ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

コーシー・リーマンの方程式

索引 コーシー・リーマンの方程式

数学の複素解析の分野において、コーシー・リーマンの方程式(Cauchy–Riemann equations)は、2つの偏微分方程式からなる方程式系であり、連続性と微分可能性と合わせて、複素関数が複素微分可能すなわち正則であるための必要十分条件をなす。コーシー・リーマンの関係式とも呼ばれる。オーギュスタン=ルイ・コーシーおよびベルンハルト・リーマンの両者にちなんで名付けられた。この方程式系に最初に言及したのはジャン・ル・ロン・ダランベールの著作である。後に、レオンハルト・オイラーはこの方程式系を解析関数と結びつけた。コーシーはさらにコーシー・リーマンの方程式を彼の関数論を構築するために用いた。関数論に関するリーマンの論文は1851年に発表された。 実2変数の実数値関数の対, に関するコーシー・リーマンの方程式は次の2つの方程式である: \begin (\text)\qquad & \frac.

20 関係: 偏微分方程式微分可能モレラの定理ヤコビ行列レオンハルト・オイラーベルンハルト・リーマンウィルティンガーの微分オーギュスタン=ルイ・コーシージャン・ル・ロン・ダランベール写像の合成回転 (数学)領域 (解析学)複素平面複素解析複素数解析関数開集合正則関数正則関数の解析性数学

偏微分方程式

偏微分方程式(へんびぶんほうていしき、partial differential equation, PDE)は、未知関数の偏微分を含む微分方程式である。.

新しい!!: コーシー・リーマンの方程式と偏微分方程式 · 続きを見る »

微分可能

微分可能(びぶんかのう).

新しい!!: コーシー・リーマンの方程式と微分可能 · 続きを見る »

モレラの定理

数学の一分野である複素解析におけるモレラの定理(モレラのていり、)とは、の名にちなむ定理で、函数が正則であるか判別するための重要な指標を与えるものである。 モレラの定理では、複素平面内のある連結開集合 上で定義される連続な複素数値函数 で、 内のすべての区分的 閉曲線 に対して を満たすものは、必ず 上で正則であると述べられている。 モレラの定理の仮定は、 が 上に不定積分を持つことと同値である。 この定理の逆は一般には成り立たない。正則函数は、付加的な仮定が課されない限り、その定義域上に不定積分を持つとは必ずしも言えない。例えば定義域が単連結であれば、そのような逆は成立する。これは、閉曲線に沿った正則函数の線積分はゼロであることを述べたコーシーの積分定理による。 一方、区分的 級閉曲線の代わりに内部および周が に含まれる三角形の境界に限っても定理は成り立ち、さらに逆も成り立つ(後述)。こちらもモレラの定理と呼ばれる。.

新しい!!: コーシー・リーマンの方程式とモレラの定理 · 続きを見る »

ヤコビ行列

数学、特に多変数微分積分学およびベクトル解析におけるヤコビ行列(やこびぎょうれつ、Jacobian matrix)あるいは単にヤコビアンまたは関数行列(かんすうぎょうれつ、Funktionalmatrix)は、一変数スカラー値関数における接線の傾きおよび一変数ベクトル値函数の勾配の、多変数ベクトル値関数に対する拡張、高次元化である。名称はカール・グスタフ・ヤコブ・ヤコビに因む。多変数ベクトル値関数 のヤコビ行列は、 の各成分の各軸方向への方向微分を並べてできる行列で \end\quad (f.

新しい!!: コーシー・リーマンの方程式とヤコビ行列 · 続きを見る »

レオンハルト・オイラー

レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は、18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた 日本数学会編『岩波数学辞典 第4版』、岩波書店、2007年、項目「オイラー」より。ISBN 978-4-00-080309-0 C3541 。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。.

新しい!!: コーシー・リーマンの方程式とレオンハルト・オイラー · 続きを見る »

ベルンハルト・リーマン

ルク・フリードリヒ・ベルンハルト・リーマン(Georg Friedrich Bernhard Riemann, 1826年9月17日 - 1866年7月20日)は、ドイツの数学者。解析学、幾何学、数論の分野で業績を上げた。アーベル関数に関する研究によって当時の数学者から高く評価されたが、先駆的な彼の研究は十分に理解されず、20世紀になって彼のそれぞれの研究分野で再評価されるようになった。19世紀を代表する数学者の一人である。 彼の名前が残っている数学用語に、リーマン積分、コーシー=リーマンの方程式、リーマンのゼータ関数、リーマン多様体、リーマン球面、リーマン面、リーマン=ロッホの定理、リーマン予想などがある。.

新しい!!: コーシー・リーマンの方程式とベルンハルト・リーマン · 続きを見る »

ウィルティンガーの微分

ヴィルヘルム・ヴィルティンガー 一変数および多変数の複素解析において、ウィルティンガーの微分(Wirtinger derivative, ときに とも)は、複素多変数関数論に関する研究において1927年に導入した (Wilhelm Wirtinger) の名前にちなんでおり、正則関数、、あるいは単に複素領域上の微分可能な関数に適用したときに、1つのに関して通常の微分と非常によく似た振る舞いをする、一階の偏微分作用素である。これらの作用素によって、そのような関数に対する微分学の、に対する通常の微分学と完全に類似した、構成ができる。.

新しい!!: コーシー・リーマンの方程式とウィルティンガーの微分 · 続きを見る »

オーギュスタン=ルイ・コーシー

ーギュスタン=ルイ・コーシー(Augustin Louis Cauchy, 1789年8月21日 - 1857年5月23日)はフランスの数学者。解析学の分野に対する多大な貢献から「フランスのガウス」と呼ばれることもある。これは両者がともに数学の厳密主義の開始者であった事にも関係する。他に天文学、光学、流体力学などへの貢献も多い。.

新しい!!: コーシー・リーマンの方程式とオーギュスタン=ルイ・コーシー · 続きを見る »

ジャン・ル・ロン・ダランベール

ャン・ル・ロン・ダランベール(Jean Le Rond d'Alembert、1717年11月16日 - 1783年10月29日)は、18世紀フランスの哲学者、数学者、物理学者。ドゥニ・ディドロらと並び、百科全書派知識人の中心者。.

新しい!!: コーシー・リーマンの方程式とジャン・ル・ロン・ダランベール · 続きを見る »

写像の合成

数学において写像あるいは函数の合成(ごうせい、composition)とは、ある写像を施した結果に再び別の写像を施すことである。 たとえば、時刻 t における飛行機の高度を h(t) とし、高度 x における酸素濃度を c(x) で表せば、この二つの函数の合成函数 (c ∘ h)(t).

新しい!!: コーシー・リーマンの方程式と写像の合成 · 続きを見る »

回転 (数学)

平面における点 ''O'' の周りでの回転 初等幾何学および線型代数学における回転(かいてん、rotation)は、平面あるいは空間において固定された一点の周りでの剛体の運動を記述する。回転は、不動点を持たない平行移動とは違うし、剛体を「裏返し」にしてしまう鏡映とも異なる。回転を含めたこれらの変換は等距変換、即ちこれらの変換の前後で二点間の距離を変えない。 回転を考える際には基準系を知ることが重要であり、全ての回転はある特定の基準系に対するものとして記述される。一般に、ある座標系に関する剛体の任意の直交変換に対し、その逆変換が存在して、それを基準系に施すと剛体はもとと同じ座標にいることになる。例えば二次元の座標上の1点を定めて剛体を置いた時、1点を軸として剛体を時計回りに回すことと、剛体を動かさず1点を軸として座標を反時計回りに回すことは等価である。.

新しい!!: コーシー・リーマンの方程式と回転 (数学) · 続きを見る »

領域 (解析学)

数学の解析学の分野における領域(りょういき、)とは、有限次元ベクトル空間の開部分集合で連結なもののことを言う。例えば偏微分方程式論やソボレフ空間論などにおいて、定義域(domain of definition)の意味で領域 (domain) という語を用いることがあるが、それとは異なる。 領域の境界の滑らかさについては、その領域上で定義される関数が満足する様々な性質に応じて、様々な要求がなされる。例えば、積分定理(グリーンの定理やストークスの定理)やソボレフ空間の性質、あるいは境界上の測度やの空間(境界上で定義される滑らかな関数の空間)を定義するために、そのような要求がなされる。広く扱われている領域としては、連続な境界を備える領域、リプシッツ領域、''C''1-級の境界を備える領域などがある。 有界領域(bounded domain)とは有界集合であるような領域のことを言い、対して有界領域の補集合の内部のことを外部(exterior)あるいは外部領域(external domain)と言う。 複素解析の分野における複素領域(complex domain)あるいは単純に領域(domain)とは、複素平面 内の任意の連結開部分集合のことを言う。例えば、複素平面全体も複素領域であり、開単位円や開上半平面なども複素領域である。正則関数に対しては、しばしば、複素領域が定義域の役割を担うことがある。 多変数複素関数の研究においては、 の任意の連結開部分集合を含むように、定義域の拡張が行われる。.

新しい!!: コーシー・リーマンの方程式と領域 (解析学) · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: コーシー・リーマンの方程式と複素平面 · 続きを見る »

複素解析

数学の分科である複素解析(ふくそかいせき、complex analysis)は、複素数の関数に関わる微分法、積分法、変分法、微分方程式論、積分方程式論、複素函数論などの総称である。初等教育で扱う実解析に対比して複素解析というが、現代数学の基礎が複素数であることから、単に解析といえば複素解析を意味することが多い。複素解析の手法は、応用数学を含む数学、理論物理学、工学などの多くの分野で用いられている。.

新しい!!: コーシー・リーマンの方程式と複素解析 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: コーシー・リーマンの方程式と複素数 · 続きを見る »

解析関数

複素変数 z の複素数値関数 f(z) が1点 z.

新しい!!: コーシー・リーマンの方程式と解析関数 · 続きを見る »

開集合

開集合(かいしゅうごう、open set)は、実数直線の開区間の考えを一般化した抽象的な概念である。最も簡単な例は距離空間におけるものであり、開集合をその任意の点に対しそれを(元として)含む開球を(部分集合として)含むような集合(あるいは同じことだが境界点を全く含まないような集合)として定義できる。例えば、数直線上で不等式 2 < x < 5 によって定まる開区間は開集合である。この場合の境界とは数直線上の点 2 と 5 であって、不等式を 2 ≤ x ≤ 5 としたものや 2 ≤ x < 5 としたものは、境界を含んでいるので開集合ではない。また、 2 < x < 5 によって定まる開区間内のどの点に対しても、その点の開近傍として十分小さなものを選べば、それがもとの開区間に含まれるようにできる。 しかしながら、開集合は一般にはとても抽象的になりうる(詳しくは位相空間の項を参照されたい)。開集合とは全体集合を形成する基本要素達のようなものであり、位相の特殊な定義の仕方によっては、例えば実数において(普通の意味での)境界上を含む集合が“開集合”と呼ばれることになる場合もある。極端な例では、すべての部分集合を開集合としたり(離散位相)、開集合は空集合と空間全体だけとしたり(密着位相)することもできる。.

新しい!!: コーシー・リーマンの方程式と開集合 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: コーシー・リーマンの方程式と正則関数 · 続きを見る »

正則関数の解析性

この記事では正則関数の解析性(Analyticity of holomorphic functions)について述べる。複素解析において、複素変数 の複素数値関数 が.

新しい!!: コーシー・リーマンの方程式と正則関数の解析性 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: コーシー・リーマンの方程式と数学 · 続きを見る »

ここにリダイレクトされます:

コーシー-リーマンコーシー-リーマンの作用素コーシー-リーマンの微分方程式コーシー-リーマンの条件コーシー-リーマンの方程式コーシー-リーマンの関係式コーシー-リーマン作用素コーシー-リーマン微分方程式コーシー-リーマン条件コーシー-リーマン方程式コーシー-リーマン関係式コーシー–リーマンコーシー–リーマンの作用素コーシー–リーマンの微分方程式コーシー–リーマンの条件コーシー–リーマンの方程式コーシー–リーマンの関係式コーシー–リーマン作用素コーシー–リーマン微分方程式コーシー–リーマン条件コーシー–リーマン方程式コーシー–リーマン関係式コーシー・リーマンコーシー・リーマンの作用素コーシー・リーマンの微分方程式コーシー・リーマンの条件コーシー・リーマンの関係式コーシー・リーマン作用素コーシー・リーマン微分方程式コーシー・リーマン条件コーシー・リーマン方程式コーシー・リーマン関係式コーシー=リーマンコーシー=リーマンの作用素コーシー=リーマンの微分方程式コーシー=リーマンの条件コーシー=リーマンの方程式コーシー=リーマンの関係式コーシー=リーマン作用素コーシー=リーマン微分方程式コーシー=リーマン条件コーシー=リーマン方程式コーシー=リーマン関係式

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »