空計生物無次元量物理学物理学者酸素連続体比重気体気体分子運動論流体流体力学海水海水温海洋学海洋化学海流拡散1871年1890年1899年1901年1912年1927年1928年1930年1935年1936年1941年1949年2月15日5月27日

塩分濃度

塩分濃度(えんぶんのうど、salinity)は、水に溶けている塩の量である。 ここで言う「塩分」とは、塩化ナトリウム だけでなく、硫酸マグネシウム や硫酸カルシウム そして炭酸水素塩などの塩類を含める場合が多い。 オーストラリアや北アメリカでは、この語が往々にして土壌に含まれる塩分を示唆し得る。.

新しい!!: マルティン・クヌーセンと塩分濃度 · 続きを見る »

塩素

Chlore lewis 塩素(えんそ、chlorine)は原子番号17の元素。元素記号は Cl。原子量は 35.45。ハロゲン元素の一つ。 一般に「塩素」という場合は、塩素の単体である塩素分子(Cl2、二塩素、塩素ガス)を示すことが多い。ここでも合わせて述べる。塩素分子は常温常圧では特有の臭いを持つ黄緑色の気体で、腐食性と強い毒を持つ。.

新しい!!: マルティン・クヌーセンと塩素 · 続きを見る »

実験式

実験式(じっけんしき、empirical formula)あるいは経験式は、化学および物理学で用いられる概念で、分野により意味の相違がある。.

新しい!!: マルティン・クヌーセンと実験式 · 続きを見る »

密度

密度(みつど)は、広義には、対象とする何かの混み合いの程度を示す。ただし、科学において、単に密度といえば、単位体積あたりの質量である。より厳密には、ある量(物理量など)が、空間(3 次元)あるいは面上(2 次元)、線上(1 次元)に分布していたとして、これらの空間、面、線の微小部分上に存在する当該量と、それぞれ対応する体積、面積、長さに対する比のことを(それぞれ、体積密度、面密度、線密度と言う)言う。微小部分は通常、単位体積、単位面積、単位長さ当たりに相当する場合が多い。勿論、4 次元以上の仮想的な場合でも、この関係は成立し、密度を定義することができる。 その他の密度としては、状態密度、電荷密度、磁束密度、電流密度、数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度、個体群密度、確率密度、などの値が様々なところで用いられている。密度効果という語もある。.

新しい!!: マルティン・クヌーセンと密度 · 続きを見る »

平均自由行程

平均自由行程(へいきんじゆうこうてい、mean free path)または平均自由行路(へいきんじゆうこうろ)とは、物理学や化学のうち、気体分子運動論において、分子や電子などの粒子が、散乱源(同じ粒子の場合もあれば、異なる粒子の場合もある)による散乱(衝突)で妨害されること無く進むことのできる距離(これを自由行程という)の平均値のことを言う。粒子が平均自由行程だけ運動すると、平均として必ず他の粒子と1回衝突する。 平均自由行程は、その系の特性や粒子により異なってくる。そのため、一般的な場合、ランダムな速度を持った粒子が、散乱源に衝突するまでの距離として、次の式で表記される。 ただし、\ellは平均自由行程(単位m)で、n は散乱源の数密度(m-3)、σは散乱時の有効断面積(m2)である。粒子の速度がマクスウェル分布に従うと仮定される場合、平均自由行程は次式で表せる。.

新しい!!: マルティン・クヌーセンと平均自由行程 · 続きを見る »

ラジオメーター効果

ラジオメーター効果(ラジオメーターこうか)は暖められた面と周囲の気体との相互作用で生じる現象である。よく取り上げられるのはウィリアム・クルックスの羽根車の実験(陰極線のなかに置かれた羽根車があたかも電子の衝突の力によって回転するように見える実験)の力の主因であるという話題である。 ラジオメーター効果を見ることができるのは、羽根の片面を白く、片面を黒く塗った羽根車に赤外線を含む光をあてると回転する実験器具(クルックスのラジオメータとよばれる)で、光の吸収の大きい黒く塗った面がより暖められ、黒い面に接触した気体分子により大きな運動量を与えるために、その反作用の差によって羽根車は回転する力を得る。衝突の回数が増すので気体分子の数が多いほうが回転する速さが増す。.

新しい!!: マルティン・クヌーセンとラジオメーター効果 · 続きを見る »

パーミル

パーミルあるいはプロミルとは、1000分の1を1とする単位。記号は‰ (Unicode U+2030、文字参照は &permil)。英語では あるいは 、イタリア語では あるいは (ペル ミッレ)と表記され、日本語では千分率という。プロミルはドイツ語の を片仮名表記したもの。ラテン語で「」は「~ごとに」を意味し、「」などの語源でもある「」は「千」を意味する。 である。したがって、例えば、 となる。.

新しい!!: マルティン・クヌーセンとパーミル · 続きを見る »

パスカル

パスカル (pascal、記号: Pa) は、圧力・応力の単位で、国際単位系 (SI) における、固有の名称を持つSI組立単位である。「ニュートン毎平方メートル」とも呼ばれる。 1パスカルは、1平方メートル (m2) の面積につき1ニュートン (N) の力が作用する圧力または応力と定義されている。その名前は、圧力に関する「パスカルの原理」に名を残すブレーズ・パスカルに因む。.

新しい!!: マルティン・クヌーセンとパスカル · 続きを見る »

デンマーク

デンマーク(Danmark, )は、北ヨーロッパのバルト海と北海に挟まれたユトランド半島とその周辺の多くの島々からなる立憲君主制国家。北欧諸国の1つであり、北では海を挟んでスカンディナヴィア諸国、南では陸上でドイツと国境を接する。首都のコペンハーゲンはシェラン島に位置している。大陸部分を領有しながら首都が島嶼に存在する数少ない国家の一つである(他には赤道ギニア、イギリスのみ)。 自治権を有するグリーンランドとフェロー諸島と共にデンマーク王国を構成している。 ノルディックモデルの高福祉高負担国家であり、市民の生活満足度は高く、2014年の国連世界幸福度報告では第1位であった。.

新しい!!: マルティン・クヌーセンとデンマーク · 続きを見る »

アレキザンダー・アガシー

アレキザンダー・アガシー(Alexander Emanuel Agassiz、1835年12月17日 - 1910年3月27日)はルイ・アガシーの息子で、アメリカ合衆国のエンジニア、海洋学者である。 スイスのヌーシャテルで生まれた。1849年にルイ・アガシーとともにアメリカ合衆国に移った。1855年にハーバード大学を卒業し、1852年合衆国の沿岸測量部の助手に雇われた。 海洋魚類学を専門としたが、知り合いのE.J.ハルバートが銅の有望な鉱山を発見したことから、鉱山に関する仕事に専念することになった。友人と鉱山の資本を購入し、これは後の Calumet になった。1866年までは、父親がハーバード大学に設立した自然史博物館のアシスタントとして働いたが、その後は、義理の兄弟のクウィンシー・アダムス・ショーと銅山の経営に時間をさき、1871年に Calumet と Hecla Mining Company の社長となった。 銅鉱山の資産からハーバード大学の比較動物学博物館などにの500,000ドルの寄付をした。1875年にペルー、チリの銅山開発のための調査でチチカカ湖を調査し、多くの学術的なサンプルを、比較動物学博物館のために収集した。1872年にチャレンジャー号の海洋調査によって集められた資料の調査と分類を手伝った。全米科学アカデミーの会長を務めた。.

新しい!!: マルティン・クヌーセンとアレキザンダー・アガシー · 続きを見る »

クヌーセン数

ヌーセン数(Knudsen number、Kn )は流体力学で用いられる無次元量のひとつであり、流れ場が連続体として扱えるか否かを決定する。1より十分小さければ(たとえばKn )連続体とみなしてよい。名前はデンマークの物理学者マルティン・クヌーセンに因む。 クヌーセン数は次の式で定義される: ここで.

新しい!!: マルティン・クヌーセンとクヌーセン数 · 続きを見る »

コペンハーゲン大学

ペンハーゲン大学(Universitas Hafniensis、Københavns Universitet)は、デンマークのコペンハーゲンにある大学。同国で一番歴史があり、また第二大規模の大学である。学生数は37,000人あまり、女性が59%を占め、教職員は7000人を越える。キャンパスはコペンハーゲン周辺に複数存在し、コペンハーゲンの中央部に最も古いキャンパスがある。大部分の授業はデンマーク語で教えられているが、英語やドイツ語での授業も増えつつある。.

新しい!!: マルティン・クヌーセンとコペンハーゲン大学 · 続きを見る »

国際連合教育科学文化機関

フランス、パリのユネスコ本部庁舎と平和の庭園(日本庭園) 日本ユネスコ国内委員会が入居する東京都の霞が関コモンゲート東館(右側) 国際連合教育科学文化機関(こくさいれんごうきょういくかがくぶんかきかん、Organisation des Nations unies pour l'éducation, la science et la culture、United Nations Educational, Scientific and Cultural Organization, UNESCO ユネスコ)は、国際連合の経済社会理事会の下におかれた、教育、科学、文化の発展と推進を目的とした専門機関である。 1945年11月に44カ国の代表が集い、イギリス・ロンドンで開催された国連会議 "United Nations Conference for the establishment of an educational and cultural organization" (ECO/CONF)において11月16日に採択された 「国際連合教育科学文化機関憲章」(ユネスコ憲章)に基づいて1946年11月4日に設立された。 分担金(2016年現在)の最大の拠出国はアメリカ合衆国(22%)、2位は日本(9%)である(米国は拠出金支払いを全額停止しているため、実質的に最大の拠出国は日本であるなおアメリカは2018年12月31日付でのユネスコ脱退を表明している。)。.

新しい!!: マルティン・クヌーセンと国際連合教育科学文化機関 · 続きを見る »

真空計

真空計(しんくうけい、vacuum gauge)は、真空のゲージ圧、つまり大気圧以下の圧力(負圧)を測るための圧力計の一種である。 測定方式によって測定できる圧力の範囲がある。使用できる範囲も決められている場合があり、それらを把握して使用する必要がある。1台で大気圧から高真空(0.1Pa未満)を測定できる真空計は存在しない。そのため最近では1個の端子に2種類の真空計を入れて、大気圧から高真空を測定できるようにした複合真空計が市販されている。多くは大気圧から中真空(100 - 0.1Pa)程度まで測定できる真空計とB-Aゲージとの組み合わせとなっている。.

新しい!!: マルティン・クヌーセンと真空計 · 続きを見る »

生物

生物(せいぶつ)または生き物(いきもの)とは、動物・菌類・植物・古細菌・真正細菌などを総称した呼び方である。 地球上の全ての生物の共通の祖先があり(原始生命体・共通祖先)、その子孫達が増殖し複製するにつれ遺伝子に様々な変異が生じることで進化がおきたとされている。結果、バクテリアからヒトにいたる生物多様性が生まれ、お互いの存在(他者)や地球環境に依存しながら、相互に複雑な関係で結ばれる生物圏を形成するにいたっている。そのことをガイアとも呼ぶものもある。 これまで記録された数だけでも百数十万種に上ると言われており、そのうち動物は100万種以上、植物(菌類や藻類も含む)は50万種ほどである。 生物(なまもの)と読むと、加熱調理などをしていない食品のことを指す。具体的な例を挙げれば“刺身”などが代表的な例としてよく用いられる。.

新しい!!: マルティン・クヌーセンと生物 · 続きを見る »

無次元量

無次元量(むじげんりょう、dimensionless quantity)とは、全ての次元指数がゼロの量である。慣習により無次元量と呼ばれるが無次元量は次元を有しており、指数法則により無次元量の次元は1である。 無次元数(むじげんすう、)、無名数(むめいすう、)とも呼ばれる。 無次元量の数値は単位の選択に依らないので、一般的な現象を特徴付けるパラメータとして数学、物理学、工学、経済など多くの分野で広く用いられる。このようなパラメータは現実には物質ごとに決まるなど必ずしも操作可能な量ではないが、理論や数値実験においては操作的な変数として取り扱うこともある。.

新しい!!: マルティン・クヌーセンと無次元量 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: マルティン・クヌーセンと物理学 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: マルティン・クヌーセンと物理学者 · 続きを見る »

酸素

酸素(さんそ、oxygen)は原子番号8、原子量16.00の非金属元素である。元素記号は O。周期表では第16族元素(カルコゲン)および第2周期元素に属し、電気陰性度が大きいため反応性に富み、他のほとんどの元素と化合物(特に酸化物)を作る。標準状態では2個の酸素原子が二重結合した無味無臭無色透明の二原子分子である酸素分子 O として存在する。宇宙では水素、ヘリウムに次いで3番目に多くの質量を占めEmsley (2001).

新しい!!: マルティン・クヌーセンと酸素 · 続きを見る »

連続体

連続体(れんぞくたい、continuum ).

新しい!!: マルティン・クヌーセンと連続体 · 続きを見る »

比重

比重(ひじゅう)とは、ある物質の密度(単位体積当たり質量)と、基準となる標準物質の密度との比である。通常、固体及び液体については水、気体については、同温度、同圧力での空気を基準とする。.

新しい!!: マルティン・クヌーセンと比重 · 続きを見る »

気体

気体(きたい、gas)とは、物質の状態のひとつであり岩波書店『広辞苑』 第6版 「気体」、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のこと。 「ガス体」とも。.

新しい!!: マルティン・クヌーセンと気体 · 続きを見る »

気体分子運動論

気体分子運動論(きたいぶんしうんどうろん、)は、原子論の立場から気体を構成する分子の運動を論じて、その気体の巨視的性質や行動を探求する理論である。気体運動論や分子運動論とも呼ばれる。最初は単一速度の分子群のモデルを使ってボイルの法則の説明をしたりしていたが、次第に一般化され、現今では速度分布関数を用いて広く気体の性質を論ずる理論一般をこの名前で呼ぶようになっている。.

新しい!!: マルティン・クヌーセンと気体分子運動論 · 続きを見る »

流体

流体(りゅうたい、fluid)とは静止状態においてせん断応力が発生しない連続体の総称である。大雑把に言えば固体でない連続体のことであり、物質の形態としては液体と気体およびプラズマが流体にあたる。.

新しい!!: マルティン・クヌーセンと流体 · 続きを見る »

流体力学

流体力学(りゅうたいりきがく、fluid dynamics / fluid mechanics)とは、流体の静止状態や運動状態での性質、また流体中での物体の運動を研究する、力学の一分野。.

新しい!!: マルティン・クヌーセンと流体力学 · 続きを見る »

海水

海面上から見た海水(シンガポール) スクーバダイビング中に見る海水の深い青(タイのシミランにて) 海水(かいすい)とは、海の水のこと。水を主成分とし、3.5 %程度の塩(えん)、微量金属から構成される。 地球上の海水の量は約13.7億 km3で、地球上の水分の97 %を占める。密度は1.02 - 1.035 g/cm3。.

新しい!!: マルティン・クヌーセンと海水 · 続きを見る »

海水温

海水温(かいすいおん)とは、ある一定の深度における海水の温度のこと。湖沼や大規模な河川も対象にすることがある。単に海水温というときは、海面から海面下数十cm~十数mの海面水温を指すことが多い。 海水温が水の蒸発量に非常に関わりが深いことから、気象学の観測対象とされ、気候学においても重要視される。漁業の分野においても、魚群の移動に関連しているため必要なデータであるとされる。また、特に水棲生物の分布や生態にも大きく関連しており、生物学においても重要とされる。 海水は、塩分を含有している事から摂氏0度を下回る事があり、また海底火山の影響で摂氏100度を超える場合もある。.

新しい!!: マルティン・クヌーセンと海水温 · 続きを見る »

海洋学

海洋学(かいようがく、英語:oceanography)は自然科学の一分野であり、海洋を研究する学問である。地球を対象とした地球科学の一分野として、海棲生物やプレートテクトニクス、海流などの海洋の諸現象・変動を様々な自然科学的側面からとらえる。海洋のどの性質を主に解析するかによって、海洋物理学・海洋化学・生物海洋学(海洋生物学)・海洋地質学などの主要分野に分けられる。.

新しい!!: マルティン・クヌーセンと海洋学 · 続きを見る »

海洋化学

海洋化学(かいようかがく、英語:chemical oceanography)とは、海洋に存在するすべての物質・生物の化学に関する学問である。 海洋に存在する種々の物質の存在量や存在形態を明らかにすることによって、海水の循環や生物過程との関連を解明することを目的に行われる。また、下層大気のエアロゾルなどの微小粒子は海水へ化学物質を供給する働きがあることから、これに関する研究も広義の海洋化学に含まれることがある。新しい医薬品などに利用するために海産生物から有用物質を抽出する研究も海洋化学の一分野と考えられるが、水産天然物化学として区別される場合もある。 海洋化学の観測は多くの場合、研究船による航海中の採水により行われる。採水器をCTDを備えたフレームに取り付け、これを海水中に降下させて任意の深度で採水を行う。サンプルは船上で適切な処理を加えたのち、船上で即座に分析されるか陸上の研究室に持ち帰って分析される。測定項目のうち、塩分、溶存酸素濃度、栄養塩(硝酸塩、亜硝酸塩、アンモニウム塩、リン酸塩、ケイ酸塩)濃度に関しては基礎的な項目として継続的に計測され、乗船研究者の共有のデータとなる場合が多い。採水器は日本の研究船の場合はニスキン型が主に使われる。欧米ではGo-Flo(ゴーフロー)型が用いられる場合も多い。近年の海洋化学では微量金属や溶存有機物質の測定に非常に高い精度が要求されるため、1980年代に確立したクリーン技術を用いて採水が行われることが多い。また、同位体分析など大量のサンプルを必要とする場面では100L以上の大量採水器や係留型現場大量濾過器が用いられる場合がある。.

新しい!!: マルティン・クヌーセンと海洋化学 · 続きを見る »

海流

世界の海流図(暖流は赤、寒流は緑)、1943年アメリカ陸軍による 世界の海流図(暖流は赤、寒流は黒)、2004年 海流(かいりゅう)は、地球規模でおきる海水の水平方向の流れの総称。似た現象に潮汐による潮汐流(潮流とも)があるが、潮汐流は時間の経過に伴って流れが変化し、短い周期性を持つ。海流はほぼ一定方向に長時間流れる。また海の中は鉛直方向にも恒常的な流れが存在する海域もあるが、その流速はひじょうに小さいので、通常は海流とは呼ばない。海流はその性質により、暖流と寒流の2種類に大別される。 海流が発生する原因は諸説あるが、大きく分けて表層循環と深層循環がある。表層循環と深層循環の意味は、メカニズム的に論じるか現象的に論じるかで違ってくる。メカニズム的に言えば、海面での風(卓越風)によって起こされる摩擦運動がもとになってできる「風成循環」が表層循環、温度あるいは塩分の不均一による密度の不均一で起こる「熱塩循環」が深層循環である。この二つを総称して、海洋循環と呼ぶ。「海流」が海水の流れを重視した呼び方であるのに対して、「海洋循環」は特に地球規模での海水の巡り、循環を重視した呼び方であり、これらを使い分けることが多い。 なお日本語では、潮流と言った場合はふつう潮汐流のことだが、黒潮、親潮、潮境などのように「潮」を潮汐の意味でなく海流の意味で使うことも多く、また、海水浴場における遊泳上の注意など、潮汐流のことを指して「海流」と言う場合もあり、まれに逆もあるので注意。 黒潮とメキシコ湾流を二大海流といい、これらは流量が多く、流速も速い。.

新しい!!: マルティン・クヌーセンと海流 · 続きを見る »

拡散

拡散(かくさん、独、英、仏: Diffusion) とは、粒子、熱、運動量などが自発的に散らばり広がる物理現象である。この現象は着色した水を無色の水に滴下したとき、煙が空気中に広がるときなど、日常よく見られる。これらは、化学反応や外力ではなく、流体の乱雑な運動の結果として起こるものである。.

新しい!!: マルティン・クヌーセンと拡散 · 続きを見る »

1871年

記載なし。

新しい!!: マルティン・クヌーセンと1871年 · 続きを見る »

1890年

記載なし。

新しい!!: マルティン・クヌーセンと1890年 · 続きを見る »

1899年

記載なし。

新しい!!: マルティン・クヌーセンと1899年 · 続きを見る »

1901年

20世紀最初の年である。.

新しい!!: マルティン・クヌーセンと1901年 · 続きを見る »

1912年

記載なし。

新しい!!: マルティン・クヌーセンと1912年 · 続きを見る »

1927年

記載なし。

新しい!!: マルティン・クヌーセンと1927年 · 続きを見る »

1928年

記載なし。

新しい!!: マルティン・クヌーセンと1928年 · 続きを見る »

1930年

記載なし。

新しい!!: マルティン・クヌーセンと1930年 · 続きを見る »

1935年

記載なし。

新しい!!: マルティン・クヌーセンと1935年 · 続きを見る »

1936年

記載なし。

新しい!!: マルティン・クヌーセンと1936年 · 続きを見る »

1941年

記載なし。

新しい!!: マルティン・クヌーセンと1941年 · 続きを見る »

1949年

記載なし。

新しい!!: マルティン・クヌーセンと1949年 · 続きを見る »

2月15日

2月15日(にがつじゅうごにち)は、グレゴリオ暦で年始から46日目にあたり、年末まであと319日(閏年では320日)ある。.

新しい!!: マルティン・クヌーセンと2月15日 · 続きを見る »

5月27日

5月27日(ごがつにじゅうななにち、ごがつにじゅうしちにち)は、グレゴリオ暦で年始から147日目(閏年では148日目)にあたり、年末まではあと218日ある。誕生花はシロツメクサ。.

新しい!!: マルティン・クヌーセンと5月27日 · 続きを見る »

ここにリダイレクトされます:

マルチン・クヌーセンクヌーセン

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »