ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

X染色体の不活性化

索引 X染色体の不活性化

X染色体の不活性化(エックスせんしょくたいのふかっせいか、英語:X-inactivation)とは哺乳類の性染色体であるX染色体が、1本を除いて、残りのX染色体で遺伝子発現が抑制される構造に変化することをいう。この現象はライオニゼーション(lyonization)とも呼ばれ、不活性化された染色体をバー小体(バーしょうたい、英語:Barr body)ともいう。 モザイク」状態になるので、黒色と茶色のまだら模様となる。 X染色体の不活性化は、X染色体のほぼ全領域(例外は擬似常染色体領域)がヘテロクロマチン構造をとることで起きる。この不活性化は遺伝子量補償のために起きると考えられている。つまり、雄では1本しかないX染色体で生存に必要な遺伝子を発現させているが、雌では2本のX染色体からの過剰な量の遺伝子の発現を避けるために片方のX染色体を不活性化しているXY型またはXO型の性決定機構を持つ生物の遺伝子量補償については、「X染色体の不活性化」以外の方式をとる場合もある。詳細は遺伝子量補償または「」を参照。。どちらのX染色体が不活性化されるかはマウスやヒトのような真獣下綱動物においては無作為に決まるが、いったん不活性化が起こるとそのX染色体の不活性化状態は変化しない。これに対して有袋類においては父親由来のX染色体が選択的に不活性化されるデイヴィッド・ベインブリッジ『X染色体:男と女を決めるもの』196-197ページ。。 真獣下綱動物の雌では胚発生時に各細胞で不活性化されるX染色体が決定され、それぞれの子孫となる細胞にもその不活性化状態が引き継がれる。そのため、X染色体上の遺伝子座の遺伝子型がヘテロ接合型の場合、細胞によって異なった対立遺伝子が発現するモザイク状態となる。三毛猫は、この状態の代表例として知られている。 また、X染色体に座乗し伴性遺伝をする遺伝子疾患は、ヘテロ接合型の雌()では疾患遺伝子が不活性化されていない細胞で発症している場合があり、モザイクの分布に依存して軽症から重症まで様々となる。同じ理由で、真獣下綱動物の雌のクローン(一卵性双生児など)は先天的な遺伝子型は一致するが、器官各部で発現する対立遺伝子が異なる場合があり、完全に同じ発育をするとは限らない(遺伝子疾患の病状が異なる一卵性双生児の女性の例も存在する『X染色体:男と女を決めるもの』202-210ページ。原著論文は。)。一方、X染色体不活性化が起きない真獣下綱動物の雄、もしくは父方X染色体が不活性化される有袋類の雌などでは、クローン間でのこのような違いは生じない。.

93 関係: 卵母細胞双生児大野乾対立遺伝子岩波書店常染色体三毛猫乗換え (生物学)伴性遺伝ノンコーディングRNAネイチャーネコネズミ上科ハツカネズミハタネズミ亜科メチル化モザイク (遺伝学)リボ核酸リシンヌクレオソームヘテロクロマチンヘテロ接合型ヒトヒストンデオキシリボ核酸フルオレセインドイツニューイングランド・ジャーナル・オブ・メディシンアセチル化イギリスエピジェネティクスカナダカメムシクラインフェルター症候群クロマチンクローングルコース-6-リン酸ゲノム刷り込みターナー症候群哺乳類内部細胞塊共立出版共焦点レーザー顕微鏡動物器官CCDイメージセンサ米国科学アカデミー紀要精巣細胞細胞分裂...細胞周期細胞核線維芽細胞総合研究大学院大学羊膜真獣下綱生殖生殖細胞相同DAPIDNA複製遺伝子遺伝子型遺伝子座遺伝子サイレンシング遺伝子疾患遺伝子発現遺伝子量補償転写 (生物学)錆び猫胚盤胞胚発生胎盤赤血球酸化還元酵素蛍光 in situ ハイブリダイゼーションRNAiX染色体Y染色体染色体染色体異常有袋類昆虫性染色体性決定1890年1949年1959年1960年1961年 インデックスを展開 (43 もっと) »

卵母細胞

卵細胞の成熟過程における染色体数の減少を示した図 卵母細胞(らんぼさいぼう、英:oocyte)は雌性生殖細胞であり、減数分裂により卵細胞となり、後に卵子へ分化する。卵子がovum(複数形:ova)なので混同せぬ様注意を要する。 卵母細胞は卵原細胞(または卵祖細胞)が有糸分裂で増殖した後肥大したものである。卵母細胞が第一減数分裂を終えた状態のものを卵娘細胞(らんじょうさいぼう)と呼び、または第一減数分裂を行う前の卵母細胞を一次卵母細胞、終えたものを二次卵母細胞とも呼ぶ。それぞれの卵娘細胞は卵細胞となり卵子へ分化する。 動物の場合は通常、一つの卵母細胞からは一つの卵子しか生じず、減数分裂で生じたそれ以外の細胞は極体と呼ばれ、後に消滅する。この過程は第一減数分裂複糸期(ディプロテン期)で一旦停止して卵子が必要になるまで卵核胞(germinal vesicle, GV)の状態を(マウスでは数ヶ月、ヒトでは十数~数十年)維持する。減数分裂の再開後、ゴカイなどの環形動物、軟体動物では第一減数分裂前期、尾索類、ヒトデ、多くの昆虫、環形動物のツバサゴカイでは第一減数分裂中期、両生類、硬骨魚類、多くの哺乳類では第二減数分裂中期で再び停止し、受精によって初めて第二極体が放出され、ウニでは減数分裂が終了してから受精する。そのため(受精後の第二極体放出までの)卵子と呼ばれているものの多くは正確には卵娘細胞である。 哺乳類の成長を終えた卵母細胞は卵胞から取り出されると成熟分裂を再開する。 Category:発生生物学 Category:細胞生物学 Category:組織 (生物) Category:生殖系.

新しい!!: X染色体の不活性化と卵母細胞 · 続きを見る »

双生児

ウィリアム・ブーグロー 双生児(そうせいじ)は同じ母親の胎内で同時期に発育して生まれた2人の子供である。いわゆる双子(ふたご)のことであり、多胎児の一種である。多胎児の中では一番多い。 受胎時の受精卵の数により、一卵性双生児(いちらんせいそうせいじ)と二卵性双生児(にらんせいそうせいじ)に大別される。 出産の時には数分程度の時間差で産まれることが多いが、中には数時間から数十日の間隔で生まれる場合もある(双子が一度の分娩で生まれるとは限らない)ので、誕生日・誕生年が異なってしまう兄弟姉妹もいる。 また日本では、かつて後から生まれた方を兄または姉、先に生まれた方を弟または妹として扱う慣習があったが、戸籍法上は生まれた順に記載する事となっている。 双子は多くの哺乳類(猫や羊、フェレットなど)で一般的に観察される出生形態の一つであり、例えば牛の双子発生率は1%から4%程度ある。ただし一般に犬猫の一腹の仔は双子等とは呼ばれず、単に兄弟として扱われる。双子受胎時の困難さを克服できる、あるいは管理することが出来ればより高利益を確保できるため、双子率を上昇させる研究も行なわれている。ただし、類人猿(ヒト上科)の多胎妊娠および多胎出産は非常に珍しい。.

新しい!!: X染色体の不活性化と双生児 · 続きを見る »

大野乾

大野 乾(おおの すすむ、1928年2月1日 - 2000年1月13日)は、日本の生物学者。「遺伝子重複説」や「X染色体上の遺伝子保存則(大野の法則)」の提唱で知られる。京畿道京城府(現大韓民国ソウル)生まれ。.

新しい!!: X染色体の不活性化と大野乾 · 続きを見る »

対立遺伝子

対立遺伝子(たいりついでんし、)とは、対立形質を規定する個々の遺伝子を指す。アレルと呼ばれることもある。.

新しい!!: X染色体の不活性化と対立遺伝子 · 続きを見る »

岩波書店

株式会社岩波書店(いわなみしょてん、Iwanami Shoten, Publishers. )は、日本の出版社。.

新しい!!: X染色体の不活性化と岩波書店 · 続きを見る »

常染色体

常染色体(じょうせんしょくたい)は性染色体以外の染色体のことであり、ヒトの体細胞は22対、44本の常染色体を持つ。常染色体は同じ生物種でも一般に数が多く、中には数百を持つ種もあり、通常アラビア数字あるいはローマ数字で呼ばれる。 どの染色体が何番であるかは本来は大きさ順で決められていたのだが、一部発見時の誤りがあったため実際の大きさとは必ずしも比例しない場合があり、例えばヒトの21番染色体は、22番染色体よりも小さい。 また、内部の遺伝子数と染色体の大きさも比例はせず、下図のように大型の染色体の方が小型のものより遺伝子数が少ない場合もある。 性染色体はX染色体がおよその総塩基対数1億6300万、遺伝子数1098個。Y染色体がおよその総塩基対数5100万、遺伝子数が78個である。.

新しい!!: X染色体の不活性化と常染色体 · 続きを見る »

三毛猫

三毛猫(キジ三毛) 代替文.

新しい!!: X染色体の不活性化と三毛猫 · 続きを見る »

乗換え (生物学)

染色体における乗換え(のりかえ:Chromosomal crossover;交差または交叉ともいう)とは、相同染色体の間で起こる部分的交換をいう。普通は減数分裂の際に起こるが、体細胞分裂で起こるものもある。 乗換えの結果として、同一染色体にある遺伝子の組み合わせの変化、すなわち遺伝的組換えが起きる。 通常の乗換えは、相同染色体の同じ場所(座位)で起き、その結果として過不足なく遺伝子の交換が起こる。一方、交換が異なる座位で起きれば、片方の染色体で遺伝子が重複し、もう片方の染色体では遺伝子が失われる。これは不等乗換えと呼ばれる。 乗換えは染色体の形態的観察から明らかにされた現象であり、これが遺伝学的現象である組換えに対応すると考えられることが、染色体説の大きな根拠となった。.

新しい!!: X染色体の不活性化と乗換え (生物学) · 続きを見る »

伴性遺伝

'''ショウジョウバエの伴性遺伝の例''': X は交配を意味する。黒のバーは赤眼の、白のバーは白眼の遺伝因子またはX染色体を示す。メスはX染色体を2本、オスは1本持つ。純系赤眼のメスと白眼のオスを交配すると、次世代はオスメスともに赤眼になる。得られたメスを赤眼のオスと交配すると、次世代のメスは全て赤眼になるが、オスは半数が赤眼、半数が白眼になる。 伴性遺伝(はんせいいでん、ばんせいいでん)とは、性染色体に依存する遺伝形式である。.

新しい!!: X染色体の不活性化と伴性遺伝 · 続きを見る »

ノンコーディングRNA

ノンコーディングRNA(non-coding RNA、ncRNA、非コードRNA)はタンパク質へ翻訳されずに機能するRNAの総称であり、非翻訳性RNA(non-translatable RNA)ともいう。ノンコーディングRNAを発現する遺伝子を、ノンコーディングRNA遺伝子あるいは単にRNA遺伝子と呼ぶことがある。.

新しい!!: X染色体の不活性化とノンコーディングRNA · 続きを見る »

ネイチャー

『ネイチャー』()は、1869年11月4日、イギリスで天文学者ノーマン・ロッキャーによって創刊された総合学術雑誌である。 世界で特に権威のある学術雑誌のひとつと評価されており、主要な読者は世界中の研究者である。雑誌の記事の多くは学術論文が占め、他に解説記事、ニュース、コラムなどが掲載されている。記事の編集は、イギリスの Nature Publishing Group (NPG) によって行われている。NPGからは、関連誌として他に『ネイチャー ジェネティクス』や『ネイチャー マテリアルズ』など十数誌を発行し、いずれも高いインパクトファクターを持つ。.

新しい!!: X染色体の不活性化とネイチャー · 続きを見る »

ネコ

水槽の金魚を狙うネコ 威嚇をするネコ ネコ(猫)は、狭義には食肉目ネコ科ネコ属に分類されるヨーロッパヤマネコが家畜化されたイエネコ(家猫、)に対する通称である。人間によくなつくため、イヌ(犬)と並ぶ代表的なペットとして世界中で広く飼われている。 より広義には、ヤマネコやネコ科動物全般を指すこともある(後述)。.

新しい!!: X染色体の不活性化とネコ · 続きを見る »

ネズミ上科

ネズミ上科(ネズミじょうか)は、ネズミ目ネズミ亜科ネズミ下目に属する上科である。いわゆる「ネズミ」に含まれる。非常に発展した分類群で、6科19亜科280属1300種が属する。.

新しい!!: X染色体の不活性化とネズミ上科 · 続きを見る »

ハツカネズミ

ハツカネズミ(二十日鼠、廿日鼠、鼷、House mouse)は、ネズミ目(齧歯目)ネズミ科 ハツカネズミ属の1種である。学名は Mus musculus。.

新しい!!: X染色体の不活性化とハツカネズミ · 続きを見る »

ハタネズミ亜科

ハタネズミ亜科(Arvicolinae)は、哺乳綱 ネズミ目 キヌゲネズミ科に属する亜科。模式属はミズハタネズミ属 Arvicola。 本亜科は、旧来は Microtinae (ハタネズミ亜科)とされていたが、Kretzoi(1962) が Arvicolinae の呼称に先取権があることを指摘したことにより、Arvicolinae に改められた。日本では、以前のまま「ハタネズミ亜科」と呼ぶ人も少なくないが、Arvicola がミズハタネズミ属であることから、厳密にはミズハタネズミ亜科であるといえる。2005年、MusserとCarletonにより系統分類が整理された結果、この亜科には7族、26属の元に143の種が属することになった。以下の分類はそれに基づくものである。.

新しい!!: X染色体の不活性化とハタネズミ亜科 · 続きを見る »

メチル化

メチル化(メチルか、methylation)は、さまざまな基質にメチル基が置換または結合することを意味する化学用語である。この用語は一般に、化学、生化学、生物科学で使われる。 生化学では、メチル化はとりわけ水素原子とメチル基の置換に用いられる。 生物の機構では、メチル化は酵素によって触媒される。メチル化は重金属の修飾、遺伝子発現の調節、タンパク質の機能調節、RNA代謝に深く関わっている。また、重金属のメチル化は生物機構の外部でも起こることができる。さらに、メチル化は組織標本の染色におけるアーティファクトを減らすのに用いることができる。.

新しい!!: X染色体の不活性化とメチル化 · 続きを見る »

モザイク (遺伝学)

生物学におけるモザイクとは、一つの個体の中で、遺伝的に異なる細胞が混在することを指す。普通は多細胞生物の体の一部分が周囲の部分とは遺伝的に異なっている状態のことで、往々にして見かけの上でも異なるため、異質な様子の部分がはめあわせのように見えるのを指す。 類似の現象にキメラがあるが、キメラは遺伝的に異なった部分が、別の個体を起源とするところに違いがある。モザイクは、元々同一の個体であるものにおいて、遺伝的に異なる部分が生まれた場合である。これは、体細胞分裂における失敗や体細胞における突然変異などによるものである。 有名なものに昆虫における性的モザイクがある。これは体の部分によってその表す性が異なるもので、往々にして体の正中線を境に、左右が別の性を示す。チョウのように性的二形が視覚的にはっきりしているものでは、まるで二匹を真ん中で切って貼り合わせたような奇妙な姿となる。.

新しい!!: X染色体の不活性化とモザイク (遺伝学) · 続きを見る »

リボ核酸

リボ核酸(リボかくさん、ribonucleic acid, RNA)は、リボヌクレオチドがホスホジエステル結合でつながった核酸である。RNAと略されることが多い。RNAのヌクレオチドはリボース、リン酸、塩基から構成される。基本的に核酸塩基としてアデニン (A)、グアニン (G)、シトシン (C)、ウラシル (U) を有する。RNAポリメラーゼによりDNAを鋳型にして転写(合成)される。各塩基はDNAのそれと対応しているが、ウラシルはチミンに対応する。RNAは生体内でタンパク質合成を行う際に必要なリボソームの活性中心部位を構成している。 生体内での挙動や構造により、伝令RNA(メッセンジャーRNA、mRNA)、運搬RNA(トランスファーRNA、tRNA)、リボソームRNA (rRNA)、ノンコーディングRNA (ncRNA)、リボザイム、二重鎖RNA (dsRNA) などさまざまな分類がなされる。.

新しい!!: X染色体の不活性化とリボ核酸 · 続きを見る »

リシン

リシン()はα-アミノ酸のひとつで側鎖に 4-アミノブチル基を持つ。リジンと表記あるいは音読する場合もある。ソディウム。 しかし、分野によってはソディウムを使うように、分野ごとに何が標準的な発音や読みかは異なります。 正しい読みという概念は妄想なのでこの部分をコメントアウトします。 (ただし、リジンはドイツ語読みであるため、現在ではリシンと表記および音読するのが正しい) --> タンパク質構成アミノ酸で、必須アミノ酸である。略号は Lys あるいは K である。側鎖にアミノ基を持つことから、塩基性アミノ酸に分類される。リシンは、クエン酸回路に取り込まれてエネルギーを生み出すケト原性アミノ酸である。.

新しい!!: X染色体の不活性化とリシン · 続きを見る »

ヌクレオソーム

H4のコアヒストンからなるヌクレオソームコアの粒子の結晶構造とDNA。らせん軸の上部方向から見たもの。 ヌクレオソーム(ぬくれおそーむ;nucleosome)は、すべての真核生物に共通するクロマチンの基本的構成単位である。 ヌクレオソームは、4種のコアヒストン(H2A、H2B、H3、H4)から構成されるヒストン8量体に146 bpの2重鎖DNAが巻き付いた構造をとる。2つのヌクレオソームをつなぐ部分のDNAはリンカーDNAと呼ばれる。この構造を電子顕微鏡で観察すると、DNA鎖上にビーズが並んでいるように見える。 アダ・オリンズ、ドナルド・オリンズ夫妻、ロジャー・コーンバーグらによって1974年に提唱されたヌクレオソーム説は、その後の遺伝子発現研究の基盤をつくった。古細菌もヒストン様のタンパク質をもち、ヌクレオソーム様の構造が観察されているが、その解析は進んでいない。.

新しい!!: X染色体の不活性化とヌクレオソーム · 続きを見る »

ヘテロクロマチン

ヘテロクロマチン(heterochromatin)はほとんどの場合(ただし常にではない)、細胞周期の間も常に凝縮されたクロマチンの形状、または種類のことをいう。転写されず、濃い色が観察される。セントロメアとテロメア周辺によく見つかり、主に短い配列の繰り返し構造。構造ヘテロクロマチン(Constitutive Heterochromatin)には高頻度から中頻度の繰り返し配列が含まれ、テロメアやセントロメア周辺に存在する。また、条件的ヘテロクロマチン(Facultative Heterochtomarin)は完全な染色体になる能力をもつ。例)バー小体(不活性化されたX染色体)ではほぼ全領域がヘテロクロマチン構造をとる。.

新しい!!: X染色体の不活性化とヘテロクロマチン · 続きを見る »

ヘテロ接合型

ヘテロ接合型 (ヘテロせつごうがた、heterozygous) は、異型接合体とも呼ばれ、遺伝学において、二倍体生物のある遺伝子座が Aa、Bb のように異なった対立遺伝子からなる状態のこと。このような遺伝子型をヘテロ接合型 (又はヘテロ接合体) といい、同じ対立遺伝子を持つ遺伝子型をホモ接合型という。 メンデルの法則では、この状態の生物においてはそのどちらか一方の遺伝子の形質のみが表現型として表れるとする (優性の法則)。この時、表れる方の遺伝形質を優性の形質といい、遺伝子としては保持しているが表現型に表れないものを劣性の形質という。.

新しい!!: X染色体の不活性化とヘテロ接合型 · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: X染色体の不活性化とヒト · 続きを見る »

ヒストン

ヒストン(histone)は、真核生物のクロマチン(染色体)を構成する主要なタンパク質である。.

新しい!!: X染色体の不活性化とヒストン · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: X染色体の不活性化とデオキシリボ核酸 · 続きを見る »

フルオレセイン

フルオレセイン (fluorescein) は顕微鏡観察に用いられる蛍光色素の一種である。他にも色素レーザーの媒体、法医学や血清学における血痕の探索、用途などに広く利用されている。.

新しい!!: X染色体の不活性化とフルオレセイン · 続きを見る »

ドイツ

ドイツ連邦共和国(ドイツれんぽうきょうわこく、Bundesrepublik Deutschland)、通称ドイツ(Deutschland)は、ヨーロッパ中西部に位置する連邦制共和国である。もともと「ドイツ連邦共和国」という国は西欧に分類されているが、東ドイツ(ドイツ民主共和国)の民主化と東西ドイツの統一により、「中欧」または「中西欧」として再び分類されるようになっている。.

新しい!!: X染色体の不活性化とドイツ · 続きを見る »

ニューイングランド・ジャーナル・オブ・メディシン

『ニューイングランド・ジャーナル・オブ・メディシン』(英語:The New England Journal of Medicine、略称:N Engl J Med または NEJM)は、マサチューセッツ内科外科学会によって発行される、英語で書かれた査読制の医学雑誌である。継続して発行されている医学雑誌のうちでは世界で最も長い歴史を誇り、また世界で最も広く読まれ、最もよく引用され、最も影響を与えている一般的な医学系定期刊行物となっている 。日本版は1997年より南江堂から発行されている。.

新しい!!: X染色体の不活性化とニューイングランド・ジャーナル・オブ・メディシン · 続きを見る »

アセチル化

アセチル化(アセチルか、Acetylation)とは、有機化合物中にアセチル基が導入されることである。IUPAC命名法ではエタノイル化という。逆に、有機化合物からアセチル基が除かれる反応は脱アセチル化という。 具体的には、有機化合物中の活性化した水素原子がアセチル基で置き換わる反応である。水酸基の水素原子がアセチル基で置換されてエステル(酢酸塩)を生じる反応もこの反応に含まれる。アセチル化剤としては、しばしば無水酢酸が使われる。この反応は例えば、アスピリンの合成などにも必須である。.

新しい!!: X染色体の不活性化とアセチル化 · 続きを見る »

イギリス

レートブリテン及び北アイルランド連合王国(グレートブリテンおよびきたアイルランドれんごうおうこく、United Kingdom of Great Britain and Northern Ireland)、通称の一例としてイギリス、あるいは英国(えいこく)は、ヨーロッパ大陸の北西岸に位置するグレートブリテン島・アイルランド島北東部・その他多くの島々から成る同君連合型の主権国家である。イングランド、ウェールズ、スコットランド、北アイルランドの4つの国で構成されている。 また、イギリスの擬人化にジョン・ブル、ブリタニアがある。.

新しい!!: X染色体の不活性化とイギリス · 続きを見る »

エピジェネティクス

ピジェネティクス()とは、一般的には「DNA塩基配列の変化を伴わない細胞分裂後も継承される遺伝子発現あるいは細胞表現型の変化を研究する学問領域」である。ただし、歴史的な用法や研究者による定義の違いもあり、その内容は必ずしも一致したものではない。 多くの生命現象に関連し、人工多能性幹細胞(iPS細胞)・胚性幹細胞(ES細胞)が多様な器官となる能力(分化能)、哺乳類クローン作成の成否と異常発生などに影響する要因(リプログラミング)、がんや遺伝子疾患の発生のメカニズム、脳機能などにもかかわっている。.

新しい!!: X染色体の不活性化とエピジェネティクス · 続きを見る »

カナダ

ナダ(英・、 キャナダ、 キャナダ、カナダ)は、10の州と3の準州を持つ連邦立憲君主制国家である。イギリス連邦加盟国であり、英連邦王国のひとつ。北アメリカ大陸北部に位置し、アメリカ合衆国と国境を接する。首都はオタワ(オンタリオ州)。国土面積は世界最大のロシアに次いで広い。 歴史的に先住民族が居住する中、外からやってきた英仏両国の植民地連合体として始まった。1763年からイギリス帝国に包括された。1867年の連邦化をきっかけに独立が進み、1931年ウエストミンスター憲章で承認され、1982年憲法制定をもって政体が安定した。一連の過程においてアメリカと政治・経済両面での関係が深まった。第一次世界大戦のとき首都にはイングランド銀行初の在外金準備が保管され、1917年7月上旬にJPモルガンへ償還するときなどに取り崩された。1943年にケベック協定を結んだ(当時のウラン生産力も参照)。1952年にはロスチャイルドの主導でブリンコ(BRINCO)という自然開発計画がスタートしている。結果として1955年と1960年を比べて、ウラン生産量は約13倍に跳ね上がった。1969年に石油自給国となる過程では、開発資金を供給するセカンダリー・バンキングへ機関投資家も参入したので、カナダの政治経済は機関化したのであった。 立憲君主制で、連邦政府の運営は首相を中心に行われている。パワー・コーポレーションと政界の連携により北米自由貿易協定(NAFTA)に加盟した。.

新しい!!: X染色体の不活性化とカナダ · 続きを見る »

カメムシ

メムシ(椿象、亀虫)は、カメムシ目(半翅目)・カメムシ亜目(異翅亜目)に属する昆虫のうち、カメムシ科など陸生昆虫の総称である。標準和名を「カメムシ」とする昆虫は存在しない。悪臭を放つことで知られる。そこから「クサムシ」や「屁こき虫」という俗称があり、ヘッピリやクサンボ、ジャコという地方名も知られる。英名の“stink bug”(臭い虫)もその習性に由来する。.

新しい!!: X染色体の不活性化とカメムシ · 続きを見る »

クラインフェルター症候群

ラインフェルター症候群(クラインフェルターしょうこうぐん、)とは、男性の性染色体にX染色体が一つ以上多いことで生じる一連の症候群。1942年にによって初めて報告された。この症候群の男性は通常、生殖能力が無く他の男性と比較して糖尿病田中早津紀、前田康司、奥田譲治 ほか、 糖尿病 45巻 (2002) 10号 p.747-752, 、慢性肺疾患、静脈瘤、甲状腺機能低下症、乳がんを発症しやすい傾向にあるとされている。.

新しい!!: X染色体の不活性化とクラインフェルター症候群 · 続きを見る »

クロマチン

DNAが折り畳まれてクロマチンをつくり、分裂期にはさらに染色体へ変換される。 クロマチン(chromatin)とは、真核細胞内に存在するDNAとタンパク質の複合体のことを表す。.

新しい!!: X染色体の不活性化とクロマチン · 続きを見る »

クローン

ーンは、同一の起源を持ち、尚かつ均一な遺伝情報を持つ核酸、細胞、個体の集団。もとはギリシア語で植物の小枝の集まりを意味するκλών klōn から。1903年、が、栄養生殖によって増殖した個体集団を指す生物学用語として“” という語を考案した。本来の意味は挿し木である。.

新しい!!: X染色体の不活性化とクローン · 続きを見る »

グルコース-6-リン酸

ルコース-6-リン酸(グルコース-6-リンさん、Glucose-6-phosphate、G6P)とは、6位の炭素がリン酸化したグルコース分子のことである。ロビソンエステルとも言う。細胞中には多量に存在し、細胞に取り込まれたグルコースのほとんどがリン酸化を受けてG6Pになる。 細胞化学の中心的な化合物の一つであるため、G6Pはその後様々な運命をたどる。その始めに、まずは次のどちらかの代謝系に入る。.

新しい!!: X染色体の不活性化とグルコース-6-リン酸 · 続きを見る »

ゲノム刷り込み

ノム刷り込みまたはゲノムインプリンティング (英語::en:genomic imprinting,稀にgenetic imprinting)は、遺伝子発現の制御の方法の一つである。一般に哺乳類は父親と母親から同じ遺伝子を二つ(性染色体の場合は一つ)受け継ぐが、いくつかの遺伝子については片方の親から受け継いだ遺伝子のみが発現することが知られている。 このように遺伝子が両親のどちらからもらったか覚えていることをゲノム刷り込みという。.

新しい!!: X染色体の不活性化とゲノム刷り込み · 続きを見る »

ターナー症候群

ターナー症候群(ターナーしょうこうぐん、Turner syndrome)とは、染色体異常の一つで、正常女性の性染色体がXXの2本なのに対し、X染色体が1本しかないことによって発生する一連の症候群のこと。その名称は、この症候群を報告したアメリカの内分泌学者に由来する。大多数は適切な医学的介入のもとで健康な社会生活を送ることから、病気・障害ではなく一種の体質であることを強調する意味で「ターナー女性」という呼称を用いることが推奨されている小児科診療 第79巻増刊号「小児の症候群」 p70。.

新しい!!: X染色体の不活性化とターナー症候群 · 続きを見る »

哺乳類

哺乳類(ほにゅうるい、英語:Mammals, /ˈmam(ə)l/、 学名:)は、脊椎動物に分類される生物群である。分類階級は哺乳綱(ほにゅうこう)とされる。 基本的に有性生殖を行い、現存する多くの種が胎生で、乳で子を育てるのが特徴である。ヒトは哺乳綱の中の霊長目ヒト科ヒト属に分類される。 哺乳類に属する動物の種の数は、研究者によって変動するが、おおむね4,300から4,600ほどであり、脊索動物門の約10%、広義の動物界の約0.4%にあたる。 日本およびその近海には、外来種も含め、約170種が生息する(日本の哺乳類一覧、Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh eds.

新しい!!: X染色体の不活性化と哺乳類 · 続きを見る »

内部細胞塊

内部細胞塊(ないぶさいぼうかい、inner cell mass:ICM)とは、哺乳類の早期胚発生において、胚盤胞の内側に形成される細胞集団のことである。.

新しい!!: X染色体の不活性化と内部細胞塊 · 続きを見る »

共立出版

共立出版株式会社(きょうりつしゅっぱん)は、理工系の専門書を中心に刊行している出版社。自然科学書協会、日本理学書総目録刊行会に加盟している。大学の教科書としてもよく使用され、大学生協との取引も多い。.

新しい!!: X染色体の不活性化と共立出版 · 続きを見る »

共焦点レーザー顕微鏡

共焦点レーザー顕微鏡(きょうしょうてんレーザーけんびきょう)とは、高解像度のイメージと三次元情報の再構築が可能な顕微鏡の一種。共焦点顕微鏡(Confocal microscopy)の主な特徴は、焦点距離がばらばらになるような厚い試料であってもボケのない像を得られることである。イメージは微小なポイント毎に撮られ、それをコンピュータで再構成して全体の画像が得られる。共焦点顕微鏡の原理自体はマービン・ミンスキーによって1953年に開発されたものであったが、理想に近い光源としてレーザーが一般化し共焦点「レーザー」顕微鏡となることで1980年代にようやく普及するようになった。通常のポイントスキャン型の他に、ニポウディスクを利用してスキャンする方式がある。 共焦点レーザー走査型顕微鏡 (Confocal laser scanning microscopy) とも呼ばれ、CLSM あるいは LSCM と略記される。.

新しい!!: X染色体の不活性化と共焦点レーザー顕微鏡 · 続きを見る »

動物

動物(どうぶつ、羅: Animalia、単数: Animal)とは、.

新しい!!: X染色体の不活性化と動物 · 続きを見る »

器官

器官(きかん、organ)とは、生物のうち、動物や植物などの多細胞生物の体を構成する単位で、形態的に周囲と区別され、それ全体としてひとまとまりの機能を担うもののこと。生体内の構造の単位としては、多数の細胞が集まって組織を構成し、複数の組織が集まって器官を構成している。 細胞内にあって、細胞を構成する機能単位は、細胞小器官 (細胞内小器官、小器官、オルガネラ) を参照。.

新しい!!: X染色体の不活性化と器官 · 続きを見る »

CCDイメージセンサ

CCDイメージセンサ (シーシーディーイメージセンサ、CCD image sensor)は固体撮像素子のひとつで、ビデオカメラ、デジタルカメラ、光検出器などに広く使用されている半導体素子である。単にCCDと呼ばれることも多い神崎 洋治 (著), 西井 美鷹 (著) 「体系的に学ぶデジタルカメラのしくみ 第2版」日経BPソフトプレス; 第2版 (2009/1/29) 安藤 幸司 (著)「らくらく図解 CCD/CMOSカメラの原理と実践 」加藤俊夫 半導体入門講座(Semiconductor JapanのWeb上講義)第16回 イメージセンサ http://www.roper.co.jp/Html/roper/tech_note/html/rp00.htmhttp://www7.ocn.ne.jp/~terl/JTTAS/JTTAS-CMOS.htm。.

新しい!!: X染色体の不活性化とCCDイメージセンサ · 続きを見る »

米国科学アカデミー紀要

『米国科学アカデミー紀要』(英語:Proceedings of the National Academy of Sciences of the United States of America、略称:PNAS または Proc.

新しい!!: X染色体の不活性化と米国科学アカデミー紀要 · 続きを見る »

精巣

精巣(せいそう、英語 Testicle、ラテン語 Testis)とは、動物の雄がもつ生殖器の1つ。雄性配偶子(精子)を産生する器官。哺乳類などの精巣は睾丸(こうがん、英語 Balls)とも呼ばれ、左右1対ある。俗称は、金玉(きんたま)、玉(たま)、ふぐりなど。また、魚類の精巣は白子(しらこ)と呼ばれ、魚の種類によっては食用にする。 脊椎動物の精巣は精子を作り出す他に、ホルモンであるアンドロゲンを分泌する内分泌器官でもある。 また精巣は男性の急所としても知られ軽くぶつけるだけでもかなり強い痛みを感じる部分である。.

新しい!!: X染色体の不活性化と精巣 · 続きを見る »

細胞

動物の真核細胞のスケッチ 細胞(さいぼう)とは、全ての生物が持つ、微小な部屋状の下部構造のこと。生物体の構造上・機能上の基本単位。そして同時にそれ自体を生命体と言うこともできる生化学辞典第2版、p.531-532 【単細胞生物】。 細胞を意味する英語の「cell」の語源はギリシャ語で「小さな部屋」を意味する語である。1665年にこの構造を発見したロバート・フックが自著においてcellと命名した。.

新しい!!: X染色体の不活性化と細胞 · 続きを見る »

細胞分裂

細胞分裂(さいぼうぶんれつ)とは、1つの細胞が2個以上の娘細胞に分かれる生命現象。核分裂とそれに引き続く細胞質分裂に分けてそれぞれ研究が進む。単細胞生物では細胞分裂が個体の増殖となる。多細胞生物では、受精卵以後の発生に伴う細胞分裂によって細胞数が増える。それらは厳密な制御機構に裏打ちされており、その異常はたとえばガン化を引き起こす。ウィルヒョウは「細胞は細胞から生ず」と言ったと伝えられているが、これこそが細胞分裂を示している。.

新しい!!: X染色体の不活性化と細胞分裂 · 続きを見る »

細胞周期

細胞周期(さいぼうしゅうき; cell cycle)は、ひとつの細胞が二つの娘細胞を生み出す過程で起こる一連の事象、およびその周期のことをいう。細胞周期の代表的な事象として、ゲノムDNAの複製と分配、それに引き続く細胞質分裂がある。.

新しい!!: X染色体の不活性化と細胞周期 · 続きを見る »

細胞核

細胞核(さいぼうかく、cell nucleus)とは、真核生物の細胞を構成する細胞小器官のひとつ。細胞の遺伝情報の保存と伝達を行い、ほぼすべての細胞に存在する。通常は単に核ということが多い。.

新しい!!: X染色体の不活性化と細胞核 · 続きを見る »

線維芽細胞

線維芽細胞(せんいがさいぼう、fibroblast)は、結合組織を構成する細胞の1つ。コラーゲン・エラスチン・ヒアルロン酸といった真皮の成分を作り出す。 細胞小器官が豊富であり、核小体が明瞭な楕円形の核を有し、細胞質は塩基好性を示す。 また、線維芽細胞は比較的分裂周期が早い為、特別に処理をしないで同じ容器の中で複数の細胞と共に長期間培養すると他の細胞より大量に増殖する。.

新しい!!: X染色体の不活性化と線維芽細胞 · 続きを見る »

総合研究大学院大学

記載なし。

新しい!!: X染色体の不活性化と総合研究大学院大学 · 続きを見る »

羊膜

羊膜(ようまく、amnion)は、脊椎動物の爬虫類、鳥類、哺乳類の動物の発生の過程において形成される胎子と羊水を包む胚膜のひとつ。漿膜と共に胎児を包むが、直接に胎児を包むのがこちらである。外胚葉を起源とする。 羊膜の胎子側の空洞は羊膜腔と呼ばれ、羊水によって満たされている。羊水は胎子と羊膜との付着を防ぎ、胎子の運動を可能にしている。分娩時には破水を起こし、胎子の娩出を助ける。.

新しい!!: X染色体の不活性化と羊膜 · 続きを見る »

真獣下綱

真獣下綱(しんじゅうかこう;Eutheria)とはヒトを含む有胎盤哺乳類を包括する分類群である。有袋類と絶滅した近縁種を含んだ後獣下綱とは姉妹群である。正獣下綱、真獣類、正獣類などとも。 哺乳類の現生種はおよそ4300種だが、うち約4,000が真獣下綱である。また生物地理的な分布においては、オーストラリア区に限られる原獣亜綱(カモノハシ目 / 単孔類)やオーストラリア区及び新北区、新熱帯区のみとなる後獣下綱(有袋類)などとは異なり、ほぼ全世界に分布している。.

新しい!!: X染色体の不活性化と真獣下綱 · 続きを見る »

生殖

生殖(せいしょく、Reproduction)とは、生物が自らと同じ種に属する個体をつくることを言う生化学辞典第2版、p.717 【生殖】。作り出した生物は親、作られた個体は子という関係となり、この単位は世代という種の継続状態を形成する。生殖には、大きく分けて無性生殖 (Asexual reproduction) と有性生殖 (Sexual reproduction) がある。 生殖の基本は個体が持つ固有のDNAを継承することであり、それを端に発する細胞の各小器官(染色体・細胞核・ミトコンドリアなど)の複製が生じ、細胞分裂へと導かれる。そしてこれが積み重なり個体単位の発生に繋がる。.

新しい!!: X染色体の不活性化と生殖 · 続きを見る »

生殖細胞

生殖細胞(せいしょくさいぼう)とは生殖において遺伝情報を次世代へ伝える役割をもつ細胞である。胚細胞ともいう。.

新しい!!: X染色体の不活性化と生殖細胞 · 続きを見る »

相同

同性(そうどうせい)あるいはホモロジー (homology) とは、ある形態や遺伝子が共通の祖先に由来することである。 外見や機能は似ているが共通の祖先に由来しない相似の対義語である。.

新しい!!: X染色体の不活性化と相同 · 続きを見る »

DAPI

DAPI( だぴ/ だーぴー、4',6-diamidino-2-phenylindole)は染色に用いられる蛍光色素の一種で、DNAに対して強力に結合する物質である。蛍光顕微鏡観察に広く利用されている。.

新しい!!: X染色体の不活性化とDAPI · 続きを見る »

DNA複製

'''図1 DNA複製の模式図'''.青色の二本の帯が鋳型鎖(Template Strands)。2本が平行に並んでいる上部は二重らせん、斜めになって非平行になっている下部は二重らせんが解けて一本鎖となった領域である。上部と下部の境目が複製フォーク (Replication Fork) であり、二重らせん領域は時間とともに解けられていくので複製フォークは図の上側へと進行していく。下部の2本の一本鎖はそれぞれ異なる様式でDNAポリメラーゼ(DNA Polymerase、緑色)により複製され、上から見て5'から3'の左の鋳型鎖ではDNAポリメラーゼが複製フォークと同じ方向に進行し、一本のリーディング鎖 (Leading Strand) が合成される。上から見て3'から5'の右の鋳型鎖ではDNAポリメラーゼが複製フォークと逆の方向に進み、途切れ途切れにいくつもの岡崎フラグメント (Okazaki Fragments) が合成されていく。伸長が終わった岡崎フラグメントはDNAリガーゼ(DNA Ligase、ピンク)によりつなぎ合わせられ、ラギング鎖 (Lagging Strand) となる。 DNA複製(ディーエヌエイふくせい、DNA replication)は、細胞分裂における核分裂の前に、DNAが複製されてその数が2倍となる過程である。生物学ではしばしば複製 (replication) と略される。セントラルドグマの一員とされる。複製される一本鎖DNAを親鎖 (parent strand)、DNA複製によって新しく合成された一本鎖DNAを娘鎖 (daughter strand) という。また、DNA複製により生じた染色体の個々を姉妹染色分体 (sister chromatid) という。.

新しい!!: X染色体の不活性化とDNA複製 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: X染色体の不活性化と遺伝子 · 続きを見る »

遺伝子型

遺伝子型(いでんしがた、いでんしけい、、ジェノタイプ、ジーノタイプ)は、ある生物個体が持つ遺伝子の構成のこと。 ある遺伝子が存在しても、その形質が発現しない場合もあり、表出する形質(表現型)と遺伝子型は必ずしも 1:1 に対応しない。例えば、ヒトのABO式血液型ならば、A型というひとつの表現型に対してAAとAOという二つの遺伝子型があり得る。.

新しい!!: X染色体の不活性化と遺伝子型 · 続きを見る »

遺伝子座

遺伝子座(いでんしざ)とは染色体やゲノムにおける遺伝子の位置のこと。英語などでは Locus(ローカス)と呼び、これはラテン語で場所を意味する単語。複数形は Loci(ローサイ)。 通常、転写される領域を指すが、転写調節領域を含む場合もある。二倍体における対立遺伝子どうしの遺伝子座は同一である。また、遺伝子に該当しないような塩基配列・遺伝マーカーの位置は座位(ざい)という。 染色体上の遺伝子座を記載したものを遺伝子地図とよぶ。また組み替え価から導き出された遺伝子間の距離を基に作成したものは連鎖地図と呼ばれる。ゲノムプロジェクトによってゲノムの塩基配列が解読されることによって、全遺伝子座が明らかになるはずであるが、miRNAや偽遺伝子、反復配列など解決すべき問題が残っている。 Category:遺伝子.

新しい!!: X染色体の不活性化と遺伝子座 · 続きを見る »

遺伝子サイレンシング

遺伝子サイレンシング(英:gene silencing、遺伝子抑制、ジーンサイレンシング)とは一般に、クロマチンへの後天的な修飾により遺伝子を制御する、いわゆるエピジェネティクス的遺伝子制御のことを示す 。遺伝子サイレンシングという用語は通常、遺伝子組み換え以外の機序で遺伝子の「スイッチを切る」ことを記述するために用いられる。正常な環境下で発現する(スイッチが入る)遺伝子のスイッチが細胞内の何らかの機構により切られることを意味する。遺伝子サイレンシングは機構の違いにより、転写型遺伝子サイレンシングと転写後遺伝子サイレンシングに分類される。転写型遺伝子サイレンシングとは転写そのものが止められた状態であり、mRNA合成の停止により確認される。転写型遺伝子サイレンシングはヒストンの修飾、またはヘテロクロマチンの環境が作り変えられた結果生じると考えられている。一方、転写後遺伝子抑制とは、特定のmRNAが破壊されることによるものである。mRNAの破壊は転写による遺伝子生産物(タンパク質など)の形成を妨げる。転写後遺伝子抑制に共通する機構はRNAiである。どちらの方法とも内生遺伝子の制御に用いられる。遺伝子サイレンシングはまたゲノムの組織をトランスポゾンやウイルスから保護する。遺伝子サイレンシングはDNAを感染症から守るために細胞が太古から本来持っている免疫機構の一つなのかもしれない。糸状菌アカパンカビ(学名: Neurospora crassa)の例に見られるように、遺伝子は減数分裂の段階でDNAがメチル化を受けてサイレンシングされることがある。.

新しい!!: X染色体の不活性化と遺伝子サイレンシング · 続きを見る »

遺伝子疾患

遺伝子疾患(いでんししっかん、Genetic disorder)は、遺伝子の異常が原因になって起きる疾患の総称。遺伝性疾患、遺伝疾患。 狭義に遺伝病とも称されるが、現在では次世代に遺伝しない場合も含めた概念となっている。.

新しい!!: X染色体の不活性化と遺伝子疾患 · 続きを見る »

遺伝子発現

遺伝子発現(いでんしはつげん)とは、単に発現ともいい、遺伝子の情報が細胞における構造および機能に変換される過程をいう。具体的には、普通は遺伝情報に基づいてタンパク質が合成されることを指すが、RNAとして機能する遺伝子(ノンコーディングRNA)に関してはRNAの合成が発現ということになる。また発現される量(発現量)のことを発現ということもある。.

新しい!!: X染色体の不活性化と遺伝子発現 · 続きを見る »

遺伝子量補償

遺伝子量補償(いでんしりょうほしょう、dosage compensation)とは、性染色体上にコードされている遺伝子の発現量が雄と雌の間で同じになるように調節されていること。遺伝子量補正ともいう。 その仕組みは生物によって大きく異なる。例えば、哺乳類の雄はXY、雌はXXという一対の性染色体をもつ。雌 (XX) の個体では、発生の過程において一方のX染色体がランダムに不活性化される結果、X染色体からの遺伝子の発現量が雄 (XY) のそれと同等になる。ショウジョウバエにおいても、雄はXY型、雌はXX型であるが、この場合、雄のX染色体からの発現量が2倍に高められることによりXX型との均衡がとられる。一方線虫では、雄はXO型、雌雄同体(hermaphrodite)はXX型の性染色体を持つ。この種では、XX型の個体において(一方のX染色体を不活性化するのではなく)2本のX染色体からの発現量をともに半減させることにより、XO型とのバランスを合わせる仕組みが出来上がっている。 染色体単位で調節されるグローバルな遺伝子制御機構、あるいはエピジェネティクスが関与した制御機構の対象として、この分野の研究は注目を集めている。例えば、哺乳類およびショウジョウバエにおける遺伝子量補償には、ヒストンの化学修飾が関与していることが知られている。また線虫では、コンデンシンに類似した複合体がX染色体に特異的にリクルートされ、その高次構造を変化させることにより遺伝子発現を抑制している 。 哺乳類およびショウジョウバエでは、ノンコーディングRNAと遺伝子量補償の関係がよく知られている。哺乳類ではXistと呼ばれるノンコーディングRNAが、二本ある雌のX染色体の一方にのみ特異的に結合し、転写を抑制している。一方、ショウジョウバエでは、roX1およびroX2の2種類のノンコーディングRNAが、雄のX染色体に結合し、転写量を約二倍に活性化することにより、遺伝子量補償が達成されている。.

新しい!!: X染色体の不活性化と遺伝子量補償 · 続きを見る »

転写 (生物学)

転写中のDNAとRNAの電子顕微鏡写真。DNAの周りに薄く広がるのが合成途中のRNA(多数のRNAが同時に転写されているため帯状に見える)。RNAポリメラーゼはDNA上をBeginからEndにかけて移動しながらDNAの情報をRNAに写し取っていく。Beginではまだ転写が開始された直後なため個々のRNA鎖が短く、帯の幅が狭く見えるが、End付近では転写がかなり進行しているため個々のRNA鎖が長く(帯の幅が広く)なっている 転写(てんしゃ、Transcription)とは、一般に染色体またはオルガネラのDNAの塩基配列(遺伝子)を元に、RNA(転写産物transcription product)が合成されることをいう。遺伝子が機能するための過程(遺伝子発現)の一つであり、セントラルドグマの最初の段階にあたる。.

新しい!!: X染色体の不活性化と転写 (生物学) · 続きを見る »

錆び猫

錆び猫(さびねこ)とは、黒と赤のモザイク模様の被毛を持つ猫の総称。英語でTortoiseshell(べっ甲)という。.

新しい!!: X染色体の不活性化と錆び猫 · 続きを見る »

胚(はい、独,英: Embryo)とは多細胞生物の個体発生におけるごく初期の段階の個体を指す。胚子ともいう。.

新しい!!: X染色体の不活性化と胚 · 続きを見る »

胚盤胞

胚盤胞(はいばんほう、)とは、卵割腔形成後から着床前の胚形成初期に形成される構造のことである。 胚の次の形態である胚盤胞は、内細胞塊あるいは胚結節を持ち、外側に外細胞塊あるいは栄養膜(en:trophoblast)が形成される。ヒトの胚盤胞は70-100個の細胞を含有する塊より生じる。内細胞塊は身体のあらゆる細胞に分化する能力を持つことが知られており、再生医療の分野で注目を浴びた。この細胞を取り出し培養したものが、いわゆるES細胞と呼ばれるものである。一方、栄養膜は胎盤や羊膜などの胚外組織に分化していく。 胚盤胞の形成は第5日に始まる。桑実胚の細胞の差次的発現は異なる細胞型の系統変異の原因となると考えられている。例えば、Oct-3/4転写因子は内細胞塊により制御され、Cdx2は栄養膜により制御される。これらの異なる転写因子の発現は細胞の位置関係による結果であり、受精卵の中央に位置する細胞と外部に位置する細胞では異なる環境であり、ゆえに異なる発現が発生する。.

新しい!!: X染色体の不活性化と胚盤胞 · 続きを見る »

胚発生

胚発生(はいはっせい、英語:embryogenesis)または生物学における発生(はっせい)とは、多細胞生物が受精卵(単為発生の場合もある)から成体になるまでの過程を指す。広義には老化や再生も含まれる。発生生物学において研究がなされる。.

新しい!!: X染色体の不活性化と胚発生 · 続きを見る »

胎盤

胎盤(たいばん、placenta)とは、有胎盤類などの雌(人間の女性も含む)の妊娠時、子宮内に形成され、母体と胎児を連絡する器官である。胎盤を作る出産を胎生とよぶが、卵胎生(非胎盤型胎生)を胎生に含めることがあるので注意を要する。近年「プラセンタ」として利用されている(→後述)。.

新しい!!: X染色体の不活性化と胎盤 · 続きを見る »

赤血球

各血球、左から赤血球、血小板、白血球(白血球の中で種類としては小型リンパ球)色は実際の色ではなく画像処理によるもの 赤血球(せっけっきゅう、 あるいは)は血液細胞の1種であり、酸素を運ぶ役割を持つ。 本項目では特にことわりのない限り、ヒトの赤血球について解説する。.

新しい!!: X染色体の不活性化と赤血球 · 続きを見る »

酸化還元酵素

酸化還元酵素(さんかかんげんこうそ、oxidoreductase)とはEC第1群に分類される酵素で、酸化還元反応を触媒する酵素である。オキシドレダクターゼとも呼ばれる。生体内では多数の酸化還元酵素が知られており、約560種類ともいわれる。.

新しい!!: X染色体の不活性化と酸化還元酵素 · 続きを見る »

蛍光 in situ ハイブリダイゼーション

22q11.2欠失症候群のFISH 蛍光 in situ ハイブリダイゼーション(けいこう イン サイチュー ハイブリダイゼーション、fluorescence in situ hybridization、FISH)とは、蛍光物質や酵素などで標識したオリゴヌクレオチドプローブを用い、目的の遺伝子とハイブリダイゼーションさせ蛍光顕微鏡で検出する手法である。医学分野等では遺伝子のマッピングや染色体異常の検出などで用いられている。また微生物学分野では真正細菌・古細菌の16Sまたは23S rRNAの特異的な配列と相補的なオリゴヌクレオチドプローブを使用し、微生物の群集構造を解析する手法としても用いられている。.

新しい!!: X染色体の不活性化と蛍光 in situ ハイブリダイゼーション · 続きを見る »

(メス、牝 female)は、雄と対比される動物の性別。主に人間以外の動物を指す際に使われ、人間の女性に相当する。動物の中で、子供や卵を産む方を言う。記号として、手鏡をかたどったギリシャ文字「♀」が使われる。.

新しい!!: X染色体の不活性化と雌 · 続きを見る »

(オス、牡 Male)は、雌と対比される動物の性別。主に人間以外の動物で使われ、人間の男性に相当する。動物の中で、精子を作り出す個体を言う。記号として、槍と盾をかたどった「♂」が使われる(男性器を表すというのは誤りである)。 雄の作る精子は、雌の作る卵に比べ、遙かに小さいので、それを作るエネルギーは格段に少ない。そのため、雌が卵を作る数に比べ、雄が精子を作る数は格段に多いのが通例である。つまり、雄の作る精子は、その大部分が無駄になる定めである。反面、変異がおきやすい。.

新しい!!: X染色体の不活性化と雄 · 続きを見る »

RNAi

RNAi RNAi(RNA interferenceの略、日本語でRNA干渉ともいう)は、二本鎖RNAと相補的な塩基配列を持つmRNAが分解される現象。RNAi法は、この現象を利用して人工的に二本鎖RNAを導入することにより、任意の遺伝子の発現を抑制する手法 。アンチセンスRNA法やコサプレッションもRNAiの一形態と考えられる。 通常、遺伝子の機能阻害は染色体上の遺伝子を破壊することで行われてきた。しかし、RNAi法はこのような煩雑な操作は必要なく、塩基配列さえ知ることができれば合成したRNAを導入するなどの簡便な手法で遺伝子の機能を調べることができる。ゲノムプロジェクトによって全塩基配列を知ることのできる生物種では、逆遺伝学的解析の速度を上げる大きな要因の一つともなった。一方、完全な機能喪失とはならないこと、非特異的な影響を考慮する必要があるなどの問題もある。 1998年にアンドリュー・ファイアー等は線虫の一種であるモデル生物のCaenorhabditis elegans (C. elegans)を用いて、センス鎖とアンチセンス鎖の混合RNAが、それぞれの単独RNAより大きな阻害効果があることを示した。この効果は、標的mRNAとのモル比などから単純にアンチセンス鎖がmRNAに1:1で張り付いて阻害するのではなく、何らかの増幅過程を含むか、酵素的活性をもつことが予想された。その後、RNase IIIの一種であるDicerによって、長い二本鎖RNAが、siRNA(small interfering RNA)と呼ばれる21-23 ntの短い3'突出型二本鎖RNAに切断されること、siRNAといくつかの蛋白質から成るRNA蛋白質複合体であるRISC複合体が再利用されながら相補的な配列を持つmRNAを分解することがわかってきた。 2001年には哺乳類の細胞でsiRNAを導入することで、それまで問題となってきた二本鎖RNA依存性プロテインキナーゼの反応を回避することができた 。これにより、遺伝子治療応用への期待が高まっている。RNAi機構は酵母からヒトに至るまで多くの生物種で保存されている。その生物学的な意義としてはウイルスなどに対する防御機構として進化してきたという仮説が提唱されている。さらに、染色体再構成などにも関わる可能性が示され、またstRNAなど作用機構の一部を共有するmiRNAが発生過程の遺伝子発現制御を行っていることなどが明らかとなり、小分子RNAが果たす機能に注目が集まるきっかけの一つとなった。また、酵母を用いた研究では、染色体のセントロメアやテロメアのヘテロクロマチン形成にRNAiの機構が関与していることが報告されている。 2006年、アンドリュー・ファイアーとクレイグ・メローはRNAi発見の功績よりノーベル生理学・医学賞を受賞した。.

新しい!!: X染色体の不活性化とRNAi · 続きを見る »

X染色体

X染色体(エックスせんしょくたい)とは有性生殖をする真核生物にみられる性染色体の一種である。雌が性染色体として相同染色体の対を持つとき、それをX染色体と呼ぶ。このとき、雄はX染色体と共にY染色体を組として持つか(XY型)、あるいは対にならないX染色体のみを持つ(XO型)。このような性決定様式は雄がヘテロ型であるため「雄ヘテロ型」と呼ぶ。.

新しい!!: X染色体の不活性化とX染色体 · 続きを見る »

Y染色体

Y染色体(ワイせんしょくたい、英語:Y chromosome)は性染色体の一つ。正常な雄個体ではX染色体と同時に存在し、正常な雌個体には存在しない性染色体をY染色体という。 X染色体とY染色体が同時に関与する性決定様式を、雄がX染色体とY染色体との組を持つヘテロ型であるため、雄ヘテロ型、さらに限定してXY型と呼ぶ。雄ヘテロ型性決定にはY染色体が関与しないXO型もあり、他に雌ヘテロ型の性染色体・性決定様式(ZW型・ZO型)も存在する。.

新しい!!: X染色体の不活性化とY染色体 · 続きを見る »

染色体

染色体(せんしょくたい)は遺伝情報の発現と伝達を担う生体物質である。塩基性の色素でよく染色されることから、1888年にヴィルヘルム・フォン・ヴァルデヤー(Heinrich Wilhelm Gottfried von Waldeyer-Hartz)によって Chromosome と名付けられた。Chromo- はギリシャ語 (chroma) 「色のついた」に、-some は同じく (soma) 「体」に由来する。.

新しい!!: X染色体の不活性化と染色体 · 続きを見る »

染色体異常

染色体異常(せんしょくたいいじょう)とは、染色体の構造異常のこと。またはそれに伴う障がい。この記事では主に医学的な観点からヒトの染色体異常について解説する。.

新しい!!: X染色体の不活性化と染色体異常 · 続きを見る »

有袋類

ポッサム 有袋類(ゆうたいるい、Marsupialia)は哺乳綱獣亜綱後獣下綱の1グループ。階級は有袋上目とすることが多い。 かつては有袋目(フクロネズミ目)の1目が置かれていた。しかし、哺乳類の歴史において有袋類の適応放散は有胎盤類の適応放散と同等のものであり、有胎盤類と同様にいくつかの目に分けるべきだという主張が強くなった。1990年ごろからは2大目7目とする分類が主流である。有袋類全体は有袋上目などになるが、フクロネズミ上目とは言わない。 後獣下綱唯一の現生群であり、現生群のみを問題にするときは後獣下綱のシノニムのようにあつかうことがある。.

新しい!!: X染色体の不活性化と有袋類 · 続きを見る »

昆虫

昆虫(こんちゅう)は、節足動物門汎甲殻類六脚亜門昆虫綱(学名: )の総称である。昆虫類という言葉もあるが、多少意味が曖昧で、六脚類の意味で使うこともある。なお、かつては全ての六脚虫を昆虫綱に含めていたが、分類体系が見直され、現在はトビムシなど原始的な群のいくつかが除外されることが多い。この項ではこれらにも触れてある。 昆虫は、硬い外骨格をもった節足動物の中でも、特に陸上で進化したグループである。ほとんどの種は陸上で生活し、淡水中に棲息するものは若干、海中で棲息する種は例外的である。水中で生活する昆虫は水生昆虫(水棲昆虫)とよばれ、陸上で進化した祖先から二次的に水中生活に適応したものと考えられている。 世界の様々な気候、環境に適応しており、種多様性が非常に高い。現時点で昆虫綱全体で80万種以上が知られている。現在知られている生物種に限れば、半分以上は昆虫である。.

新しい!!: X染色体の不活性化と昆虫 · 続きを見る »

性染色体

ヒトの染色体構成(核型, ''2n.

新しい!!: X染色体の不活性化と性染色体 · 続きを見る »

性決定

X/A)で性別が決定する小野知夫「高等植物の性決定と分化」(『最近の生物学』第4巻)。 '''図2.'''ヒト(染色体数''2n.

新しい!!: X染色体の不活性化と性決定 · 続きを見る »

1890年

記載なし。

新しい!!: X染色体の不活性化と1890年 · 続きを見る »

1949年

記載なし。

新しい!!: X染色体の不活性化と1949年 · 続きを見る »

1959年

記載なし。

新しい!!: X染色体の不活性化と1959年 · 続きを見る »

1960年

アフリカにおいて当時西欧諸国の植民地であった地域の多数が独立を達成した年であることに因み、アフリカの年と呼ばれる。.

新しい!!: X染色体の不活性化と1960年 · 続きを見る »

1961年

記載なし。

新しい!!: X染色体の不活性化と1961年 · 続きを見る »

ここにリダイレクトされます:

バール体バール小体バー小体ライアン仮説ライオンの仮説

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »