ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ガロア拡大での素イデアルの分解

索引 ガロア拡大での素イデアルの分解

数学において、代数体 のガロア拡大 のガロア群 と整数環 の素イデアル を の素イデアルの積として分解する方法との間の関係は、代数的整数論の最も豊かな部分のひとつとなっている。ガロア拡大における素イデアルの分解は、ダフィット・ヒルベルトが貢献しているので、ヒルベルトの理論 (Hilbert theory) と呼ばれる。リーマン面の分岐被覆に対し、幾何学的な類似も存在していて、素イデアルの分解を考えるよりも の部分群の一種を考えることのほうがより容易である。この問題は、ヒルベルトよりも前から確かに知られてはいた。.

29 関係: 原始元定理可換体導手中国の剰余定理一意分解環二個の平方数の和代数幾何学代数体代数的閉体代数的整数論リーマン面フロベニウス自己準同型ダフィット・ヒルベルト判別式分岐被覆分解体ガロア群ガロア拡大ガウス整数クルル次元剰余体素イデアル群作用複素数自己同型極大イデアル最小多項式 (体論)整数環整拡大

原始元定理

体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。.

新しい!!: ガロア拡大での素イデアルの分解と原始元定理 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ガロア拡大での素イデアルの分解と可換体 · 続きを見る »

導手

代数的整数論で、局所体や大域体の有限次アーベル拡大の導手(conductor)は、拡大の分岐を定量的に測るものである。導手の定義はアルティン写像に関連がある。.

新しい!!: ガロア拡大での素イデアルの分解と導手 · 続きを見る »

中国の剰余定理

loc.

新しい!!: ガロア拡大での素イデアルの分解と中国の剰余定理 · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: ガロア拡大での素イデアルの分解と一意分解環 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: ガロア拡大での素イデアルの分解と二個の平方数の和 · 続きを見る »

代数幾何学

代数幾何学(だいすうきかがく、algebraic geometry)とは、多項式の零点のなすような図形を代数的手法を用いて(代数多様体として)研究する数学の一分野である。大別して、「多変数代数函数体に関する幾何学論」「射影空間上での複素多様体論」とに分けられる。前者は代数学の中の可換環論と関係が深く、後者は幾何学の中の多様体論と関係が深い。20世紀に入って外観を一新し、大きく発展した数学の分野といわれる。 ルネ・デカルトは、多項式の零点を曲線として幾何学的に扱う発想を生みだしたが、これが代数幾何学の始まりとなったといえる。例えば、x, y を実変数として "x2 + ay2 − 1" という多項式を考えると、これの零点のなす R2 の中の集合は a の正、零、負によってそれぞれ楕円、平行な2直線、双曲線になる。このように、多項式の係数と多様体の概形の関係は非常に深いものがある。 上記の例のように、代数幾何学において非常に重要な問題として「多項式の形から、多様体を分類せよ」という問題が挙げられる。曲線のような低次元の多様体の場合、分類は簡単にできると思われがちだが、低次元でも次数が高くなるとあっという間に分類が非常に複雑になる。 当然、次元が上がると更に複雑化し、4次元以上の代数多様体についてはあまり研究は進んでいない。 2次元の場合、多様体に含まれる(−1)カーブと呼ばれる曲線を除外していくことにより、特殊な物をのぞいて極小モデルと呼ばれる多様体が一意に定まるので、2次元の場合の分類問題は「極小モデルを分類せよ」という問題に帰着される。 3次元の場合も同じように極小モデルを分類していくという方針が立てられたが、3次元の場合は、その極小モデルが一意に定まるかどうかが大問題であった。 しかし、1988年森重文により3次元多様体の極小モデル存在定理が証明され、以降「森のプログラム」と呼ばれるプログラムに沿って分類が強力に推し進められている。 19世紀中期に、ベルンハルト・リーマンがアーベル関数論の中で双有理同値など代数幾何学の中心概念を生み出し、19世紀後半には、イタリアの直観的な代数幾何学が発展した(代数幾何学のイタリア学派)。20世紀前半には、アンドレ・ヴェイユ、オスカー・ザリスキによって、抽象的な代数幾何学の研究が進められ、1950年代以降はグロタンディークのスキーム論によって代数幾何学全体が大きく書き直された。.

新しい!!: ガロア拡大での素イデアルの分解と代数幾何学 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: ガロア拡大での素イデアルの分解と代数体 · 続きを見る »

代数的閉体

数学において、体 が代数的に閉じているまたは代数的閉体(だいすうてきへいたい、; 代数閉体)であるとは、一次以上の任意の 係数変数多項式が 上に根を持つこと、あるいは同じことであるが、一次以上の任意の 係数一変数多項式が一次多項式の積として書けることである。 代数学の基本定理は、複素数体 が代数的閉体であることを主張する定理である。一方で、有限体 、有理数体 や実数体 は代数的閉体ではない。.

新しい!!: ガロア拡大での素イデアルの分解と代数的閉体 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: ガロア拡大での素イデアルの分解と代数的整数論 · 続きを見る »

リーマン面

数学、特に複素解析においてリーマン面(Riemann surface)とは、連結な複素 1 次元の複素多様体のことである。ベルンハルト・リーマンにちなんで名付けられた。 リーマン面は、複素平面を変形したものと考えられる。 各点の近くで局所的には、複素平面の部分に似ているが、大域的位相は大きく異なり得る。例えば、球面、トーラス、または互いに糊付けした二枚の面のように見え得る。 リーマン面の主要な意味合いは、正則関数がそこで定義できることである。 今日、リーマン面は正則関数、特に、平方根や自然対数等の多価関数の大域的振る舞いを研究するための自然な土台と考えられている。 全てのリーマン面は向きづけ可能な実 2 次元の実解析的多様体(従って曲面)であって、正則関数を一義的に定義するために必要な追加的構造(特に複素構造)を含む。2 次元実多様体は、それが向き付け可能な場合、かつその場合に限り、(通常は、等価でない複数の方法により)リーマン面にすることができる。従って、球面やトーラスは複素構造を持ち得るが、メビウスの輪、クラインの壺および射影平面は持ち得ない。 リーマン面は、でき得る限り良い特性を有しているという幾何学的事実から、他の曲線、多様体または代数多様体に対し一般化の直感および動機をしばしばもたらす。リーマン・ロッホの定理は、この影響の第一の例である。.

新しい!!: ガロア拡大での素イデアルの分解とリーマン面 · 続きを見る »

フロベニウス自己準同型

可換環論や体論では、フロベニウス自己準同型 (フロベニウス写像、Frobenius endomorphism, Frobenius map) (フェルディナント・ゲオルク・フロベニウスの名前にちなむ)は、有限体を含む重要なクラスである素数の標数 をもつ可換環の特別な自己準同型のことを言う。この自己準同型写像は、各元を 乗する。ある文脈においては、自己同型となるが、一般にこれは正しくない。.

新しい!!: ガロア拡大での素イデアルの分解とフロベニウス自己準同型 · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ガロア拡大での素イデアルの分解とダフィット・ヒルベルト · 続きを見る »

判別式

代数学において、多項式の判別式(はんべつしき、discriminant)はその係数たちの関数であり、一般には大文字の 'D' あるいは大文字のギリシャ文字デルタ (Δ) で表記される。それは根の性質についての情報を与えてくれる。例えば、二次多項式 の判別式は である。ここで、実数,, に対して、Δ > 0 であれば、多項式は 2 つの実根を持ち、Δ.

新しい!!: ガロア拡大での素イデアルの分解と判別式 · 続きを見る »

分岐被覆

数学では、分岐被覆(branched covering)は、小さな集合を除き、ほぼ全体が被覆写像となっている写像を記述する。.

新しい!!: ガロア拡大での素イデアルの分解と分岐被覆 · 続きを見る »

分解体

抽象代数学において、与えられた多項式の分解体(ぶんかいたい、splitting field)とは、その多項式を一次式の積に因数分解 (splitting) できるような係数体の拡大体を言う。特にそのような拡大体のうちが最小となる最小分解体 (smallest splitting field) は多項式に対して同型を除いて一意に定まるため、最小分解体のことを指して単に分解体と呼ぶことも多い。.

新しい!!: ガロア拡大での素イデアルの分解と分解体 · 続きを見る »

ガロア群

ア群(英:Galois Group)とは、代数方程式または体の拡大から定義される群のことである。発見者であるフランスの数学者エヴァリスト・ガロアから命名された。これらの群を用い方程式などの数学的対象について研究する分野をガロア理論と呼ぶ。.

新しい!!: ガロア拡大での素イデアルの分解とガロア群 · 続きを見る »

ガロア拡大

数学において、ガロア拡大(ガロアかくだい、Galois extension)は、体の代数拡大 E/F であって、正規拡大かつ分離拡大であるもののことである。あるいは同じことだが、E/F が代数拡大であって、自己同型群 Aut(E/F) によるがちょうど基礎体 F であるもののことである。ガロア拡大は、ガロア群を持ち、ガロア理論の基本定理に従うという点で、重要である。 エミール・アルティンの結果によって、ガロア拡大を次のように構成できる。E が与えられた体で、G が E の自己同型からなるある有限群で固定体が F のとき、E/F はガロア拡大である。.

新しい!!: ガロア拡大での素イデアルの分解とガロア拡大 · 続きを見る »

ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

新しい!!: ガロア拡大での素イデアルの分解とガウス整数 · 続きを見る »

クルル次元

数学、とくに可換環論において可換環のクルル次元(クルルじげん、Krull dimension)とは、素イデアルのなす減少列の長さの上限である。ヴォルフガング・クルルに因んで名づけられた。文脈から明らかなときには単に次元と呼ぶことも多い。.

新しい!!: ガロア拡大での素イデアルの分解とクルル次元 · 続きを見る »

剰余体

数学において、剰余体(じょうよたい、residue field)は可換環論における基本的な構成である。R を可換環、m を極大イデアルとしたとき、剰余体は剰余環 k.

新しい!!: ガロア拡大での素イデアルの分解と剰余体 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: ガロア拡大での素イデアルの分解と素イデアル · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: ガロア拡大での素イデアルの分解と群作用 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ガロア拡大での素イデアルの分解と複素数 · 続きを見る »

自己同型

数学において自己同型(automorphism)とは、数学的対象から自分自身への同型射のことを言う。ある解釈においては、構造を保ちながら対象をそれ自身へと写像する方法のことで、その対象の対称性を表わしていると言える。対象の全ての自己同型の集合は群を成し、自己同型群(automorphism group)と呼ばれる。大まかにいえば、自己同型は、対象の対称群である。.

新しい!!: ガロア拡大での素イデアルの分解と自己同型 · 続きを見る »

極大イデアル

の極大左イデアル(きょくだいひだりいである、maximal left ideal)とは、 以外の左イデアルの中で(集合の包含関係に関して)極大なもののことである。すなわち、左イデアル を真に含む左イデアルが しかないときに を の極大左イデアルという。極大右イデアルおよび極大両側イデアルも同様に定義される。これらのイデアルは(環が 0 でなく単位元をもつとき)ツォルンの補題によって存在が保証される。可換環においては、左・右・両側の区別はない。唯一の極大左イデアルをもつ環は局所環と呼ばれる。.

新しい!!: ガロア拡大での素イデアルの分解と極大イデアル · 続きを見る »

最小多項式 (体論)

数学の分野である体論において、最小多項式(さいしょうたこうしき、minimal polynomial)は体の拡大 E/F と拡大体 E の元に対して定義される。元の最小多項式は、存在すれば、x を変数とする F 上の多項式環 F の元である。E の元 α が与えられたとき、Jα を f(α).

新しい!!: ガロア拡大での素イデアルの分解と最小多項式 (体論) · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: ガロア拡大での素イデアルの分解と整数環 · 続きを見る »

整拡大

可換環論において、可換環 B とその部分環 A について、B の元 b が A 係数のモニック多項式の根であるとき、b は A 上整である(integral over A)という。B のすべての元が A 上整であるとき、B は A 上整である、または、B は A の整拡大(integral extension)であるという。 本記事において、環とは単位元をもつ可換環のこととする。.

新しい!!: ガロア拡大での素イデアルの分解と整拡大 · 続きを見る »

ここにリダイレクトされます:

分解群惰性群

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »