ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

単項イデアル整域

索引 単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

34 関係: 単項イデアル環可換体多項式環巡回加群主イデアル主イデアルに関する昇鎖条件一意分解環代数学ノルム (体論)ネーター環ユークリッド環デデキント環ベズーの等式ベズー整域アイゼンシュタイン整数イデアル (環論)ガウス整数シュプリンガー・サイエンス・アンド・ビジネス・メディア冪級数素イデアル素元環の局所化環上の加群直既約加群自由加群零因子GCD整域極大イデアル最大公約数昇鎖条件既約元整域整閉整域整数環

単項イデアル環

数学において、単項右(左)イデアル環、主右(左)イデアル環 (principal right (left) ideal ring) は環 R であってすべての右(左)イデアルがある x ∈ R に対して xR (Rx) の形であるようなものである。(1つの元で生成されたこの形の右と左のイデアルは単項イデアルである。)これが左と右のイデアル両方に対して満たされるとき、例えば R が可換環のような場合、R を単項イデアル環、主イデアル環 (principal ideal ring) あるいはシンプルに 単項環、主環 (principal ring) と呼ぶことができる。 R の有限生成右イデアルだけが単項であるならば、R は右ベズー環 (right Bézout ring) と呼ばれる。左ベズー環は同様に定義される。これらの条件は域 (domain) においてベズー域として研究される。 整域でもあるような可換単項イデアル環は単項イデアル整域 (PID) と呼ばれる。この記事において焦点は域とは限らない単項イデアル環のより一般的な概念に当てる。.

新しい!!: 単項イデアル整域と単項イデアル環 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 単項イデアル整域と可換体 · 続きを見る »

多項式環

数学、殊に抽象代数学における多項式環(たこうしきかん、polynomial ring)は環に係数を持つ一変数または多変数の多項式の全体の集合が成す環である。多項式環はヒルベルトの基底定理や分解体の構成、線型作用素の理解など数学のかなり広い分野に影響をもつ概念である。セール予想のような多くの重要な予想が、他の環の研究に影響をもち群環や形式冪級数環のようなほかの環の定義にさえ影響を及ぼしている。.

新しい!!: 単項イデアル整域と多項式環 · 続きを見る »

巡回加群

数学において、巡回加群(じゅんかいかぐん、cyclic module)とは、1つの元で生成される加群のことである。.

新しい!!: 単項イデアル整域と巡回加群 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: 単項イデアル整域と主イデアル · 続きを見る »

主イデアルに関する昇鎖条件

抽象代数学において、昇鎖条件は包含関係による半順序が入った環の主左、主右、あるいは主両側イデアルの半順序集合に適用することができる。主イデアルに関する昇鎖条件 (ascending chain condition on principal ideals) (ACCP と省略される)が満たされるとは、環において与えられたタイプ(左/右/両側)の主イデアルの真の無限昇鎖が存在しないということである。あるいは別の言い方をすれば、すべての昇鎖はやがて一定になる。 片割れである降鎖条件もまたこれらの半順序集合に適用することができるが、しかし用語 "DCCP" の必要は現在は全くない、なぜならばそのような環は既に左あるいは右完全環という名前がついているからである。(下の非可換環の節を参照。) ネーター環(例えば主イデアル整域)は典型的な例であるが、いくつかの重要な非ネーター環、特に一意分解整域と左または右完全環もまた (ACCP) を満たす。.

新しい!!: 単項イデアル整域と主イデアルに関する昇鎖条件 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: 単項イデアル整域と一意分解環 · 続きを見る »

代数学

代数学(だいすうがく、algebra)は数学の一分野で、「代数」 の名の通り数の代わりに文字を用いて方程式の解法を研究する学問として始まった。しかし19世紀以降の現代数学においては、ヒルベルトの公理主義やブルバキスタイルに見られるように、代数学はその範囲を大きく広げているため、「数の代わりに文字を用いる数学」や「方程式の解法の学問」という理解の仕方は必ずしも適当ではない。現代数学においては、方程式の研究は方程式論(代数方程式論)という代数学の古典的一分野として捉えられている。現在は代数学と言えば以下の抽象代数学をさすのが普通である。 現代代数学は、一般的に代数系を研究する学問分野であると捉えられている。以下に示す代数学の諸分野の名に現れる半群・群・環・多元環(代数)・体・束は代数系がもつ代表的な代数的構造である。 群・環・多元環・体の理論はガロアによる代数方程式の解法の研究などに起源があり、束論はブールによる論理学の数学的研究などに起源がある。 半群は、群・環・多元環・体・束に共通する最も原始的な構造である。 現代日本の大学では 1, 2 年次に、微分積分学と並んで、行列論を含む線型代数学を教えるが、線型代数学は線型空間という代数系を対象とすると共に、半群・群・環・多元環・体と密接に関連し、集合論を介して、また公理論であるために論理学を介して、束とも繋がっている。 現代ではまた、代数学的な考え方が解析学・幾何学等にも浸透し、数学の代数化が各方面で進んでいる。ゆえに、代数学は数学の諸分野に共通言語を提供する役割もあるといえる。.

新しい!!: 単項イデアル整域と代数学 · 続きを見る »

ノルム (体論)

体論において、ノルム (norm) は、体の拡大(とくにガロア拡大などの代数拡大)に付随して現れる写像の一種で、拡大体の元をもとの体の元に移す性質を持つ。.

新しい!!: 単項イデアル整域とノルム (体論) · 続きを見る »

ネーター環

数学においてネーター環(ネーターかん、Noetherian ring)は、イデアルの昇鎖条件などのある種の有限性を持つ環の一種。エミー・ネーターによって提唱された。すべてのイデアルは有限生成という条件から単項イデアル整域の一般化と見ることもできる。.

新しい!!: 単項イデアル整域とネーター環 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: 単項イデアル整域とユークリッド環 · 続きを見る »

デデキント環

デデキント環(デデキントかん、Dedekind ring)、あるいはデデキント整域(デデキントせいいき、Dedekind domain)とは、任意の0でない真のイデアルが、有限個の素イデアルの積にかけるような整域のことである。そのような分解は一意であることが知られており、イデアル論の基礎定理と呼ばれる。.

新しい!!: 単項イデアル整域とデデキント環 · 続きを見る »

ベズーの等式

ベズーの等式 (Bézout's identity) (ベズーの補題 (Bézout's lemma) とも呼ばれる)は初等整数論における定理である。a と b を 0 でない整数とし、d をそれらの最大公約数とする。このとき整数 x と y が存在して となる。さらに、i) d は と書ける最小の正の整数であり、ii) の形のすべての整数は d の倍数である。x と y は (a, b) のベズー係数 (Bézout coefficients) と呼ばれる。それらは一意的ではない。ベズー係数の組は拡張ユークリッドの互除法によって計算できる。a と b がどちらも 0 でなければ、拡張ユークリッドの互除法から |x| かつ |y| であるような 2 つの組の一方が出る。 ベズーの補題は任意の主イデアル整域において正しいが、正しくないような整域が存在する。.

新しい!!: 単項イデアル整域とベズーの等式 · 続きを見る »

ベズー整域

数学において、ベズー整域 (Bézout domain) は2つの主イデアルの和が再び主イデアルになるような整域である。このことが意味するのは、元の各組に対してベズーの等式 (Bézout identity) が成り立ち、すべての有限生成イデアルは単項であるということである。任意の単項イデアル整域 (PID) はベズー整域だが、ベズー整域はネーター環とは限らないので、有限生成でないイデアルをもつかもしれない(これは明らかに PID でない)。そうであれば、一意分解整域 (UFD) ではないが、なおGCD整域である。ベズー整域の理論は PID の性質の多くを、ネーター性を要求せずに、保つ。ベズー整域はフランス人数学者 Étienne Bézout にちなんで名づけられている。.

新しい!!: 単項イデアル整域とベズー整域 · 続きを見る »

アイゼンシュタイン整数

ウス平面内の、正三角形を成す格子における格子点は、アイゼンシュタイン整数を表す。 アイゼンシュタイン整数(アイゼンシュタインせいすう、Eisenstein integer)とは、フェルディナント・ゴットホルト・マックス・アイゼンシュタインにちなんで名付けられた複素数の一種である。正確には、整数 a, b と1の原始3乗根 に対して a + b ω の形の複素数のことである。b.

新しい!!: 単項イデアル整域とアイゼンシュタイン整数 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: 単項イデアル整域とイデアル (環論) · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

新しい!!: 単項イデアル整域とガウス整数 · 続きを見る »

シュプリンガー・サイエンス・アンド・ビジネス・メディア

ュプリンガー・サイエンス・アンド・ビジネス・メディア(Springer Science+Business Media, Springer)は、科学(Science)、技術(Technology、工学など)、医学(Medicine)、すなわちSTM関連の書籍、電子書籍、査読済みジャーナルを出版するグローバル企業である。シュプリンガーはまた、"SpringerLink"(「シュプリンガー・リンク」) 、"SpringerProtocols"(「」) 、"SpringerImages"(「シュプリンガー・イメージ」) 、"SpringerMaterials"(「シュプリンガー・マテリアル」) などいくつかの科学データベース・サービスのホスティングも行っている。 出版物には、参考図書(Reference works、レ(リ)ファレンス・ワークス)、教科書、モノグラフ(Monograph)、(Proceedings)、叢書など多数が含まれる。また、シュプリンガー・リンクには45,000以上のタイトルが自然科学など13の主題・テーマで集められており、それらは電子書籍として利用可能である。シュプリンガーはSTM分野の書籍に関しては世界最大の出版規模を持ち、ジャーナルでは世界第2位である(第1位はエルゼビア)。 多数のインプリントや、20ヶ国に約55の発行所(パブリッシング・ハウス)、5,000人以上の従業員を抱え、毎年約2,000のジャーナル、7,000以上の新書(これにはSTM分野だけではなく、B2B分野のものも含まれる)を発刊している。シュプリンガーはベルリン、ハイデルベルク、ドルトレヒト、ニューヨークに主要オフィスを構える。近年成長著しいアジア市場のために、アジア地域本部を香港に置いており、2005年8月からは北京に代表部を設置している 。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: 単項イデアル整域とシュプリンガー・サイエンス・アンド・ビジネス・メディア · 続きを見る »

冪級数

数学において、(一変数の)冪級数(べききゅうすう、power series)あるいは整級数(せいきゅうすう、série entière)とは の形の無限級数である。ここで は 番目の項の係数を表し、 は定数である。この級数は通常ある知られた関数のテイラー級数として生じる。 多くの状況において (級数の中心 (center))は である。例えばマクローリン級数を考えるときがそうである。そのような場合には、冪級数は簡単な形 \sum_^\infty a_n x^n.

新しい!!: 単項イデアル整域と冪級数 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: 単項イデアル整域と素イデアル · 続きを見る »

素元

数学、特に抽象代数学において、可換環の素元(prime element)は整数における素数や既約多項式と似たある性質を満たす対象である。素元と既約元を区別するよう注意しなければならない。既約元はUFDにおいては素元と同じ概念であるが、一般には異なる。.

新しい!!: 単項イデアル整域と素元 · 続きを見る »

環の局所化

抽象代数学における環の局所化(きょくしょか、localization)あるいは分数環 (ring of fraction)、商環 (ring of quotient)ここでいう「分数環」や「商環」は、「分数体」や「商体」と同様の語法であって、剰余環の別名としての「商環」(quotient ring) とは異なる。商体や全商環は本項にいう意味での商環の特別な場合になっている(例節を参照)。 は、環に乗法逆元を機械的に添加する方法である。すなわち、環 とその部分集合 が与えられたとき、環 と から への環準同型を構成して、 の準同型像が における単元(可逆元)のみからなるようにする。さらに、 が「可能な限りで最良な」あるいは「最も一般な」ものとなるようにするということを考える(こういった状況はふつうは普遍性によって表されるべきものである)。環 の部分集合 による局所化は で表され、あるいは が素イデアル \mathfrak の補集合であるときには R_ で表される。 のことを と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある。.

新しい!!: 単項イデアル整域と環の局所化 · 続きを見る »

環上の加群

抽象代数学における環上の加群(かぐん、module)とは、ベクトル空間を一般化した概念で、係数(スカラー)を体の元とする代わりに、より一般の環の元としたものである。つまり、加群とは(ベクトル空間がそうであるように)加法的なアーベル群であって、その元と環の元との間に乗法が定義され、その乗法が結合的かつ加法に関して分配的となるようなものである。 任意のアーベル群は有理整数環上の加群であり、したがって環上の加群はアーベル群の一般化でもある。また、環のイデアルは環上の加群であり、したがって環上の加群はイデアルの一般化でもある。このように環上の加群はベクトル空間・アーベル群・イデアルを包括する概念であるので、さまざまな議論を加群の言葉によって統一的に扱うことができるようになる。 加群は群の表現論に非常に近しい関連を持つ。また、加群は可換環論やホモロジー代数における中心概念の一つであり、ひろく代数幾何学や代数的位相幾何学において用いられる。.

新しい!!: 単項イデアル整域と環上の加群 · 続きを見る »

直既約加群

抽象代数学において、加群が直既約(ちょくきやく、indecomposable)であるとは、その加群が0でなく、2つの0でない部分加群の直和として書けないということである。直既約でない加群は直可約(ちょくかやく、decomposable)と言う。 直既約は単純(既約)よりも弱い概念である。加群 M が単純であるとは「真の部分加群 の形の加群( を含む、このとき になる)は直既約である。すべての有限生成 -加群はこれらの直和である。これが単純であることは (または )であることと同値であることに注意せよ。例えば、位数4の巡回群 は直既約であるが単純でない。この群は位数 の部分群 しか非自明な部分群を持たないが、これは直和因子でない。 整数環 上の加群はアーベル群である。有限生成アーベル群が直既約であることとそれが か素数 と正整数 について.

新しい!!: 単項イデアル整域と直既約加群 · 続きを見る »

自由加群

数学において、自由加群(じゆうかぐん、free module) とは、加群の圏におけるである。集合 が与えられたとき、 上の自由加群とは を基底 にもつ自由加群である。たとえば、すべてのベクトル空間は自由であり、集合上の自由ベクトル空間は集合上の自由加群の特別な場合である。任意の加群はある自由加群の準同型像である。.

新しい!!: 単項イデアル整域と自由加群 · 続きを見る »

零因子

抽象代数学において、環 R の元 a は、ax.

新しい!!: 単項イデアル整域と零因子 · 続きを見る »

GCD整域

数学において、GCD整域 (GCD domain) は整域 R であって任意の2つの0でない元が最大公約元 (greatest common divisor; GCD) をもつという性質をもつものである。同値なことだが、R の任意の2つの0でない元は最小公倍元 (least common multiple; LCM) をもつ。 GCD整域は一意分解整域 (UFD) を次のような意味で非ネーターの場合に一般化する。整域が UFD であることと、主イデアルについての昇鎖条件を満たすGCD整域であることは同値である。(とくに、ネーター的GCD整域はUFDである。).

新しい!!: 単項イデアル整域とGCD整域 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: 単項イデアル整域と極大イデアル · 続きを見る »

最大公約数

40と15に関する次の要素が埋め込まれた図: 積(600)、 商と剰余(40÷15.

新しい!!: 単項イデアル整域と最大公約数 · 続きを見る »

昇鎖条件

昇鎖条件(しょうさじょうけん、ascending chain condition; ACC)および降鎖条件(こうさじょうけん、descending chain condition; DCC)とは、ある代数的構造が満たす有限性に関する性質である。これらの性質を持つ代数的構造で最も代表的なものに、可換環のイデアルがある。昇鎖条件および降鎖条件は、ダフィット・ヒルベルト、エミー・ネーター、エミール・アルティンらが可換環の構造に関する理論を構築する上で、重要な役割を果たした。 Hazewinkel, Gubareni & Kirichenko (2004), p.6, Prop.

新しい!!: 単項イデアル整域と昇鎖条件 · 続きを見る »

既約元

抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 の0でも単元でもない元 は、 のある元 と に対して であるときにはいつでも または であるようなときに、素元と呼ばれる。)整域において、素元は既約元である素元 が既約元であることの証明。 とする。すると は素元なので または である。 であるとして、 としよう。すると となるので である。 は整域なので である。したがって は単元であり は既約である。Sharpe (1987) p.54。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、 が GCD 整域であり、 が の既約元であれば、 で生成されたイデアルは の素イデアル(したがって既約イデアル)である。.

新しい!!: 単項イデアル整域と既約元 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: 単項イデアル整域と整域 · 続きを見る »

整閉整域

可換環論において、整閉整域(せいへいせいいき、Integrally closed domain)とは、商体の中で整閉な整域のことである。すなわち、整域 A の商体 K の元 x がモニックな多項式関係 x^n+a_x^+\cdots+a_0.

新しい!!: 単項イデアル整域と整閉整域 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: 単項イデアル整域と整数環 · 続きを見る »

ここにリダイレクトされます:

主イデアル整域

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »