ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ガウス整数

索引 ガウス整数

ウス整数とは、ガウス平面では格子点に当たる。 ガウス整数(ガウスせいすう、Gaussian integer)とは、実部と虚部が共に整数である複素数のことである。すなわち、(, は整数)の形の数のことである。ここで は虚数単位を表す。ガウス整数という名称は、カール・フリードリヒ・ガウスが導入したことに因む。ガウス自身はガウス整数のことを複素整数(Komplexe Ganze Zahl)と呼んだが、今日ではこの呼称は一般的ではない。 通常の整数は、 の場合なので、ガウス整数の一種である。区別のために、通常の整数は有理整数と呼ばれることもある。 数学的には一つ一つのガウス整数を考えるよりも、集合として全体の構造を考える方が自然である。ガウス整数全体の集合を と表し、これをガウス整数環と呼ぶ。すなわち、 である( は有理整数環、すなわち有理整数全体の集合を表す)。その名が示すように、ガウス整数環は加法と乗法について閉じており、環としての構造を持つ。複素数体 C の部分環であるから、整域でもある。 を有理数体、すなわち有理数全体の集合とするとき、 をガウス数体という。ガウス整数環はガウス数体の整数環である。ガウス数体は、典型的な代数体であるところの円分体や二次体の一種であるので、ガウス整数環は代数的整数論における最も基本的な対象の一つである。.

72 関係: 単項イデアル整域可換体同値関係中等教育主イデアル一意分解環平方剰余の相互法則二個の平方数の和二次体二次方程式代数体代数的数代数的整数論係数ユークリッドの互除法ユークリッド環リヒャルト・デーデキントプロトタイプフェルマーの最終定理フェルディナント・ゴットホルト・マックス・アイゼンシュタイン初等教育アイゼンシュタイン整数イデアル (環論)エルンスト・クンマーカール・フリードリヒ・ガウスガロア拡大での素イデアルの分解ガブリエル・ラメシュプリンガー・ジャパン円分体共立出版筑摩書房素イデアル素元素因数分解絶対値環 (数学)複素共役複素数足立恒雄集合虚数単位既約元早川書房数学的帰納法整域整数整数の合同整数環1113...17191の冪根23293313741434755359616777173798997 インデックスを展開 (22 もっと) »

単項イデアル整域

代数学において単項イデアル整域(たんこうイデアルせいいき、あるいは主イデアル整域、principal ideal domain; PID)あるいは主環(しゅかん、anneau principal)とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。 より一般に、任意のイデアルが単項イデアルであるような(零環でない)可換環を単項イデアル環と呼ぶ(この場合、整域とは限らない、つまり零因子をもつかもしれない)が、文献によっては(例えばブルバキなどでは)「主(イデアル)環」という呼称によって、ここでいう「単項イデアル整域」のことを指している場合があるので注意が必要である。.

新しい!!: ガウス整数と単項イデアル整域 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: ガウス整数と可換体 · 続きを見る »

同値関係

数学において、同値関係(どうちかんけい、equivalence relation)は反射的、対称的かつ推移的な二項関係を言う。これらの性質の帰結として、与えられた集合において、一つの同値関係はその集合を同値類に分割(類別)する。 同値関係にあることを表す記法は文献によって様々に用いられるけれども、与えられた集合上の同値関係 に関して二元 が同値であることを "" や "" で表すのがもっともよく用いられる記法である。 に関して同値であることを明示する場合には、"" や "" あるいは "" などと書かれる。.

新しい!!: ガウス整数と同値関係 · 続きを見る »

中等教育

中等教育(ちゅうとうきょういく、Secondary education)とは、学校教育を、主に人の発達段階(年齢)に応じ初等教育、中等教育、第3期の教育(高等教育)の3段階に分ける考え方での第2段階のことである。初等教育と高等教育をつなぐ年代を指す。 国際連合教育科学文化機関 (UNESCO) が策定する国際標準教育分類 (ISCED) は、前期中等教育(ぜんきちゅうとうきょういく、Lower secondary education)をレベル2、後期中等教育(こうきちゅうとうきょういくUpper secondary education)をレベル3として分類している。.

新しい!!: ガウス整数と中等教育 · 続きを見る »

主イデアル

主イデアル(principal ideal)、あるいは単項イデアルとは、環 の単一の元 により生成された のイデアル のことを言う。(要するに、単元生成されたイデアルを主イデアルと言う。).

新しい!!: ガウス整数と主イデアル · 続きを見る »

一意分解環

数学における一意分解環(いちいぶんかいかん、unique factorization domain,UFD; 一意分解整域)あるいは素元分解環(そげんぶんかいかん)は、大雑把に言えば整数に対する算術の基本定理の如くに(特別の例外を除く)各元が素元(あるいは既約元)の積に一意的に書くことができるような可換環のことである。ブルバキの語法にしたがってしばしば分解環 (anneau factriel) とも呼ばれる。 環のクラスの中で、一意分解環は以下のような包含関係に位置するものである。.

新しい!!: ガウス整数と一意分解環 · 続きを見る »

平方剰余の相互法則

整数論』(1801年)で平方剰余の相互法則の最初の証明を公開した。 (へいほうじょうよ、quadratic residue)とは、ある自然数を法としたときの平方数のことであり、平方剰余の相互法則(へいほうじょうよのそうごほうそく、quadratic reciprocity)は、ある整数 が別の整数 の平方剰余であるか否かを判定する法則である。.

新しい!!: ガウス整数と平方剰余の相互法則 · 続きを見る »

二個の平方数の和

この記事は「平方数」、「多角数定理」などの補遺に当たる。ここに示す事実は古くから知られているものであるが呼びかたが定まっておらず、フェルマーの4n+1定理、フェルマーの二平方定理、あるいは単にフェルマーの定理(フェルマーの最終定理とは異なる)などと呼ばれる。 ---- 4を法として1に合同な素数は二個の平方数の和で表される。合成数が高々二個の平方数の和で表されるための必要十分条件は、4を法として3に合同な素因数が全て平方(冪指数が偶数)になっていることである。この定理は、フェルマーによって提起され、オイラーによって解決された。 具体的に4を法として1に合同な素数とは 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109,\cdots.

新しい!!: ガウス整数と二個の平方数の和 · 続きを見る »

二次体

二次体 (にじたい、quadratic field) は、有理数体上、2次の代数体のことである。任意の二次体は、平方因子を含まない 0, 1 以外の整数 d を用いて、\scriptstyle\mathbb(\sqrt) と表現される。もし、d > 0 である場合、実二次体 (real quadratic field)、d \mathbb(\sqrt) は、d.

新しい!!: ガウス整数と二次体 · 続きを見る »

二次方程式

数学の特に代数学において二次方程式(にじほうていしき、quadratic equation)は、二次の多項式函数のを記述する。多変数の二次方程式については(特に実数係数のものについて)その零点集合に対する幾何学的考察が歴史的に行われ、よく知られている(二元二次方程式については円錐曲線を、一般の多変数二次方程式については二次曲面を参照するとよい)。 初等代数学における二次方程式は未知数 および既知数 を用いて ax^2+bx+c.

新しい!!: ガウス整数と二次方程式 · 続きを見る »

代数体

代数体(だいすうたい、algebraic number field)とは、有理数体の有限次代数拡大体のことである。代数体 K の有理数体上の拡大次数 を、K の次数といい、次数が n である代数体を、n 次の代数体という。 特に、2次の代数体を二次体、1のベキ根を添加した体を円分体という。 K を n 次の代数体とすると、K は単拡大である。つまり、K の元 θ が存在して、K の任意の元 α は、以下の様に表される。 このとき θ は n 次の代数的数であるので、K を \mathbb 上のベクトル空間とみたとき、\ は基底となる。.

新しい!!: ガウス整数と代数体 · 続きを見る »

代数的数

代数的数(だいすうてきすう、algebraic number)とは、 複素数であって、有理数係数(あるいは同じことだが、分母を払って、 整数係数)の 0 でない一変数多項式の根 (すなわち多項式の値が 0 になるような値)となるものをいう。 すべての整数や有理数は代数的数であり、またすべての整数の冪根も代数的数である。 実数や複素数には代数的数でないものも存在し、そのような数は超越数と呼ばれる。 例えば π や e は超越数である。 ほとんどすべての複素数は超越数である(#集合論的性質)。.

新しい!!: ガウス整数と代数的数 · 続きを見る »

代数的整数論

代数的整数論(だいすうてきせいすうろん、algebraic number theory)は数論の一分野であり、抽象代数学の手法を用いて、整数や有理数、およびそれらの一般化を研究する。数論的な問題は、代数体やその整数環、有限体、関数体のような代数的対象の性質のことばで記述される。これらの性質は、例えば環において一意分解が成り立つかとか、イデアルの性質、体のガロワ群などであるが、ディオファントス方程式の解の存在のような、数論において極めて重要な問題を解決することができる。.

新しい!!: ガウス整数と代数的整数論 · 続きを見る »

係数

係数(けいすう、coefficient)は、多項式の各項(単項式)を構成する因子において、変数(不定元)を除いた、定数等の因子である。例えば、4α+3β+2における、4と3と2である。この例では2がそれであるが、それ自体で項全体となっている項(あるいは、形式的には 1に掛かっている係数)を、特に定数項と呼ぶ。.

新しい!!: ガウス整数と係数 · 続きを見る »

ユークリッドの互除法

ユークリッドの互除法(ユークリッドのごじょほう、)は、2 つの自然数の最大公約数を求める手法の一つである。 2 つの自然数 a, b (a ≧ b) について、a の b による剰余を r とすると、 a と b との最大公約数は b と r との最大公約数に等しいという性質が成り立つ。この性質を利用して、 b を r で割った剰余、 除数 r をその剰余で割った剰余、と剰余を求める計算を逐次繰り返すと、剰余が 0 になった時の除数が a と b との最大公約数となる。 明示的に記述された最古のアルゴリズムとしても知られ、紀元前300年頃に記されたユークリッドの『原論』第 7 巻、命題 1 から 3 がそれである。.

新しい!!: ガウス整数とユークリッドの互除法 · 続きを見る »

ユークリッド環

数学の特に抽象代数学および環論におけるユークリッド整域(ユークリッドせいいき、Euclidean domain)あるいはユークリッド環(ユークリッドかん、Euclidean ring)とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズーの等式)。また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。 ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。 そういったことから、整域 が与えられたとき、 がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。特に、そのとき が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。.

新しい!!: ガウス整数とユークリッド環 · 続きを見る »

リヒャルト・デーデキント

ブラウンシュヴァイクの中央墓地にあるデデキントの墓 ユリウス・ヴィルヘルム・リヒャルト・デーデキント(デデキント、Julius Wilhelm Richard Dedekind、1831年10月6日 - 1916年2月12日)は、ドイツのブラウンシュヴァイク出身の数学者。代数学・数論が専門分野。1858年からチューリッヒ工科大学教授、1894年からブラウンシュヴァイク工科大学教授を歴任した。彼の名前にちなんだ数学用語としては、デデキント環、デデキント切断などがある。.

新しい!!: ガウス整数とリヒャルト・デーデキント · 続きを見る »

プロトタイプ

プロトタイプ(prototype)は、デモンストレーション目的や新技術・新機構の検証、試験、量産前での問題点の洗い出しのために設計・仮組み・製造された原型機・原型回路・コンピュータプログラムのことを指す。 「プロトタイプ」(原型)という言葉の原義的には、量産モデルに発展させることが前提、ないし少なくともそのつもりはあるという点が、実験機や試験機や試作機(車)などと異なるが、たとえば制式採用を決定するコンペで敗れるなどして結局量産されないこともままあり、厳密な区別は無い(難しい)。.

新しい!!: ガウス整数とプロトタイプ · 続きを見る »

フェルマーの最終定理

算術』。 フェルマーの最終定理(フェルマーのさいしゅうていり、Fermat's Last Theorem)とは、 以上の自然数 について、 となる自然数の組 は存在しない、という定理のことである。フェルマーの大定理とも呼ばれる。フェルマーが驚くべき証明を得たと書き残したと伝えられ、長らく証明も反証もなされなかったことからフェルマー予想とも称されたが、360年後にアンドリュー・ワイルズによって完全に証明され、ワイルズの定理あるいはフェルマー・ワイルズの定理とも呼ばれるようになった。.

新しい!!: ガウス整数とフェルマーの最終定理 · 続きを見る »

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン

フェルディナント・ゴットホルト・マックス・アイゼンシュタイン(Ferdinand Gotthold Max Eisenstein、1823年4月16日 - 1852年10月11日)は、ドイツの数学者。楕円関数論、行列の理論やアイゼンシュタイン整数の発見などの業績を残したが若くして結核で亡くなった。ガウスやディリクレのもとで学び、ガウスも彼の才能を高く評価していた。ベルリン大学で学生時代に、レオポルト・クロネッカーと友人になった。リーマンはベルリン大学で彼の講義を受けている。 楕円関数論での研究では、(関数論に依拠するのではなく)整数論との関連を重視して多くの公式を具体的に与えた。この成果を晩年のクロネッカーが見出して、楕円関数論に新たな方向性をもたらすことになる。.

新しい!!: ガウス整数とフェルディナント・ゴットホルト・マックス・アイゼンシュタイン · 続きを見る »

初等教育

初等教育(しょとうきょういく, Primary education)は、通常5-7歳から開始される段階の教育であり、ISCEDではレベル1に分類され、大抵6年間である。 これはISCEDレベル0の就学前教育(幼稚園や認定こども園など)の後に続く過程であり、言語の読解・綴字(識字)、基礎計算などの人間の社会生活能力の育成が重要視され、大部分の国で義務教育・無償教育となっている。 国際連合のミレニアム開発目標においては、「(2A) 2015年までに、全ての子どもが男女の区別なく初等教育の全課程を修了できるようにする」と合意されている。.

新しい!!: ガウス整数と初等教育 · 続きを見る »

アイゼンシュタイン整数

ウス平面内の、正三角形を成す格子における格子点は、アイゼンシュタイン整数を表す。 アイゼンシュタイン整数(アイゼンシュタインせいすう、Eisenstein integer)とは、フェルディナント・ゴットホルト・マックス・アイゼンシュタインにちなんで名付けられた複素数の一種である。正確には、整数 a, b と1の原始3乗根 に対して a + b ω の形の複素数のことである。b.

新しい!!: ガウス整数とアイゼンシュタイン整数 · 続きを見る »

イデアル (環論)

抽象代数学の分野である環論におけるイデアル(ideal, Ideal)は環の特別な部分集合である。整数全体の成す環における、偶数全体の成す集合や の倍数全体の成す集合などの持つ性質を一般化したもので、その部分集合に属する任意の元の和と差に関して閉じていて、なおかつ環の任意の元を掛けることについても閉じているものをイデアルという。 整数の場合であれば、イデアルと非負整数とは一対一に対応する。即ち整数環 の任意のイデアルは、それぞれただ一つの整数の倍数すべてからなる主イデアルになる。しかしそれ以外の一般の環においてはイデアルと環の元とは全く異なるものを指しうるもので、整数のある種の性質を一般の環に対して一般化する際に、環の元を考えるよりもそのイデアルを考えるほうが自然であるということがある。例えば、環の素イデアルは素数の環における対応物であり、中国の剰余定理もイデアルに対するものに一般化することができる。素因数分解の一意性もデデキント環のイデアルに対応するものが存在し、数論において重要な役割を持つ。 イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。 順序集合に対するの概念は環論におけるこのイデアルの概念に由来する。またイデアルの概念を一般化して分数イデアルの概念を考えることもでき、それとの区別のためここで扱う通常のイデアルは整イデアルと呼ばれることもある。.

新しい!!: ガウス整数とイデアル (環論) · 続きを見る »

エルンスト・クンマー

ルンスト・エドゥアルト・クンマー(Ernst Eduard Kummer、1810年1月29日 ブランデンブルク・ゾーラウ Sohrau(ポーランド・ルブシュ県) - 1893年5月14日)は、ドイツの数学者。ワイエルシュトラス、(彼の教え子の一人)クロネッカーと共に、ベルリン大学の三大数学者の一人として指導的役割を果たした。最初は関数論を研究していたが、1840年代からは代数的整数論に関心を持つようになり、円分体とそのイデアル類と類数を中心的に研究するようになった。彼はその後のイデアル論の基礎となるものを確立し、L関数の値のp進的な性質を調べていった。この他、砲弾の弾道計算で業績を残している。オーギュスタン・ルイ・コーシーとガブリエル・ラメが行った虚数を含む素因数分解に一意性がないことを指摘した。しかし、クンマーは一意性の問題に取り組み、多くの場合について一意性を復活させる方法として理想数を導入した。この方法はのちにリヒャルト・デーデキントによってまとめられ、イデアル概念が生まれた。 大学での講義中、とっさに九九が計算できなかった逸話が有名である。数々の業績を残した彼だが、瞬発的な数字の計算能力はむしろ低かったようである。.

新しい!!: ガウス整数とエルンスト・クンマー · 続きを見る »

カール・フリードリヒ・ガウス

Disquisitiones Arithmeticae のタイトルページ ヨハン・カール・フリードリヒ・ガウス(; Johann Carl Friedrich Gauß, Carolus Fridericus Gauss, 1777年4月30日 - 1855年2月23日)は、ドイツの数学者、天文学者、物理学者である。彼の研究は広範囲に及んでおり、特に近代数学のほとんどの分野に影響を与えたと考えられている。数学の各分野、さらには電磁気など物理学にも、彼の名が付いた法則、手法等が数多く存在する。19世紀最大の数学者の一人である。.

新しい!!: ガウス整数とカール・フリードリヒ・ガウス · 続きを見る »

ガロア拡大での素イデアルの分解

数学において、代数体 のガロア拡大 のガロア群 と整数環 の素イデアル を の素イデアルの積として分解する方法との間の関係は、代数的整数論の最も豊かな部分のひとつとなっている。ガロア拡大における素イデアルの分解は、ダフィット・ヒルベルトが貢献しているので、ヒルベルトの理論 (Hilbert theory) と呼ばれる。リーマン面の分岐被覆に対し、幾何学的な類似も存在していて、素イデアルの分解を考えるよりも の部分群の一種を考えることのほうがより容易である。この問題は、ヒルベルトよりも前から確かに知られてはいた。.

新しい!!: ガウス整数とガロア拡大での素イデアルの分解 · 続きを見る »

ガブリエル・ラメ

ブリエル・ラメ ガブリエル・ラメ(Gabriel Lamé, 1795年7月22日 - 1870年5月1日)はフランスの数学者。エコール・ポリテクニーク(高等理工科学校)を卒業し、数理物理学、代数学、幾何学などに功績を残した。.

新しい!!: ガウス整数とガブリエル・ラメ · 続きを見る »

シュプリンガー・ジャパン

ュプリンガー・ジャパン(しゅぷりんがー・じゃぱん・Springer Japan)は、ドイツのSTM(科学・技術・医学)出版社であるシュプリンガー・サイエンス・アンド・ビジネス・メディアの日本法人である。この親会社が出版する書籍・ジャーナルを日本国内で出版している。 同社は、以前にはそれらの日本語翻訳書や和書の出版も行っていたが、2012年に権利を丸善へと譲渡して和書事業から撤退した。これに拠って、シュプリンガー・ジャパンから出版されていた和書は丸善から順次(再)刊行されている。 2015年5月、シュプリンガー・サイエンス+ビジネスメディアとマクミラン・サイエンス・アンド・エデュケーションの大半の事業の合併が、欧州連合や米国司法省などの主要な公正競争監視機関により承認された。新会社の名称は「シュプリンガー・ネイチャー(Springer Nature)」。.

新しい!!: ガウス整数とシュプリンガー・ジャパン · 続きを見る »

円分体

円分体 (えんぶんたい、cyclotomic field) は、有理数体に、1 の m(>2) 乗根 \scriptstyle\zeta(\ne\pm 1) を添加した代数体である。円分体およびその部分体のことを円体ともいう。 以下において、特に断らない限り、\zeta_n.

新しい!!: ガウス整数と円分体 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: ガウス整数と共立出版 · 続きを見る »

筑摩書房

株式会社筑摩書房(ちくましょぼう)は、日本の出版社。筑摩書房のマーク(空を截る鷹)のデザインは青山二郎作。 文学者を中心に個人全集は、増補改訂し繰り返し刊行するので、「全集の筑摩」と称されている。特に『世界文学全集』は多くの類書シリーズを刊行した。ほかに古典・現代文の教科書を現在まで毎年出版している。月刊PR誌に『ちくま』がある。.

新しい!!: ガウス整数と筑摩書房 · 続きを見る »

素イデアル

素イデアル(prime ideal)は、環のイデアルで、ある条件を満たすものである。歴史的には、素数(素元)の概念の拡張としてデデキントによって代数体の整数環に対して定義された。整数環(一般に)のすべてのゼロでない(整)イデアルは、素イデアルの有限個の積として(順序を除いて)一意的に書ける(イデアル論の基本定理)。スキームの理論は、図形の上の関数の成す環から下の空間を構成するという idea がもとになっているが、その時に、その環の素イデアルひとつひとつが、下の空間の点に対応する。.

新しい!!: ガウス整数と素イデアル · 続きを見る »

素元

数学、特に抽象代数学において、可換環の素元(prime element)は整数における素数や既約多項式と似たある性質を満たす対象である。素元と既約元を区別するよう注意しなければならない。既約元はUFDにおいては素元と同じ概念であるが、一般には異なる。.

新しい!!: ガウス整数と素元 · 続きを見る »

素因数分解

素因数分解 (そいんすうぶんかい、prime factorization) とは、ある正の整数を素数の積の形で表すことである。ただし、1 に対する素因数分解は 1 と定義する。 素因数分解には次のような性質がある。.

新しい!!: ガウス整数と素因数分解 · 続きを見る »

絶対値

数の絶対値は零からの距離と考えられる 数学における実数 の絶対値(ぜったいち、absolute value)または母数(ぼすう、modulus) は、その符号を無視して得られる非負の値を言う。つまり正数 に対して および負数 に対して (このとき は正)であり、また である。例えば の絶対値は であり の絶対値も である。数の絶対値はその数の零からの距離と見なすことができる。 実数の絶対値を一般化する概念は、数学において広範で多様な設定のもとで生じてくる。例えば、絶対値は複素数、四元数、順序環、体などに対しても定義することができる。様々な数学的あるいは物理学的な文脈における (magnitude) や距離およびノルムなどの概念は、絶対値と緊密な関係にある.

新しい!!: ガウス整数と絶対値 · 続きを見る »

環 (数学)

数学における環(かん、ring)は、台集合に「加法」(和)および「乗法」(積)と呼ばれる二種類の二項演算を備えた代数系になっており、最もよく知られた環の例は、整数全体の成す集合に自然な加法と乗法を考えたものである(これは乗法が可換だから可換環の例でもある)。ただし、それが環と呼ばれるためには、環の公理として、加法は可換で、加法と乗法はともに結合的であって、乗法は加法の上に分配的で、各元は加法逆元をもち、加法単位元が存在すること、が全て要求される。従って、台集合は加法のもと「加法群」と呼ばれるアーベル群を成し、乗法のもと「乗法半群」と呼ばれる半群であって、乗法は加法に対して分配的であり、またしばしば乗法単位元を持つ乗法に関しては半群となることのみを課す(乗法単位元の存在を要求しない)こともある。定義に関する注意節を参照。なお、よく用いられる環の定義としていくつか流儀の異なるものが存在するが、それについては後述する。 環について研究する数学の分野は環論として知られる。環論学者が研究するのは(整数環や多項式環などの)よく知られた数学的構造やもっと他の環論の公理を満足する多くの未だよく知られていない数学的構造のいずれにも共通する性質についてである。環という構造のもつ遍在性は、数学の様々な分野において同時多発的に行われた「代数化」の動きの中心原理として働くことになった。 また、環論は基本的な物理法則(の根底にある特殊相対性)や物質化学における対称現象の理解にも寄与する。 環の概念は、1880年代のデデキントに始まる、フェルマーの最終定理に対する証明の試みの中で形成されていった。他分野(主に数論)からの寄与もあって、環の概念は一般化されていき、1920年代のうちにエミー・ネーター、ヴォルフガング・クルルらによって確立される。活発に研究が行われている数学の分野としての現代的な環論では、独特の方法論で環を研究している。すなわち、環を調べるために様々な概念を導入して、環をより小さなよく分かっている断片に分解する(イデアルをつかって剰余環を作り、単純環に帰着するなど)。こういった抽象的な性質に加えて、環論では可換環と非可換環を様々な点で分けて考える(前者は代数的数論や代数幾何学の範疇に属する)。特に豊かな理論が展開された特別な種類の可換環として、可換体があり、独自に体論と呼ばれる分野が形成されている。これに対応する非可換環の理論として、非可換可除環(斜体)が盛んに研究されている。なお、1980年代にアラン・コンヌによって非可換環と幾何学の間の奇妙な関連性が指摘されて以来、非可換幾何学が環論の分野として活発になってきている。.

新しい!!: ガウス整数と環 (数学) · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: ガウス整数と複素共役 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: ガウス整数と複素数 · 続きを見る »

足立恒雄

足立 恒雄(あだち のりお、1941年(昭和16年)11月12日 - )は日本の数学者。理学博士。早稲田大学名誉教授。専攻は代数的整数論、数学思想史。 数学が汎宇宙的な普遍性を持つ真理の体系であり、一貫した発展を遂げているという思想に疑問を呈し、数学は人類の種としての固有の財産であり、また時代・民族・個人に大いに依存しているという観点から、『』、『』、『』等の著作を多数著わしている。.

新しい!!: ガウス整数と足立恒雄 · 続きを見る »

集合

数学における集合 (しゅうごう、set, ensemble, Menge) とは、大雑把に言えばいくつかの「もの」からなる「集まり」である。集合を構成する個々の「もの」のことを元 (げん、; 要素) という。 集合は、集合論のみならず現代数学全体における最も基本的な概念の一つであり、現代数学のほとんどが集合と写像の言葉で書かれていると言ってよい。 慣例的に、ある種の集合が系 (けい、) や族 (ぞく、) などと呼ばれることもある。実際には、これらの呼び名に本質的な違いはないが細かなニュアンスの違いを含むと考えられている。たとえば、方程式系(「相互に連立する」方程式の集合)、集合族(「一定の規則に基づく」集合の集合)、加法族(「加法的な性質を持つ」集合族)など。.

新しい!!: ガウス整数と集合 · 続きを見る »

虚数単位

虚数単位(きょすうたんい、imaginary unit)とは、−1 の平方根(2乗して −1 になる数)である2つの数のうちの1つの数のことである(どちらかを特定することはできない)。そのような数を記号で i または \sqrt で表す。 任意の実数の2乗は0以上なので、虚数単位は実数でない。数の概念を複素数に拡張すると登場する数である。 虚数単位の記号 i は imaginary の頭文字から採られている。ただし、i を別の意味(電流など)の記号として使う場合は、虚数単位を j などで表すことがある(どの文字を用いるかは自由である。その場合にはどの文字を用いるかを初めに必ず宣言する)。 積の交換法則が成り立たないことを許容すると、異なる3個以上の虚数単位からなる数の体系(非可換体)を考えることができる。3個の虚数単位の場合は i,j,k、7つ以上の虚数単位の組には i_1,i_2,\cdots といったように一つずつ添字を付けて表すことが多い。.

新しい!!: ガウス整数と虚数単位 · 続きを見る »

既約元

抽象代数学において、整域の 0 でも単元でもない元は、それが2つの非単元の積でないときに、既約(irreducible)であると言う。 既約元を素元と混同してはならない。(可換環 の0でも単元でもない元 は、 のある元 と に対して であるときにはいつでも または であるようなときに、素元と呼ばれる。)整域において、素元は既約元である素元 が既約元であることの証明。 とする。すると は素元なので または である。 であるとして、 としよう。すると となるので である。 は整域なので である。したがって は単元であり は既約である。Sharpe (1987) p.54。逆は一意分解整域に対しては正しい(あるいはより一般に、GCD整域に対しても正しい)が、一般の整域に対しては成り立たない。 さらに、素元で生成されたイデアルが素イデアルであるのに対して、既約元で生成されたイデアルは一般には既約イデアルであるとは限らない。しかしながら、 が GCD 整域であり、 が の既約元であれば、 で生成されたイデアルは の素イデアル(したがって既約イデアル)である。.

新しい!!: ガウス整数と既約元 · 続きを見る »

早川書房

株式会社早川書房(はやかわしょぼう)は、日本の出版社。創業者は早川清。.

新しい!!: ガウス整数と早川書房 · 続きを見る »

数学的帰納法

数学的帰納法(すうがくてききのうほう、mathematical induction)は自然数に関する命題 が全ての自然数 に対して成り立っている事を証明するための、次のような証明手法である自然数の定義は を含む流儀とそうでない流儀があるが、ここでは後者を採用した。。.

新しい!!: ガウス整数と数学的帰納法 · 続きを見る »

整域

抽象代数学における整域(せいいき、integral domain)は、零因子を持たない可換環であって、自明環 でないものをいう。整域の概念は整数全体の成す環の一般化になっており、整除可能性を調べるのに自然な設定を与える。環の定義に乗法単位元を含めない場合であっても、単に可換環あるいは整域と言ったときには乗法単位元を持つと仮定することが少なくない。即ち、整域とは単位的可換域のことをいう。 上記の如く「整域」を定めるのが広く採用されているけれども、いくらかの揺れもある。特に、非可換な整域を許すことが時としてある。しかし、「整域」(integral domain) という語を可換の場合のために用い、非可換の場合には「域」(domain) を用いることにすると約束するのがたいていの場合には有効である(奇妙な話ではあるが、この文脈では形容辞「整」の中に「可換」の意も含まれるということになる)。別な文献では(ラングが顕著だが)整環 (entire ring) を用いるものがある「整環」という用語は、代数体の整環 (order) などに対しても用いられる。。 いくつか特定の種類の整域のクラスについては、以下のような包含関係が成立する。 零因子の非存在(零積法則)は、整域において非零元による乗法の簡約律が満足されることを意味する。つまり、a ≠ 0 のとき、等式 から が結論できる。.

新しい!!: ガウス整数と整域 · 続きを見る »

整数

数学における整数(せいすう、integer, whole number, Ganze Zahl, nombre entier, número entero)は、0 とそれに 1 ずつ加えていって得られる自然数 (1, 2, 3, 4, …) および 1 ずつ引いていって得られる数 (−1, −2, −3, −4, …) の総称である。 整数は数直線上の格子点として視覚化される 整数の全体からなる集合は普通、太字の Z または黒板太字の \mathbb Z で表す。これはドイツ語 Zahlen(「数」の意・複数形)に由来する。 抽象代数学、特に代数的整数論では、しばしば「代数体の整数環」の元という意味で代数的整数あるいは「整数」という言葉を用いる。有理数全体の成す体はそれ自身が代数体の最も簡単な例であり、有理数体の代数体としての整数環すなわち、「有理数の中で整なもの」の全体の成す環は、本項でいう意味での整数全体の成す環である。一般の「整数」との区別のためにここでいう意味の整数を有理整数 (rational integer) と呼ぶことがある接頭辞「有理(的)」(rational) はそもそも「整数比」であるという意味なので、この呼称は自己循環的にもみえる。しかし、有理整数と呼ぶ場合の「有理」は「有理数の中で」という程度の意味の単なる符牒であって、「整数比」という本来の意味合いに拘るのは徒労である。。.

新しい!!: ガウス整数と整数 · 続きを見る »

整数の合同

ウスの『Disquisitiones Arithmeticae(整数論)』のタイトルページ。 整数の合同(ごうどう、congruence)は、数学において二つの整数の間に定められる関係である。初めてこれを構造として研究したのはドイツの数学者ガウスで、1801年に発表された著書『Disquisitiones Arithmeticae』でも扱われている。今日では整数の合同は、数論や一般代数学あるいは暗号理論などに広く用いられる。 整数の合同に基づく数学の分野は合同算術 (modular arithmetic) と呼ばれる。これは整数そのものを直接的に扱うのではなく、何らかの整数(法と呼ばれる、以下本項では で表す)で割った剰余を代表元として扱う算術である。合同算術の歴史や道具立てあるいはその応用については合同算術の項を参照。また、より包括的で堅苦しくない説明は剰余類環 の項へ譲る。.

新しい!!: ガウス整数と整数の合同 · 続きを見る »

整数環

数学において,代数体 の整数環(せいすうかん,ring of integers)とは, に含まれるすべての整な元からなる環である.整な元とは有理整数係数の単多項式 の根である.この環はしばしば あるいは \mathcal O_K と書かれる.任意の有理整数は に属し,その整元であるから,環 はつねに の部分環である. 環 は最も簡単な整数環である.すなわち, ただし は有理数体である.

新しい!!: ガウス整数と整数環 · 続きを見る »

11

11(十一、じゅういち、とおあまりひとつ)は、10 の次、12 の前の整数である。十一を意味する英語の eleven やドイツ語の Elf の語源は「残りが1つ」である。これは、指で 10 まで数えたあと1つ残ることを意味する。英語の序数詞では、11th、eleventh となる。ラテン語では undecim(ウーンデキム)。.

新しい!!: ガウス整数と11 · 続きを見る »

13

13(十三、じゅうさん、とおあまりみつ)は自然数、また整数において、12 の次で 14 の前の数である。英語では (サーティン、サーティーン)と表記される。西洋を中心に「13.

新しい!!: ガウス整数と13 · 続きを見る »

17

17(十七、じゅうしち、じゅうなな、とおあまりななつ)は自然数、また整数において、16 の次で 18 の前の数である。ラテン語では septendecim(セプテンデキム)。.

新しい!!: ガウス整数と17 · 続きを見る »

19

19(十九、じゅうきゅう、じゅうく、とおあまりここのつ)は自然数、また整数において、18 の次で 20 の前の数である。英語の序数詞では、19th、nineteenth となる。ラテン語では undeviginti(ウーンデーウィーギンティー)。.

新しい!!: ガウス整数と19 · 続きを見る »

1の冪根

1の冪根(いちのべきこん、root of unity)、または1の累乗根(いちのるいじょうこん)は、数学において、冪乗して 1 になる(冪単である)ような数のことである。すなわち、ある自然数 n が存在して となる z のことである。通常は複素数の範囲で考えるが、場合によっては ''p'' 進数のような他の数の体系内で考える場合もある。以下では主として複素数の場合について述べる。 自然数 n に対し、m (\zeta_n.

新しい!!: ガウス整数と1の冪根 · 続きを見る »

23

23(二十三、廿三、にじゅうさん、はたみ、はたちあまりみつ)は、22 の次、24 の前の整数である。 英語の序数詞では、23rd、twenty-thirdとなる。.

新しい!!: ガウス整数と23 · 続きを見る »

29

29(二十九、廿九、にじゅうきゅう、にじゅうく、はたちあまりここ)は、自然数、整数において、28の次で30の前の数である。.

新しい!!: ガウス整数と29 · 続きを見る »

3

三」の筆順 3(三、さん、み、みっつ、みつ)は、自然数または整数において、2 の次で 4 の前の数である。英語の序数詞では、3rd、third となる。ラテン語では tres(トレース)。.

新しい!!: ガウス整数と3 · 続きを見る »

31

31(三十一、丗一、さんじゅういち、みそひと、みそじあまりひとつ)は自然数、また整数において、30 の次で 32 の前の数である。.

新しい!!: ガウス整数と31 · 続きを見る »

37

37(三十七、さんじゅうしち、さんじゅうなな、みそなな、みそじあまりななつ)は、自然数また整数において、36 の次で 38 の前の数である。.

新しい!!: ガウス整数と37 · 続きを見る »

41

41(四十一、しじゅういち、よんじゅういち、よそひと、よそじあまりひとつ)は、自然数また整数において、40 の次で 42 の前の数である。.

新しい!!: ガウス整数と41 · 続きを見る »

43

43(四十三、しじゅうさん、よんじゅうさん、よそみ、よそじあまりみつ)は、自然数また整数において、42 の次で 44 の前の数である。.

新しい!!: ガウス整数と43 · 続きを見る »

47

47(四十七、しじゅうしち、よんじゅうなな、よそなな、よそじあまりななつ)は、自然数また整数において、46 の次で 48 の前の数である。.

新しい!!: ガウス整数と47 · 続きを見る »

5

五」の筆順 5(五、ご、う、いつ)は、自然数、また整数において、4 の次で 6 の前の数である。英語の序数詞では、5th、fifthとなる。ラテン語ではquinque(クゥィンクゥェ)。.

新しい!!: ガウス整数と5 · 続きを見る »

53

53(五十三、ごじゅうさん、いそみ、いそじあまりみつ)は、自然数また整数において、52 の次で 54 の前の数である。.

新しい!!: ガウス整数と53 · 続きを見る »

59

59(五十九、ごじゅうきゅう、いそここの、いそじあまりここのつ)は、自然数また整数において、58 の次で 60 の前の数である。.

新しい!!: ガウス整数と59 · 続きを見る »

61

61(六十一、ろくじゅういち、むそひと、むそじあまりひとつ)は、自然数また整数において、60 の次で 62 の前の数である。.

新しい!!: ガウス整数と61 · 続きを見る »

67

67(六十七、ろくじゅうしち、ろくじゅうなな、むそじあまりななつ)は自然数、また整数において、66 の次で 68 の前の数である。.

新しい!!: ガウス整数と67 · 続きを見る »

7

七」の筆順 7(七、しち、ひち、ち、なな、なー)は、6 の次、8 の前の整数である。ラテン語では septem(セプテム)。 「七」の訓読みは「なな」、音読みは「しち」である。だが、「しち」という読みが言いにくく、また一(いち)、四(し)、八(はち)と聞き間違いやすいことから、他の数字なら音読みする文脈でも訓読みすることが多い(70(ななじゅう)など)。ただし、「7月(しちがつ)」、「7時(しちじ)」は、聞き間違いを意識的に排除する場合を除き、音読みする。名数では、他の数字同様、後に続く語が音読みか訓読みかによって読みが決まる(「七福神(しちふくじん)」「七草(ななくさ)」など)が、希に、後に音読みが続くにもかかわらず訓読みするものもある(「七不思議(ななふしぎ)」など)。 七(しち)を「ひち」と発音する方言もある。例えば岐阜県の「七宗町」の読みは「ひちそうちょう」と公式に定められている。.

新しい!!: ガウス整数と7 · 続きを見る »

71

71(七十一、ななじゅういち、しちじゅういち、ひちじゅういち、ななそじあまりひとつ)は自然数、また整数において、70 の次で 72 の前の数である。.

新しい!!: ガウス整数と71 · 続きを見る »

73

73(七十三、ななじゅうさん、しちじゅうさん、ななそじあまりみつ)は自然数、また整数において 72 の次で 74 の前の数である。.

新しい!!: ガウス整数と73 · 続きを見る »

79

79(七十九、ななじゅうきゅう、ななじゅうく、しちじゅうく、ひちじゅうく、ななそじあまりここのつ)は自然数、また整数において、78 の次で 80 の前の数である。.

新しい!!: ガウス整数と79 · 続きを見る »

89

89(八十九、はちじゅうく、はちじゅうきゅう、やそじあまりここのつ)は自然数、また整数において、88 の次で 90 の前の数である。.

新しい!!: ガウス整数と89 · 続きを見る »

97

97(九十七、きゅうじゅうしち、きゅうじゅうなな、ここのそじあまりななつ)は自然数、また整数において、96 の次で 98 の前の数である。.

新しい!!: ガウス整数と97 · 続きを見る »

ここにリダイレクトされます:

ガウスの整数ガウスの整数環ガウス整数環ガウス素数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »