ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

正単体

索引 正単体

正単体(せいたんたい、regular simplex)は、2次元の正三角形、3次元の正四面体、4次元の正五胞体を各次元に一般化した正多胞体。なお、0次元正単体は点、1次元正軸体は線分である。 また言い換えると、単体である正多胞体、つまり、辺の長さが全て等しい単体である。 \alpha体(アルファたい)ともいい、n (n ≥ 0) 次元正単体を \alpha_n と書く。 超立方体(正測体)、正軸体と並んで、5次元以上での3種類の正多胞体の1つである。.

21 関係: 垂直単体 (数学)双対ペトリー多角形再帰線分頂点超立方体重心投影図正多胞体正三角形正五胞体正四面体正軸体正方形2次元3次元4次元

垂直

初等幾何学において、垂直(すいちょく、perpendicular)であること、すなわち垂直性 は直角に交わる二つの直線の間の関係性を言う。この性質は関連するほかの幾何学的対象に対しても拡張される。 垂線 に関連して垂線の「足」() という術語がしばしば用いられる。考える図形の向きは如何様にも変えることができるから、足と謂えどもそれが必ずしも図形の下方にあるわけではない。 垂直性はより一般の数学概念である直交性の特別の場合と考えられる。すなわち、垂直性とは古典的な幾何学的対象に関する直交性を言うものである。ゆえに、より進んだ数学において、より複雑な幾何学的直交性(例えば曲面とその法線の関係など)に対して「垂直」あるいは「垂線」のような語を用いることもある。.

新しい!!: 正単体と垂直 · 続きを見る »

単体 (数学)

数学、とくに位相幾何学において、n 次元の単体(たんたい、simplex)とは、「r ≤ n ならばどの r + 1 個の点も r − 1 次元の超平面に同時に含まれることのない」ような n + 1 個の点からなる集合の凸包のことで、点・線分・三角形・四面体といった基本的な図形の n 次元への一般化である。 単体は、頂点の位置さえ決めればそれのみによって一意的に決定される。さらに単体は単体的複体や鎖複体などの概念を与えるが、これらはさらに抽象化されて、幾何学を組合せ論的あるいは代数的に扱う道具となる。また逆に、抽象化された複体の概念から単体が定義される。.

新しい!!: 正単体と単体 (数学) · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: 正単体と双対 · 続きを見る »

ペトリー多角形

ペトリー多角形(Petrie polygon)とは,正多面体をある角度から見た際に現れる正多角形のことである。.

新しい!!: 正単体とペトリー多角形 · 続きを見る »

再帰

再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。 主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。.

新しい!!: 正単体と再帰 · 続きを見る »

線分

線分の幾何学的な定義 幾何学における線分(せんぶん、Line segment)とは2つの点に挟まれた直線の部分であり、それら端点の間にあるどの点も含む。 通常は端点も含むものとするが、端点を含まないものも線分として認め、端点を含む狭義の線分を閉線分、含まないものを開線分とすることもある。 線分の例として、三角形や四角形の辺が挙げられる。もっと一般に、端点がある1つの多角形の頂点となっている線分は、その端点が多角形の隣接する2頂点であるときその多角形の辺となり、そうでないときには対角線である。端点が円周のような1つの曲線上に載っているとき、その線分はその曲線の弦と呼ばれる。.

新しい!!: 正単体と線分 · 続きを見る »

点(てん).

新しい!!: 正単体と点 · 続きを見る »

頂点

頂点(ちょうてん、vertex)とは角の端にある点のことである。多角形では2本の辺が接しているか交わっている点、多面体では3本以上の辺が共有している点のことをいう。直観的には図形の周上にある点のうち周辺のどの点よりも突出していて"尖った点"のことを頂点という。転じて日常語としては最高点を指し、「頂点に上り詰める」等と言う。 図ではA,B,Cの3点が頂点 一般にn角形には頂点はn個あり、辺の本数に等しい。座標平面上にある図形ではその頂点を含む範囲で連続であっても微分不可能である。 また曲線が極大値や極小値をとる点のことを頂点ということもある。例えば放物線 y.

新しい!!: 正単体と頂点 · 続きを見る »

超立方体

4次元超立方体 超立方体(ちょうりっぽうたい、hypercube)とは、2次元の正方形、3次元の立方体、4次元の正八胞体を各次元に一般化した正多胞体である。なお、0次元超立方体は点、1次元超立方体は線分である。 正測体(せいそくたい)、γ体(ガンマたい)とも言い、n 次元超立方体を \gamma_n と書く。 正単体、正軸体と並んで、5次元以上での3種類の正多胞体の1つである。 単に超立方体と言った場合は特に四次元の超立方体(tesseract)を指すこともある。 右図は、四次元超立方体を二次元に投影した図である。立方体を二次元に投影した場合と同様に、各辺の長さや成す角度は歪んでいるが、実際の辺の長さはすべて等しく、角も直角である。胞(立方体)の数は、投影図において外側の大きな立方体、内側の立方体、これら2つの対応する面をそれぞれ結ぶ(対応する稜線を4つ選ぶ)部分に6つあり、胞は計8つである。.

新しい!!: 正単体と超立方体 · 続きを見る »

辺(へん、二次元図形ではside、三次元図形ではedge(但し、円柱の辺の様に線分でないものはedgeと呼ばれない))は、特定の“図形”の中で 1 次元の“部分”となっている、両端に頂点と呼ばれる特別の点を 0 次元の“部分”として含むような線分である。辺は“線分”であり通常はまっすぐであるものを指すが、位相幾何学(トポロジー)的な文脈など、場合によっては曲がっていても構わずに辺と呼ぶことがある。 辺と呼ばれる“部分”を含むような“図形”としては例えば、多角形、グラフ理論におけるグラフ、単体的複体などを挙げることができる。 正確に辺の概念を考えるためには、頂点と呼ばれる点の集合 V の部分集合からなる集合族の族 D を図形として捉えて、V の二つの頂点 v, w に対して、D に含まれる の形(あるいはこれに空集合を含めた形)に表される集合、あるいは同じことではあるが、 の冪集合に順序同型なる集合が辺であるというのが適当である。ユークリッド空間内の点集合を図形と捉えるような立場では、このような D と図形とが一対一に対応すると考えることは望むべくもない。特に辺上には無数の点が乗っており、頂点を決めても辺が一意的に決まるわけではない。それでもなお、辺はこのような方法によって図形の中の“部分”として特徴付けられる。 Category:初等幾何学 Category:数学に関する記事.

新しい!!: 正単体と辺 · 続きを見る »

重心

重心(じゅうしん、center of gravity)は、力学において、空間的広がりをもって質量が分布するような系において、その質量に対して他の物体から働く万有引力(重力)の合力の作用点である。重力が一様であれば、質量中心(しつりょうちゅうしん、center of mass)と同じであるためしばしば混同されており、本来は異なるのだが、当記事でも基本的には用語を混同したまま説明する(人工衛星の安定に関してなど、これらを区別して行う必要がある議論を除いて、一般にはほぼ100%混同されているためである)。 一様重力下で、質量分布も一様である(または図形の頂点に等質量が凝集している)ときの重心は幾何学的な意味での「重心」(幾何学的中心、)と一致する。より一般の状況における重心はの項を参照せよ。.

新しい!!: 正単体と重心 · 続きを見る »

投影図

投影図(とうえいず、projection)とは、3次元立体物を2次元平面図に写したものを言う。「投象図」ともいい、画法幾何学の用語では「投射図」という。三次元物体と視点との間に投影面を置き、3次元物体上の任意の点と視点とを直線(投影線)で結んだ場合、投影線と投影面の交点を得ることが出来、その点を結んでいくことで投影面上に立体物の平面投影図を得ることが出来る。投影図を得るこの方法を投影法という。.

新しい!!: 正単体と投影図 · 続きを見る »

正多胞体

正多胞体 (regular polytope) とは、正多角形、正多面体などを一般次元へ拡張した、対称性の高い多胞体である。 ある正多胞体の各低次元の要素は合同であり、またそれ自体も正多胞体である。たとえば、ある正多面体の面は合同な正多角形である。ただし、デルタ多面体でわかるように、これは必要十分条件ではない。 正多胞体の必要十分な定義はさまざまだが、よく使われるのは「ファセット(facet、n - 1 次元面)が合同であり、頂点形状が合同である」というものである。.

新しい!!: 正単体と正多胞体 · 続きを見る »

正三角形

正三角形(せいさんかくけい、equilateral triangle)は、正多角形である三角形である。つまり、3本の辺の長さが全て等しい三角形である。3つの内角の大きさが全て等しい三角形と定義してもよい。1つの内角は 60°(π/3 rad)である。また一つの内角が60°である二等辺三角形は正三角形となる。 正三角形.

新しい!!: 正単体と正三角形 · 続きを見る »

正五胞体

正五胞体の投影図の例 正五胞体(せいごほうたい、regular pentachoron)は、4次元正多胞体のうち、胞が5つあるもの。つまり、全ての胞が合同な正四面体からなる五胞体である。 4次元正単体であり、2次元での正三角形、3次元での正四面体の4次元への拡張である。 五胞体の位相幾何学は1種類しかないので、全ての五胞体は正五胞体に位相同型である。.

新しい!!: 正単体と正五胞体 · 続きを見る »

正四面体

正四面体(せいしめんたい、せいよんめんたい、regular tetrahedron)は、4枚の合同な正三角形を面とする四面体である。 最も頂点・辺・面の数が少ない正多面体であり、最も頂点・辺・面の数が少ないデルタ多面体であり、アルキメデスの正三角錐である。また、3次元の正単体である。 なお一般に、n 面体のトポロジーは一定しないが、四面体だけは1種類のトポロジーしかない。つまり、四面体は全て、正四面体と同相であり、正四面体の辺を伸ばしたり縮めたりしたものである。.

新しい!!: 正単体と正四面体 · 続きを見る »

正軸体

2次元正軸体(正方形) 3次元正軸体(正八面体) 4次元正軸体(正十六胞体)の投影図 正軸体(せいじくたい、cross-polytope)は、2次元の正方形、3次元の正八面体、4次元の正十六胞体を各次元に一般化した正多胞体。 なお、定義によっては形式的に0次元正軸体は点、1次元正軸体は線分となるが、正軸体一般の性質の一部が成り立たないため、0次元・1次元に正軸体は存在しないとすることが多い。 \beta体(ベータたい)ともいい、n 次元正軸体を \beta_n と書く。 正単体、超立方体(正測体)と並んで、5次元以上での3種類の正多胞体の1つである。.

新しい!!: 正単体と正軸体 · 続きを見る »

正方形

正方形(せいほうけい、英: square)または正四角形は、平面上の幾何学において、4つの辺の長さが全て等しく、4つの角の角度が全て等しい四角形のことであり、正多角形の1種である。正方形は、長方形、菱形、凧形、平行四辺形、台形の特殊な形だと考えることもできる。なお1m2の面積は、一辺1mの正方形の面積と定義される。1cm2、1km2なども同様である。.

新しい!!: 正単体と正方形 · 続きを見る »

2次元

2次元(にじげん、二次元)は、空間の次元が2であること。次元が2である空間を2次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らず、数学的な一般の意味での空間であり、さまざまなものがある(詳細は「次元」を参照)。.

新しい!!: 正単体と2次元 · 続きを見る »

3次元

3次元(さんじげん、三次元)は、ある概念が直交あるいは独立な(しかし同等な)要素3つの組によって一意に決定可能な場合にしばしば用いられる術語である。.

新しい!!: 正単体と3次元 · 続きを見る »

4次元

4次元(よじげん、四次元)は、次元が4であること。次元が4である空間を4次元空間と呼ぶ。 なおここでいう空間とは、物理空間に限らない。数学においてはユークリッド空間をはじめとしてベクトル空間や多様体など次元を考え得る空間や対象は様々ある(詳細は「次元」および「次元 (数学)」を参照)。.

新しい!!: 正単体と4次元 · 続きを見る »

ここにリダイレクトされます:

Α体

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »