ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

単項イデアル環

索引 単項イデアル環

数学において、単項右(左)イデアル環、主右(左)イデアル環 (principal right (left) ideal ring) は環 R であってすべての右(左)イデアルがある x ∈ R に対して xR (Rx) の形であるようなものである。(1つの元で生成されたこの形の右と左のイデアルは単項イデアルである。)これが左と右のイデアル両方に対して満たされるとき、例えば R が可換環のような場合、R を単項イデアル環、主イデアル環 (principal ideal ring) あるいはシンプルに 単項環、主環 (principal ring) と呼ぶことができる。 R の有限生成右イデアルだけが単項であるならば、R は右ベズー環 (right Bézout ring) と呼ばれる。左ベズー環は同様に定義される。これらの条件は域 (domain) においてベズー域として研究される。 整域でもあるような可換単項イデアル環は単項イデアル整域 (PID) と呼ばれる。この記事において焦点は域とは限らない単項イデアル環のより一般的な概念に当てる。.

24 関係: 半単純環単項イデアル整域可換環同型定理対称差中国の剰余定理主イデアルネーター環デデキント環フォン・ノイマン正則環ベズー整域アルティン環シュプリンガー・サイエンス・アンド・ビジネス・メディア冪等元冪集合積閉集合環の直積自己同型離散付値環有限生成加群斜体 (数学)数学整域整数の合同

半単純環

数学、特に代数学において、環 A が A-加群として半単純加群、すなわち、非自明な部分加群をもたない A-加群の直和であるとき、A を半単純環という。これは、同型の違いを除いて、(可換とは限らない)体上の全行列環の有限個の直積である。 この概念は数学の多くの分野において現れる。例えば、線型代数学、数論、、リー群論、リー環論が挙げられる。これは例えば、の証明に役立つ。 半単純多元環の理論はシューアの補題とアルティン・ウェダーバーンの定理を基盤としている。.

新しい!!: 単項イデアル環と半単純環 · 続きを見る »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: 単項イデアル環と単項イデアル整域 · 続きを見る »

可換環

数学、特に抽象代数学の一分野である環論における可換環(かかんかん、commutative ring)は、その乗法が可換であるような環をいう。可換環の研究は可換環論あるいは可換代数学と呼ばれる。 いくつか特定の種類の可換環は以下のようなクラスの包含関係にある。.

新しい!!: 単項イデアル環と可換環 · 続きを見る »

同型定理

数学、特に抽象代数学において、同型定理 (isomorphism theorems) は商、準同型、部分対象の間の関係を描く3つの定理である。定理のバージョンは群、環、ベクトル空間、加群、リー環、そして様々な他の代数的構造に対して存在する。普遍代数学において、同型定理は代数と合同の文脈に一般化することができる。.

新しい!!: 単項イデアル環と同型定理 · 続きを見る »

対称差

数学において、2 つの集合 と との対称差(たいしょうさ、symmetric difference)とは、“ に属し、 に属さないもの” と “ に属し、 に属さないもの” とを全部集めて得られる集合である。一般に、集合 と との対称差を、記号 などで表す。例えば、 と との対称差は に等しい: 。 任意の集合に対して、その集合の冪集合は、対称差 を算法としてアーベル群となる。空集合 はその群の単位元であり、その群の任意の元はその元自身の逆元である。また、任意の集合に対して、その集合の冪集合は、対称差 を加法とし共通部分 を乗法とするとき、となる。.

新しい!!: 単項イデアル環と対称差 · 続きを見る »

中国の剰余定理

loc.

新しい!!: 単項イデアル環と中国の剰余定理 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: 単項イデアル環と主イデアル · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: 単項イデアル環とネーター環 · 続きを見る »

デデキント環

デデキント環(デデキントかん、Dedekind ring)、あるいはデデキント整域(デデキントせいいき、Dedekind domain)とは、任意の0でない真のイデアルが、有限個の素イデアルの積にかけるような整域のことである。そのような分解は一意であることが知られており、イデアル論の基礎定理と呼ばれる。.

新しい!!: 単項イデアル環とデデキント環 · 続きを見る »

フォン・ノイマン正則環

数学において、フォン・ノイマン正則環(von Neumann regular ring)とは、環 R であって、任意の a ∈ R に対してある x ∈ R が存在し、a.

新しい!!: 単項イデアル環とフォン・ノイマン正則環 · 続きを見る »

ベズー整域

数学において、ベズー整域 (Bézout domain) は2つの主イデアルの和が再び主イデアルになるような整域である。このことが意味するのは、元の各組に対してベズーの等式 (Bézout identity) が成り立ち、すべての有限生成イデアルは単項であるということである。任意の単項イデアル整域 (PID) はベズー整域だが、ベズー整域はネーター環とは限らないので、有限生成でないイデアルをもつかもしれない(これは明らかに PID でない)。そうであれば、一意分解整域 (UFD) ではないが、なおGCD整域である。ベズー整域の理論は PID の性質の多くを、ネーター性を要求せずに、保つ。ベズー整域はフランス人数学者 Étienne Bézout にちなんで名づけられている。.

新しい!!: 単項イデアル環とベズー整域 · 続きを見る »

アルティン環

アルティン環(アルティンかん、Artinian ring、アルチン環とも)とは、降鎖条件から定まるある種の有限性をもった環のこと。名称はエミール・アルティンにちなむ。.

新しい!!: 単項イデアル環とアルティン環 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 単項イデアル環とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

冪等元

抽象代数学において、二項演算 ∗ をもった集合の元 は であるときに冪等元(idempotent element)あるいは単に冪等(idempotent)と呼ばれる。これはその特定の元における二項演算の冪等性を反映している。 環論において(積に関する)冪等元は特に重要である。一般の環に対して、冪等元は加群の分解や環のホモロジー的性質と深く関わっている。この概念は によって導入された。 本記事は環論的な意味の冪等元を扱う。.

新しい!!: 単項イデアル環と冪等元 · 続きを見る »

冪集合

冪集合(べきしゅうごう、power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合と呼ぶべき対象を公理的に構成的に与える公理的集合論では、集合から作った冪集合が集合と呼ばれるべきもののうちにあることを公理の一つ(冪集合公理)としてしばしば提示する。.

新しい!!: 単項イデアル環と冪集合 · 続きを見る »

積閉集合

抽象代数学における積閉集合(せきへいしゅうごう、multiplicatively closed set)あるいは乗法的集合(じょうほうてきしゅうごう、multiplicative set)は、(有限)積に関して閉じている集合を言う。 積閉集合は特に可換環論において重要である。そこでは積閉集合が環の局所化の構成に用いられる。.

新しい!!: 単項イデアル環と積閉集合 · 続きを見る »

環の直積

数学において、いくつかの環を1つの大きい直積環、積環 (product ring) に合併することができる。これは次のようにされる: I がある添え字集合で Ri が I のすべての i に対して環であれば、カルテジアン積 は演算を coordinate-wise に定義することによって環にできる。 得られる環は環 Ri の直積 (direct product) と呼ばれる。有限個の環の直積は環の直和 (direct sum) と一致する。.

新しい!!: 単項イデアル環と環の直積 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: 単項イデアル環と自己同型 · 続きを見る »

離散付値環

抽象代数学において、離散付値環(りさんふちかん、discrete valuation ring、略して DVR)とは、ちょうど1つの0でない極大イデアルをもつ単項イデアル整域(PID)である。 このことは DVR は次の同値な条件のうち1つを満たす整域 R であることを意味する。.

新しい!!: 単項イデアル環と離散付値環 · 続きを見る »

有限生成加群

数学において、有限生成加群(ゆうげんせいせいかぐん、finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる。 関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。 たとえば体上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。.

新しい!!: 単項イデアル環と有限生成加群 · 続きを見る »

斜体 (数学)

斜体(しゃたい、skew field; 歪体, Schiefkörper, corps, corps gauche)は加減乗除が可能な代数系である。除法の可能な環であるという意味で可除環(かじょかん、, )ともいう。係数環を持ち、多元環の構造を持つことを強調する場合は、特に多元体(たげんたい、,; 可除多元環)と呼称することも多いいかなる斜体も、その中心を係数体として多元環と見ることができるので、この区別は文脈上で立場を明確にする必要のある場合を除いてはさほど重要ではない。非可換な積を持つ体を非可換体(ひかかんたい、, )という。.

新しい!!: 単項イデアル環と斜体 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 単項イデアル環と数学 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 単項イデアル環と整域 · 続きを見る »

整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

新しい!!: 単項イデアル環と整数の合同 · 続きを見る »

ここにリダイレクトされます:

Zariski–Samuel の定理ベズー環ザリスキ・サミュエルの定理ザリスキー・サミュエルの定理主イデアル環主右イデアル環主左イデアル環主環単項右イデアル環単項左イデアル環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »