ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

NCAM

索引 NCAM

NCAM(別名: N-CAM、neural cell adhesion molecule、エヌキャム)は、神経細胞、グリア細胞、骨格筋細胞、ナチュラルキラー細胞(NK細胞)の細胞表面にある「細胞-細胞接着」を担う細胞接着分子・糖タンパク質である。神経軸索伸長、シナプス可塑性、学習、記憶に機能している。CD56(CD分類)、Leu-19、NKH1と同一分子で、免疫グロブリンスーパーファミリー (immunoglobulin superfamily, IgSF) の一員である。.

85 関係: 培養細胞塩基配列多発性骨髄腫学習小脳伝令RNA修飾ナチュラルキラー細胞ノースカロライナ大学チャペルヒル校マウスユーイング肉腫ロチェスター大学ロックフェラー大学トリプシンプロテアーゼヒトテルアビブ大学フィブロネクチンフィブロネクチンIII型ドメインドラッグデリバリーシステムニワトリ嗅球アカハライモリウニエクソンカルシウムカドヘリンキメラグリア細胞グリコシル化グリコシルホスファチジルイノシトールシナプスシカゴ大学シグナル伝達ジェラルド・モーリス・エデルマンタンパク質哺乳類免疫染色CD分類神経神経伝達物質神経細胞神経芽細胞腫筋芽細胞糖タンパク質細胞培養細胞接着分子網膜翻訳C末端...病理解剖相補的DNA選択的スプライシング遺伝子運動表皮褐色細胞腫記憶骨髄性白血病骨格筋軟骨肝臓肺癌長期増強腎芽腫腎臓L1N末端T細胞抗原抗がん剤抗体抗血清海綿動物悪性リンパ腫1908年1955年1976年1977年1980年1984年1987年1990年 インデックスを展開 (35 もっと) »

培養細胞

培養細胞(ばいようさいぼう)は多細胞生物に於いて、人為的に生体外で培養されている細胞のこと。細胞を培養することを細胞培養という。組織通培養することを組織培養(tissue culture)、器官(organ)あるいは臓器(organ)を培養することを器官培養(organ culture)という。常は動物細胞の培養のことを指す。植物ではプロトプラスト培養やカルス培養等、さらに細分化して記述する。また、植物では、葉や葯など器官そのものを培養する器官培養(組織培養:tissue culture)が一般的であり、細胞を単離して培養することは少ない。下記は主に動物の細胞培養の特徴であり、植物の培養には当てはまらない事が多い。 生体から取り出して、最初の植え替えを行うまでの培養は初代培養と呼ばれる。初代培養細胞は、生体内での細胞の性質が比較的よく保たれているが、細胞の純度、性質などがもとの生物の状態や実験条件に左右されるため、均一な条件を整えるのは困難である。既存の培養あるいはその一部を新しい培地を含む培養容器に移し替えて増殖、維持するものを継代培養(英:subculture)と呼ぶ。長期間にわたって、体外で維持され、一定の安定した性質をもつに至った細胞は、細胞株と呼ばれる。様々な生物種の様々な組織に由来する細胞株が存在する。同一の組織あるいは細胞に由来するものから同一の細胞株が得られるわけではない。また、同じ細胞株であっても異なる施設の細胞株とは性質が異なることがある。 これらは、生物学、特に分子生物学や生化学、細胞生物学において in vitro 実験系として広く用いられる。動物実験の縮小のため、動物個体を用いた実験をできるだけ培養細胞で代替しようとする流れがある。しかし、培養条件下では生体内での生理的条件から離れてしまい、また継代するうちに異常染色体などが生じることから、得られた実験結果は元の生物と全く同じに扱うことはできない。利点としては遺伝子導入や RNAi が容易に行えること、凍結により保存可能なことなどがある。.

新しい!!: NCAMと培養細胞 · 続きを見る »

塩基配列

生物学における塩基配列(えんきはいれつ)とは、DNA、RNAなどの核酸において、それを構成しているヌクレオチドの結合順を、ヌクレオチドの一部をなす有機塩基類の種類に注目して記述する方法、あるいは記述したもののこと。 核酸の塩基配列のことを、単にシークエンスと呼ぶことも多い。ある核酸の塩基配列を調べて明らかにする操作・作業のことを、塩基配列決定、あるいはシークエンシングと呼ぶ。.

新しい!!: NCAMと塩基配列 · 続きを見る »

多発性骨髄腫

多発性骨髄腫(たはつせいこつずいしゅ、Multiple Myeloma:MM)は形質細胞腫瘍の一種であり、その中では最も患者数の多い難治性血液腫瘍である。.

新しい!!: NCAMと多発性骨髄腫 · 続きを見る »

学習

ンピュータを利用した学習 学習(がくしゅう)は、体験や伝聞などによる経験を蓄えることである。生理学や心理学においては、経験によって動物(人間を含め)の行動が変容することを指す。繰り返し行う学習を練習(れんしゅう)という。.

新しい!!: NCAMと学習 · 続きを見る »

小脳

小脳(しょうのう、cerebellum、ラテン語で「小さな脳」を意味する)は、脳の部位の名称。脳を背側から見たときに大脳の尾側に位置し、外観がカリフラワー状をし、脳幹の後ろの方からコブのように張り出した小さな器官である。脳幹と小脳の間には第四脳室が存在する。重さは成人で120〜140グラムで、脳全体の重さの10%強をしめる。大脳の10分の1しかないのに、大脳の神経細胞よりもはるかに多くの神経細胞がある。脳の神経細胞の大部分は、小脳にあり、その数は1000億個以上である。小脳の主要な機能は知覚と運動機能の統合であり、平衡・筋緊張・随意筋運動の調節などを司る。このため、小脳が損傷を受けると、運動や平衡感覚に異常をきたし、精密な運動ができなくなったり酒に酔っているようなふらふらとした歩行となることがある。小脳が損傷されると、そうした症状が起きるが、意識に異常をきたしたり知覚に異常を引き起こすことはない。このため、かつては高次の脳機能には関係がなく、もっぱら運動を巧緻に行うための調節器官だとみなされ、脳死問題に関する議論が起きた際も人の生死には関係がないので、小脳は脳死判定の検査対象から外すべきと主張する学者もいた。ところがその後、小脳がもっと高次な機能を有していると考えられる現象が相次いで報告された。また、アルツハイマー病の患者の脳をPETで調べたところ、頭頂連合野や側頭連合野が全く機能していないにもかかわらず、小脳が活発に活動していることが判明した。アルツハイマー病の患者では例外なく小脳が活動しており、通常より強化されている。これは大脳から失われたメンタルな機能を小脳が代替していると考えられている。伊藤正男は、小脳は大脳のシミュレーターであって、体で覚える記憶の座と表現した立花隆『脳を究める』朝日文庫 2001年3月1日。 小脳の傷害が運動障害を引き起こすことを最初に示したのは、18世紀の生理学者たちであった。その後19世紀初頭〜中盤にかけて、実験動物を用いた小脳切除・病変形成実験が行われ、小脳傷害が異常運動・異常歩様・筋力低下の原因となることが明らかにされた。これらの研究成果に基づき、小脳が運動制御に重要な役割を果たすという結論が導かれたのである。 協調運動制御のため、小脳と大脳運動野(情報を筋肉に伝達し運動を起こさせる)および脊髄小脳路(身体位置保持のための固有受容フィードバックを起こす)を結ぶ多くの神経回路が存在する。小脳は運動を微調整するため体位に対し絶えずフィードバックをかけることで、これらの経路を統合している。.

新しい!!: NCAMと小脳 · 続きを見る »

伝令RNA

伝令RNA(でんれいRNA、メッセンジャーRNA、英語:messenger RNA)は、蛋白質に翻訳され得る塩基配列情報と構造を持ったRNAのことであり、通常mRNAと表記される。DNAに比べてその長さは短い。DNAからコピーした遺伝情報を担っており、その遺伝情報は、特定のアミノ酸に対応するコドンと呼ばれる3塩基配列という形になっている。 mRNAはDNAから写し取られた遺伝情報に従い、タンパク質を合成する(詳しくは翻訳)。翻訳の役目を終えたmRNAは細胞に不要としてすぐに分解され、寿命が短く、分解しやすくするために1本鎖であるともいわれている。 古細菌、真正細菌では転写されたRNAはほぼそのままでmRNAとして機能する。一方真核生物では転写されたmRNA前駆体はいくつかの切断(スプライシング)、修飾といったプロセシングを受けたのちに成熟mRNAになる。 真核生物のmRNAはRNAポリメラーゼIIによって転写されたRNAに由来する。5'末端にはm7Gキャップがあり、3'末端は一般にポリアデニル化される(poly (A)鎖で終了している)。これらの構造やmRNAの塩基配列は翻訳活性やmRNAの分解を制御する機能も持っている。古細菌、真正細菌も3'末端に短いpoly (A)鎖を持つが、5'末端のキャップ構造は持たない。 poly (A)鎖はrRNAやtRNAには存在しないmRNAの特徴であるとされており、このことを利用してmRNAを特異的に精製することができる。また、mRNAを鋳型にしてDNAを逆転写酵素によって合成することができ、これはcDNAと呼ばれる。cDNAは遺伝子が働いていることの非常に信頼性の高い証拠であり、ゲノムプロジェクトによって得られた大量のシークエンスデータの中から遺伝子を探す作業を補助することができる。.

新しい!!: NCAMと伝令RNA · 続きを見る »

修飾

修飾(しゅうしょく).

新しい!!: NCAMと修飾 · 続きを見る »

ナチュラルキラー細胞

ナチュラルキラー細胞(ナチュラルキラーさいぼう、、NK細胞)は、自然免疫の主要因子として働く細胞傷害性リンパ球の1種であり、特に腫瘍細胞やウイルス感染細胞の拒絶に重要である。細胞を殺すのにT細胞とは異なり事前に感作させておく必要がないということから、生まれつき(natural)の細胞傷害性細胞(killer cell)という意味で名付けられた。形態的特徴から大形顆粒リンパ球と呼ばれることもある。.

新しい!!: NCAMとナチュラルキラー細胞 · 続きを見る »

ノースカロライナ大学チャペルヒル校

ノースカロライナ大学チャペルヒル校(ノースカロライナだいがくチャペルヒルこう、University of North Carolina at Chapel Hill またはUNC)は、1789年に創立された、アメリカ合衆国ノースカロライナ州チャペルヒルにある州立の総合大学であるノースカロライナ大学の17キャンパスのうちの一つである。アメリカに現存する州立大学の中で最古の大学であり、リチャード・モルの1985年の著書で、公立(パブリック)の大学の中でのパブリック・アイビーの8校の内の1校とされる。2017-2018年の学費は州の規定により、州内者は$9,005、州外者は$34,588である。.

新しい!!: NCAMとノースカロライナ大学チャペルヒル校 · 続きを見る »

マウス

マウス mouse(英)/Maus(独).

新しい!!: NCAMとマウス · 続きを見る »

ユーイング肉腫

ユーイング肉腫(-にくしゅ、Ewing sarcoma)は、小円形細胞の増殖によりなる悪性腫瘍のことStedman's Medical Dictionary 28th ISBN 978-0781733908。 アメリカの病理学者、ジェームス・ユーイング(James Ewing)によって報告されたため、その名が付いている。t(11;22)(q24;q12)による融合遺伝子形成で特徴づけられる。.

新しい!!: NCAMとユーイング肉腫 · 続きを見る »

ロチェスター大学

チェスター大学(University of Rochester)は、アメリカ合衆国ニューヨーク州ロチェスターにある共学の私立大学。.

新しい!!: NCAMとロチェスター大学 · 続きを見る »

ロックフェラー大学

ックフェラー大学(英語:Rockefeller University)は、ニューヨークにある私立大学で、生物学・医学分野の大学院生やポスドクの研究生を対象としている。マンハッタン島のアッパー・イースト・サイド地区ヨーク・アベニューの63丁目から68丁目の間に位置する。 この学校の関係者から、23人のノーベル賞受賞者を輩出している。またこの大学では科学史における大発見が数多くなされており、例えばDNAが遺伝情報を伝える物質であることや、血液型の存在、ウイルスが癌を引き起こすこと、抗体の構造、ヘロイン中毒患者へのメサドンの処方、エイズのカクテル療法、体重を制御するホルモンであるレプチンなどは、この大学で発見された。.

新しい!!: NCAMとロックフェラー大学 · 続きを見る »

トリプシン

トリプシン(trypsin, EC.3.4.21.4)はエンドペプチダーゼ、セリンプロテアーゼの一種である。膵液に含まれる消化酵素の一種で、塩基性アミノ酸(リシン、アルギニン)のカルボキシ基側のペプチド結合を加水分解する。語源は、ギリシャ語の“tripsis(摩擦、粉砕)”に由来する。 膵臓からトリプシノーゲンとして分泌され、エンテロキナーゼ(自家加水分解)によりαトリプシン及びβトリプシンとなる。また、キモトリプシノーゲンを一部加水分解しキモトリプシンとするのに必要な酵素である。トリプシンインヒビター(アンチトリプシンやオボムコイド)によって阻害を受ける。 ヒトトリプシンの場合、コードしている遺伝子は第7染色体のq32-q36のTRY1。 ヒトではトリプシンの最適pHは8 - 9程度の弱塩基性である。.

新しい!!: NCAMとトリプシン · 続きを見る »

プロテアーゼ

プロテアーゼ(Protease、EC 3.4群)とはペプチド結合加水分解酵素の総称で、プロテイナーゼ(proteinase)とも呼ばれる。広義のペプチダーゼ(Peptidase)のこと。タンパク質やポリペプチドの加水分解酵素で、それらを加水分解して異化する。収斂進化により、全く異なる触媒機能を持つプロテアーゼが似たような働きを持つ。プロテアーゼは動物、植物、バクテリア、古細菌、ウイルスなどにある。ヒトでは小腸上皮細胞から分泌する。.

新しい!!: NCAMとプロテアーゼ · 続きを見る »

ヒト

ヒト(人、英: human)とは、広義にはヒト亜族(Hominina)に属する動物の総称であり、狭義には現生の(現在生きている)人類(学名: )を指す岩波 生物学辞典 第四版 p.1158 ヒト。 「ヒト」はいわゆる「人間」の生物学上の標準和名である。生物学上の種としての存在を指す場合には、カタカナを用いて、こう表記することが多い。 本記事では、ヒトの生物学的側面について述べる。現生の人類(狭義のヒト)に重きを置いて説明するが、その説明にあたって広義のヒトにも言及する。 なお、化石人類を含めた広義のヒトについてはヒト亜族も参照のこと。ヒトの進化については「人類の進化」および「古人類学」の項目を参照のこと。 ヒトの分布図.

新しい!!: NCAMとヒト · 続きを見る »

テルアビブ大学

ャンパス テルアビブ大学(テルアビブだいがく、、جامعة تل أبيب)は、イスラエルのテルアビブにある大学。1954年に前身となるユダヤ研究機関が創立され、1956年に現在の大学に組織変更された。なお、同大学のキャンパスの内部にはディアスポラ博物館が設置されており、同大学の教職員や学生ではない一般の観光客でもディアスポラ博物館を訪問することは可能である。.

新しい!!: NCAMとテルアビブ大学 · 続きを見る »

フィブロネクチン

フィブロネクチン(Fibronectin、略称: FN、Fn、fn、FN1)は、巨大な糖タンパク質で、細胞接着分子である。ヒト由来や哺乳動物由来のフィブロネクチンがよく研究されている。以下は、主にヒト由来フィブロネクチンの知見である。単量体は2,146-2,325アミノ酸残基からなり、分子量は210-250kDaである。 細胞接着分子として、in vitroで、細胞の接着、成長、、分化を促進することから、in vivoで、細胞の細胞外マトリックスへの接着、結合組織の形成・保持、創傷治癒、胚発生での組織や器官の形態・区画の形成・維持など、脊椎動物の正常な生命機能を支える多くの機能があると考えられている。フィブロネクチンの発現異常、分解、器質化は、ガンや(線維症)をはじめとする多くの疾患の病理に関連している。 フィブロネクチンは、細胞膜上の受容体タンパク質であるインテグリンと結合する。また、コラーゲン、フィブリン、ヘパラン硫酸プロテオグリカン(たとえばシンデカン)などと結合し、細胞外マトリックスを形成する。.

新しい!!: NCAMとフィブロネクチン · 続きを見る »

フィブロネクチンIII型ドメイン

フィブロネクチンIII型ドメイン(フィブロネクチン さんがた ドメイン Fibronectin type III domain、Fibronectin type III module、Fibronectin type III repeat、FNIII、FN3)は、最初、フィブロネクチン(タンパク質)内部のポリペプチドの繰返し構造として発見された。その後、他の細胞外マトリックスタンパク質に類似ドメインがあること、たくさんの動物タンパク質に類似ドメインがあること、生物種を越えた酵母、植物、細菌に類似ドメインがあることから、進化の過程で保存されたタンパク質ドメインの1つだと考えられている。 1つのフィブロネクチンIII型ドメインは、アミノ酸約100個からなる安定した構造である。βサンドイッチ(β-sandwich)構造を持ち、免疫グロブリンドメインと似ている。.

新しい!!: NCAMとフィブロネクチンIII型ドメイン · 続きを見る »

ドラッグデリバリーシステム

ドラッグデリバリーシステム(Drug Delivery System, DDS)とは、体内の薬物分布を量的・空間的・時間的に制御し、コントロールする薬物伝達システムのことである。薬物輸送(送達)システムとも呼ばれる。.

新しい!!: NCAMとドラッグデリバリーシステム · 続きを見る »

ニワトリ

ニワトリ(鶏、学名:Gallus gallus domesticus「仮名転写:ガルス・ガルス・ドメスティカス」)は、鳥類の種のひとつ。代表的な家禽として世界中で飼育されている。ニワトリを飼育することを養鶏と呼ぶ。.

新しい!!: NCAMとニワトリ · 続きを見る »

嗅球

嗅球(きゅうきゅう、、)は、嗅神経入力を受け、嗅覚情報処理に関わる、脊椎動物の脳の組織。終脳の先端に位置する。副嗅球と区別する際には特に主嗅球(main olfactory bulb)という。.

新しい!!: NCAMと嗅球 · 続きを見る »

アカハライモリ

和名の由来となった赤い腹 アカハライモリ(Cynops pyrrhogaster)は、有尾目イモリ科イモリ属に分類される両生類の一種。略してアカハラと呼ばれるほか、日本で単にイモリと呼ぶ場合本種を指すことが多い。ニホンイモリ(日本井守、日本蠑螈)という別名もある。.

新しい!!: NCAMとアカハライモリ · 続きを見る »

ウニ

ウニ(海胆、海栗、Sea urchin)は、ウニ綱に属する棘皮動物の総称。別名にガゼなど。なお、「雲丹」の字をあてるときはウニを加工した食品について指すフリーランス雑学ライダーズ編『あて字のおもしろ雑学』 p.49 1988年 永岡書店。春の季語。.

新しい!!: NCAMとウニ · 続きを見る »

エクソン

mRNA 前駆体の構造 エクソン(、エキソン と表記される場合もある)は、デオキシリボ核酸()またはリボ核酸()の塩基配列中で成熟RNA に残る部分を指す。 一般に真核生物では、DNA から転写されたmRNA前駆体はスプライシング反応によって長さが縮小される。スプライシングで残る部位がエクソンと呼ばれ、除去される部位がイントロンと呼ばれる。エクソンはタンパク質に翻訳されるコーディング領域()と、翻訳されない非翻訳領域()で構成される。UTR はコーディング領域を挟んで存在し、開始コドンより上流を 5' UTR、終止コドンより下流を 3' UTR と呼ぶ。 またタンパク質をコードしない転移RNA もスプライシングを受けてRNA が成熟するためエクソンが存在する。 エクソンの組み合わせの変化によって新たな遺伝子が作られることが、生物の進化に重要な役割を担っているという学説があり「エクソンシャッフリング仮説」と呼ばれる。これはタンパク質の機能単位である「モジュール」がエクソンと対応していることが多いことを根拠としている。.

新しい!!: NCAMとエクソン · 続きを見る »

カルシウム

ルシウム(calcium、calcium )は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。.

新しい!!: NCAMとカルシウム · 続きを見る »

カドヘリン

ドヘリン (Cadherin) は細胞表面に存在する糖タンパク質の一群で、細胞接着をつかさどる分子であり、動物の胚発生に重要な役割を果たす。典型的なカドヘリン(クラシックカドヘリン)は、アドヘレンス・ジャンクションの構築を通じて、細胞と細胞の接着の形成と維持に関わる。クラシックカドヘリンは、その細胞外に5つのドメイン構造(ECドメイン)を繰り返し、1つの膜貫通セグメントと細胞内ドメインを有する。細胞内ドメインにはカテニンが結合し、細胞骨格への連結を行っている。カドヘリンは、その機能発現にカルシウムイオンを必要とし、カルシウムイオン存在下でプロテアーゼによる分解から保護される。カルシウム calcium と接着 adhere にちなみ、その発見者であるAron Mosconaや竹市雅俊らにより命名された。ECドメインをもつ分子は脊椎動物ゲノム中に120個ほど見いだされ、カドヘリンスーパーファミリーと呼ばれている。.

新しい!!: NCAMとカドヘリン · 続きを見る »

キメラ

生物学における キメラ (chimera) とは、同一個体内に異なった遺伝情報を持つ細胞が混じっていること。またそのような状態の個体のこと。 この用語はギリシア神話に登場する伝説の生物「キマイラ」に由来する。 近年は「キメラ分子」「キメラ型タンパク質」のように「由来が異なる複数の部分から構成されている」意味で使われることもある。.

新しい!!: NCAMとキメラ · 続きを見る »

グリア細胞

リア細胞 (グリアさいぼう、glial cell)は神経膠細胞(しんけいこうさいぼう)とも呼ばれ、神経系を構成する神経細胞ではない細胞の総称であり、ヒトの脳では細胞数で神経細胞の50倍ほど存在していると見積もられている。gliaという語は、膠(にかわ、glue)を意味するギリシャ語に由来する。.

新しい!!: NCAMとグリア細胞 · 続きを見る »

グリコシル化

リコシル化 (Glycosylation)は、タンパク質もしくは脂質へ糖類が付加する反応である。糖鎖付加(とうさふか)とも言う。この反応は、細胞膜の合成やタンパク質分泌における翻訳後修飾の重要な過程の1つであり、こういった合成の大部分は粗面小胞体で行われる。グリコシル化は、非酵素的糖化反応であるメイラード反応とは対照的に酵素によって管理されている。 グリコシル化にはN-結合型グリコシル化とO-結合型グリコシル化の2つのタイプが存在する。アスパラギン側鎖のアミドのN原子への付加はN-結合型グリコシル化、セリンとトレオニン側鎖のヒドロキシ基のO原子への付加はO-結合型グリコシル化である。.

新しい!!: NCAMとグリコシル化 · 続きを見る »

グリコシルホスファチジルイノシトール

リコシルホスファチジルイノシトール (glycosylphosphatidylinositol、略称: GPI) またはGPIアンカーは、翻訳後修飾によってタンパク質のC末端に取り付けられる糖脂質である。GPIアンカーを含むタンパク質は、多種多様な生物学的過程において重要な役割を果たしている。GPIアンカーに繋ぎ止められるものには、酵素、受容体、免疫系タンパク質、認識抗原などがある。 されたタンパク質はシグナル配列を含んでいるため、小胞体(ER)へと向かう。タンパク質はER膜に共翻訳的に挿入され、その疎水性C末端によってER膜へと結合する。タンパク質の大半は小胞体内腔へと延びている。疎水性C末端配列は次に切断され、GPIアンカーによって置き換えられる。タンパク質が分泌経路を通って処理されると、ベシクルを介してゴルジ体へ、最終的には原形質膜へと移送される。原形質膜では細胞膜の外葉へとくっつき続ける。GPI化はこういったタンパク質が膜へと付着する唯一の手段であるため、ホスホリパーゼによるGPI基の切断は膜からのタンパク質の制御された放出をもたらすこととなる。後者の機構はin vitroで用いられる。すなわち、酵素アッセイにおいて膜から放出された膜タンパク質はGPI化タンパク質である。 ホスホリパーゼC(PLC)はGPIアンカー化されたタンパク質に含まれるホスホグリセロール結合を切断することが知られている酵素である。PLCによる処理は、細胞外膜からのGPI結合タンパク質の遊離を引き起こす。T細胞マーカーThy-1およびアセチルコリンエステラーゼは、腸および胎盤のアルカリホスファターゼと同様に、GPI結合タンパク質であることが知られており、PLCを用いた処理によって遊離する。GPI結合型タンパク質は脂質ラフトに優先的に局在していると考えられており、これは原形質膜ミクロドメイン内での高度な秩序を示唆している。 GPIアンカー.

新しい!!: NCAMとグリコシルホスファチジルイノシトール · 続きを見る »

シナプス

ナプス(synapse)は、神経細胞間あるいは筋繊維(筋線維)、神経細胞と他種細胞間に形成される、シグナル伝達などの神経活動に関わる接合部位とその構造である。化学シナプス(小胞シナプス)と電気シナプス(無小胞シナプス)、および両者が混在する混合シナプスに分類される。シグナルを伝える方の細胞をシナプス前細胞、伝えられる方の細胞をシナプス後細胞という。又は日本のインディーズバンドを指す。.

新しい!!: NCAMとシナプス · 続きを見る »

シカゴ大学

大学(University of Chicago)は、アメリカ合衆国イリノイ州シカゴ市にある研究型私立大学。設立当初から研究に重点が置かれており、特に経済学の分野では、同校の卒業生や教員を中心とした「シカゴ学派」はしばしば政策立案や遂行に登用されている。大学のモットーは、"Crescat scientia; vita excolatur (知識を創出し人類の生活を啓発せよ)".

新しい!!: NCAMとシカゴ大学 · 続きを見る »

シグナル伝達

本項においては、生体内におけるシグナル伝達(シグナルでんたつ; signal transduction)機構について記述する。 いかなる生命も周囲の環境に適応しなければならず、それは体内環境においても、個々の細胞においてすらも同様である。そしてその際には、何らかの形で情報を伝達しなければならない。この情報伝達機構をシグナル伝達機構と称し、通常、様々なシグナル分子によって担われる。それらへの応答として、細胞の運命や行動は決定される。.

新しい!!: NCAMとシグナル伝達 · 続きを見る »

ジェラルド・モーリス・エデルマン

ェラルド・モーリス・エデルマン(Gerald Maurice Edelman、1929年7月1日 - 2014年5月17日)は、ニューヨーククイーンズ出身のアメリカ合衆国の生物学者。抗体分子の一次構造及び二次構造の解明により、1972年のノーベル生理学・医学賞を受賞した。.

新しい!!: NCAMとジェラルド・モーリス・エデルマン · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: NCAMとタンパク質 · 続きを見る »

哺乳類

哺乳類(ほにゅうるい、英語:Mammals, /ˈmam(ə)l/、 学名:)は、脊椎動物に分類される生物群である。分類階級は哺乳綱(ほにゅうこう)とされる。 基本的に有性生殖を行い、現存する多くの種が胎生で、乳で子を育てるのが特徴である。ヒトは哺乳綱の中の霊長目ヒト科ヒト属に分類される。 哺乳類に属する動物の種の数は、研究者によって変動するが、おおむね4,300から4,600ほどであり、脊索動物門の約10%、広義の動物界の約0.4%にあたる。 日本およびその近海には、外来種も含め、約170種が生息する(日本の哺乳類一覧、Ohdachi, S. D., Y. Ishibashi, M. A. Iwasa, and T. Saitoh eds.

新しい!!: NCAMと哺乳類 · 続きを見る »

免疫染色

免疫染色(Immunostaining)とは抗体を用いて、組織標本中の抗原を検出する組織学(組織化学)的手法のこと。正確には免疫組織化学(Immunohistochemistry; IHC)と言い、「染色」とは異なるが、本来不可視である抗原抗体反応(免疫反応)を可視化するために発色操作を行うことから、俗に「免疫染色」とか「抗体染色」と呼ばれることも多く、医療従事者・医学研究者・生命科学研究者の「業界用語」的な呼び方では、しばしば免染と略される。なお、保険診療に用いる場合、診療報酬上は「免疫抗体法」とされている。 抗体の特異性を利用して組織を“染め”わけ、抗原の存在および局在を顕微鏡下で観察できるので、特定遺伝子の発現確認や、各種のいわゆる「マーカータンパク質」を用いることで病理組織の診断にもよく使われている。また電気泳動したタンパク質分子を特殊な膜に転移させ、その膜を特定タンパク質に対する抗体で免疫染色する方法がウェスタンブロッティングである。"染色"には抗体に色素や蛍光色素を結合させる方法の他、金コロイドを用いたり、酵素抗体法を用いたりする。直接法と間接法があり間接法の方が一般に検出感度が高い。 この方法は基本的には抗原抗体反応(免疫反応)と可視化の2つのプロセスよりなっている。具体的には、組織標本中の抗原(または抗体)に対して抗体(または抗原)を含む液を一定時間反応させることによって抗原と抗体を結合させて免疫複合体を形成させる。その際、反応させる抗体などに前もって可視化できるように細工をしておく必要がある。.

新しい!!: NCAMと免疫染色 · 続きを見る »

CD分類

CD分類(シーディーぶんるい)とは、ヒト白血球を主としたさまざまな細胞表面に存在する分子(表面抗原)に結合するモノクローナル抗体の国際分類。白血球やその他の細胞は、細胞表面に糖タンパクなどでできたさまざまな分子を発現しており、この分子の違いを見分けることで細かい細胞の違いを識別することができる。これらの分子は、モノクローナル抗体が結合する抗原として識別することができ、表面抗原あるいは表面マーカーと呼ばれる。しかし、異なったモノクローナル抗体が同じ表面抗原に結合することがあるため、混乱が生じることがある。そこで、同じ表面抗原を認識する抗体群を、同じ番号(と記号)で国際的に統一して分類したものがこのCD分類である。CD分類でつけられた番号(と記号)をCD番号とよぶ。CD分類は本来はモノクローナル抗体の分類であるが、モノクローナル抗体が認識する表面抗原の名称にも用いられる(CD抗原またはCD分子)。これらCD抗原には細胞の機能や分化に関わる分子が含まれる。CDとは、cluster of differentiation の頭文字で、訳すと「分化抗原群」であり、白血球分化に関わる抗原分子に対するモノクローナル抗体をクラスタ解析(群解析)で分類したことから名付けられた橋本亙 「CD分類 —HLDAからHCDMへ—」『リウマチ科』34号、664-675頁、2005年。。 CD分類は1982年にパリで開かれた第1回ヒト白血球分化抗原に関する国際ワークショップBernard AR, Boumsell L, Dausset J, et al.

新しい!!: NCAMとCD分類 · 続きを見る »

神経

経 (黄色) 神経(しんけい、nerve)は、動物に見られる組織で、情報伝達の役割を担う。 日本語の「神経」は杉田玄白らが解体新書を翻訳する際、'''神'''気と'''経'''脈とを合わせた造語をあてたことに由来しており、これは現在の漢字圏でもそのまま使われている。そのため、解体新書が刊行された1774年(安永7年)以前には存在しない言葉である。.

新しい!!: NCAMと神経 · 続きを見る »

神経伝達物質

経伝達物質(しんけいでんたつぶっしつ、Neurotransmitter)とは、シナプスで情報伝達を介在する物質である。シナプス前細胞に神経伝達物質の合成系があり、シナプス後細胞に神経伝達物質の受容体がある。神経伝達物質は放出後に不活性化する。シナプス後細胞に影響する亜鉛イオンや一酸化窒素は広義の神経伝達物質である。ホルモンも細胞間伝達物質で開口放出し受容体に結合する。神経伝達物質は局所的に作用し、ホルモンは循環器系等を通じ大局的に作用する。アゴニストとアンタゴニストも同様の作用をする。.

新しい!!: NCAMと神経伝達物質 · 続きを見る »

神経細胞

経細胞(しんけいさいぼう、ニューロン、neuron)は、神経系を構成する細胞で、その機能は情報処理と情報伝達に特化しており、動物に特有である。なお、日本においては「神経細胞」という言葉でニューロン(neuron)ではなく神経細胞体(soma)を指す慣習があるが、本稿では「神経細胞」の語を、一つの細胞の全体を指して「ニューロン」と同義的に用いる。.

新しい!!: NCAMと神経細胞 · 続きを見る »

神経芽細胞腫

経芽細胞腫(しんけいがさいぼうしゅ、neuroblastoma)は、小児がんの組織型の一種。現在は神経芽腫と呼ばれる。小児がんにおいては白血病についで患者数が多い。神経堤細胞に由来する悪性腫瘍で、主に副腎髄質や交感神経幹から発生する。副腎から発生する腫瘤として発見される。転移先として肝臓、骨、骨髄が多い。 乳幼児に多く発見される。そのため、以前は新生児のスクリーニングテストが行われていたが、新生児の場合はそのままがんが縮小してなくなるケースがあり、過剰な治療を行ってしまうとの批判から、今では行われなくなっている。 尿中腫瘍マーカーはVMAとHVA。血清NSEが高値を示す。遠隔転移診断は骨シンチ及びMIBGシンチによる。 一般に18ヶ月までに発症する場合は予後が良いことが多いが、18ヶ月以降の場合は予後不良が多い。また、神経節に生じた腫瘍は予後良好。腫瘍遺伝子N-mycの増幅や染色体重複があると予後不良。日本では年間150例発生する。.

新しい!!: NCAMと神経芽細胞腫 · 続きを見る »

筋芽細胞

筋芽細胞(きんがさいぼう、英:myoblast)とは筋線維の由来となる細胞。単核の細胞であり、この細胞が多数融合して合胞体を形成したものが筋線維である。筋線維の細胞質は筋形質と呼ばれ、大部分が筋細線維で占められている。.

新しい!!: NCAMと筋芽細胞 · 続きを見る »

糖タンパク質

糖タンパク質(とうたんぱくしつ、glycoprotein)とは、タンパク質を構成するアミノ酸の一部に糖鎖が結合したものである。動物においては、細胞表面や細胞外に分泌されているタンパク質のほとんどが糖タンパク質であるといわれている。 タンパク質のアミノ酸の修飾では、アスパラギンに結合したもの(N結合型)とセリンやスレオニンに結合したもの(O結合型、ムチン型)の2種類が頻繁に観察される。 糖タンパク質に結合している糖鎖を成す糖の種類はそれほど多くなく、よく見られるものはグルコース、ガラクトース、マンノース、フコース、N-アセチルグルコサミン、N-アセチルガラクトサミン、N-アセチルノイラミン酸、キシロースなど7~8種程度である。構造様式もある程度限られており、その中のわずかな構造の違いが識別され、精密に認識されて様々な生命現象が制御されている。.

新しい!!: NCAMと糖タンパク質 · 続きを見る »

細胞培養

細胞培養(さいぼうばいよう、cell culture)は、多細胞生物から細胞を分離し、体外で増殖、維持すること。生体外で培養されている細胞のことを培養細胞と呼ぶ。生体から分離し、最初の植え替えを行うまでを初代培養、既存の培養細胞を新たな培養容器へと移し替えて増殖、維持することを継代培養と呼ぶ。細胞を培養するために用いられる組織間液を模した液体を培地と呼ぶ。一般に、間葉系細胞は培養が容易であるのに対して、上皮系組織の細胞の培養は困難である。また、正常細胞に比較して癌細胞は容易に培養することができる。細胞培養における存在形態により培養細胞は接着培養系細胞と浮遊培養系細胞に分類することができる。接着培養系細胞は培養容器に付着し増殖する培養細胞であり、継代には培地交換を行う。浮遊培養系細胞は培地内で浮遊状態で増殖する培養細胞であり、継代の際には培地交換は行わず、希釈培養を行う。特殊な培養法として三次元培養がある。細胞培養において培養を目的としている生物因子以外の生物因子の混入をコンタミネーションと呼び(混入したものが細胞の場合はクロスコンタミネーションと呼ばれる)、細胞の増殖や機能、実験結果に影響を及ぼすため、細胞培養の際は無菌操作が行われる。細胞は生体の一部であるため、培養細胞の研究を介して生命現象の解析をすることができる。また、モノクローナル抗体などのようにある種の物質の生産手段としても細胞培養は利用される。.

新しい!!: NCAMと細胞培養 · 続きを見る »

細胞接着分子

細胞接着分子(さいぼうせっちゃくぶんし、英: cell adhesion molecules、略称:CAMs)は、細胞接着を担う分子の総称である。多細胞生物の実験動物でもあるマウス・ラット、ニワトリ、ショウジョウバエ、線虫、ゼブラフィッシュなどと、培養細胞やヒトを中心に研究され、発見された。分子の実体は、主にその生物が合成するタンパク質(高分子)で、ファミリーやアイソフォームを含めると数百種類に及ぶタンパク質性の細胞接着分子が発見されている。細胞接着分子のミメティックス(模造品)の有機合成化合物や組み換えDNA産物は、考え方にもよるが、人工的な細胞接着分子とみなす人が多い。、非生物の合成高分子などにも細胞接着をする物質がある。 生物が合成する低分子有機化合物、有機合成化合物、無機化合物にも細胞に接着する分子はあるが、一般的には、これらは細胞接着分子の範疇に入れない。 細胞は、細胞接着部位で細胞表面に細胞接着装置を作る。細胞接着装置は、1.細胞外タンパク質、2.細胞膜タンパク質、3.細胞膜裏打ちタンパク質(細胞質内に接着装置を支える)、4.細胞内シグナル伝達タンパク質(含・アダプタータンパク質)、5.細胞骨格、の5大分子群で構築されている。考えようによっては、これら全部が「細胞接着分子」だが、通常は、「1と2」を細胞接着分子とし、「3、4、5」は細胞接着分子の範疇に入れない。ここでもその定義に従った。 細胞接着分子は、ファミリーやアイソフォームを含めると数百種類におよぶため、ここでは、ファミリーやアイソフォームは代表分子を示した。.

新しい!!: NCAMと細胞接着分子 · 続きを見る »

網膜

網膜(もうまく)は、眼の構成要素の一つである。視覚細胞が面状に並んだ部分があればこう呼び、視覚的な映像(光情報)を神経信号(電気信号)に変換する働きを持ち、視神経を通して脳中枢へと信号を伝達する。その働きからカメラのフィルムに例えられる。 脊椎動物の外側眼岩堀修明著、『感覚器の進化』、講談社、2011年1月20日第1刷発行、ISBN 9784062577では眼球の後ろ側の内壁を覆う薄い膜状の組織であり、神経細胞が規則的に並ぶ層構造をしている。 脊椎動物の網膜では、目に入った光は網膜の奥(眼球の壁側)の視細胞層に存在する光受容細胞である視細胞(桿体および錐体)によって感受される。視細胞で光から神経信号へと変換され、その信号は網膜にある様々な神経細胞により複雑な処理を受け、最終的に網膜の表面(眼球の中心側)に存在する網膜神経節細胞から視神経を経て、脳中枢へ情報が伝えられる。 ビタミンA群(Vitamin A)は、レチノイドと言われ、その代表的なレチノール(Retinol)の生理活性として網膜の保護が知られており、網膜の英語名である「retina」に由来して命名されている。.

新しい!!: NCAMと網膜 · 続きを見る »

翻訳

翻訳(ほんやく)とは、Aの形で記録・表現されているものから、その意味するところに対応するBの形に翻案することである。一般に自然言語のそれを指し、起点言語 (source language、原言語) による文章を、別の目標言語 (target language、目的言語) による文章に変換する。例えば、英文から日本文へ翻訳された場合は、起点言語が英語であり、目標言語が日本語である。起点言語による文を原文といい、目標言語による文を訳文・翻訳文と言う。一方文章ではなく、自然言語の発話を別言語に置き換える行為は通訳とも呼ばれる。.

新しい!!: NCAMと翻訳 · 続きを見る »

C末端

C末端(Cまったん、別称:C終末端、COOH末端、カルボキシル末端、カルボキシ末端)は、タンパク質またはポリペプチドにおいて、フリーなカルボキシル基で終端している側の末端である。ペプチド配列を書くときはC末端を右に置いてN末端から書いていくのが慣例である。.

新しい!!: NCAMとC末端 · 続きを見る »

病理解剖

病理解剖(びょうりかいぼう)とは、病気で亡くなったヒトを対象にして、臨床診断の妥当性、治療の効果の判定、直接死因の解明、続発性の合併症や偶発病変の発見などを目的に系統的な解剖を行うこと。.

新しい!!: NCAMと病理解剖 · 続きを見る »

相補的DNA

補的DNA(そうほてきDNA、complementary DNA)は、mRNA から逆転写酵素を用いた逆転写反応によって合成された二本鎖 DNA。一般には「相補的」を意味する英語、complementary の頭文字をとって、cDNA と省略される。遺伝子の上でタンパク質に翻訳される領域の配列が開始コドンから終止コドンまで一続きに含まれているため、タンパク質の一次構造(アミノ酸配列)を解明する出発点として、また人工的にタンパク質を発現させる目的でも単離される。 ヒトを始めとする真核生物では、遺伝子はゲノム上にコードされているものの、多くはそこから転写された mRNA前駆体がスプライシングを受けてイントロンが除去されるまでは蛋白質に翻訳されない情報も含んでいる。 そこで、スプライシング済みの成熟mRNA から cDNA を合成すればイントロンを含まない状態の遺伝子(塩基配列)を知ることができることから、遺伝子のクローニングに広く利用されている。 また、mRNA はスプライシング以外にも RNAエディティングという加工が起こるため、対応するゲノムDNA と cDNA の比較を行うことによって、エディティングサイトの特定が可能となる。 cDNA合成を逆転写酵素によって行ったのち、.

新しい!!: NCAMと相補的DNA · 続きを見る »

選択的スプライシング

選択的スプライシング(せんたくてき-,Alternative Splicing)とはDNAからの転写過程において特定のエクソンをとばしてスプライシングを行うことである。択一的スプライシングとも呼ばれる。 遺伝子にはアミノ酸配列に関する情報を含む核酸塩基配列(エクソン)が遺伝情報を含まない配列(イントロン)によっていくつかに分断されている。通常、DNAからmRNAへの転写が行われる際にはこれらのすべてが順に転写されていく。その後、転写生成物(mRNA前駆体)からイントロン部分の切り捨てが行われてエキソン部分が連結し成熟mRNAが出来上がるが、この不要な部分の切り捨ての過程をスプライシングと呼んでいる。 しかし、時にスプライシングを行う部位・組み合わせが変化し、複数種の成熟mRNAが生成することがある。これを選択的スプライシングと呼び、ひとつの遺伝子から多数の生成物が生じてくることになる。選択的スプライシングによってスプライスバリアント(splice variant)と呼ばれる変異タンパク質が生成される。.

新しい!!: NCAMと選択的スプライシング · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: NCAMと遺伝子 · 続きを見る »

運動

運動(うんどう)とは、.

新しい!!: NCAMと運動 · 続きを見る »

表皮

表皮(ひょうひ、epidermis)は、多細胞生物のもっとも外側を覆う組織である。 往々にして内部を保護する役割を担い、特に陸上生物では硬化したりクチクラ層を持つ例が多い。水中生物では繊毛などをともなう例もある。分類群によってその性質は大いに異なる。.

新しい!!: NCAMと表皮 · 続きを見る »

褐色細胞腫

褐色細胞腫(かっしょくさいぼうしゅ、Pheochromocytoma)は、腫瘍組織型の1つで、副腎髄質や傍神経節から発生するカテコールアミン産生腫瘍。統計的理由から俗に「10%病」とも言い、症状から俗に「5H病」とも言う。副腎外の傍神経節から発生した腫瘍を傍神経節腫、またはパラガングリオーマ (英語版)と呼ぶことがある。.

新しい!!: NCAMと褐色細胞腫 · 続きを見る »

記憶

記憶(きおく)とは、.

新しい!!: NCAMと記憶 · 続きを見る »

骨髄性白血病

性白血病()とは骨髄を原発部位とする白血病の1型。 骨髄性白血病には以下のものがある。.

新しい!!: NCAMと骨髄性白血病 · 続きを見る »

骨格筋

格筋(こっかくきん、skeletal muscle)は、動物の筋肉の一分類であり、骨格を動かす筋肉を指す。ここではヒトの骨格筋について記す。 骨格筋は組織学的には横紋筋であり、内臓筋が平滑筋であるのと対照をなしている。ただし浅頭筋などにみられる皮筋や、舌や咽頭、横隔膜のような内臓筋の一部も骨格を支えているわけではないが、骨格筋組織である横紋筋である。.

新しい!!: NCAMと骨格筋 · 続きを見る »

軟骨

軟骨(なんこつ、cartilage)は、軟骨細胞とそれを取り囲む基質からなる結合組織であるが、組織中には血管、神経、リンパ管が見られない。弾力性があり、脊椎動物に比較的発達している。.

新しい!!: NCAMと軟骨 · 続きを見る »

肝(かん、きも)は、 臓器.

新しい!!: NCAMと肝 · 続きを見る »

肝臓

肝臓(かんぞう、ἧπαρ (hepar)、iecur、Leber、Liver)は、哺乳類・鳥類・齧歯類・両生類・爬虫類・魚類等の脊椎動物に存在する臓器の一つ。 ヒトの場合は腹部の右上に位置する内臓である。ヒトにおいては最大の内臓であり、体内維持に必須の機能も多く、特に生体の内部環境の維持に大きな役割を果たしている。 本稿では主にヒトについて記載する。.

新しい!!: NCAMと肝臓 · 続きを見る »

肺癌

肺癌(はいがん、英:Lung cancer)は、肺に発生する上皮細胞由来の悪性腫瘍。90%以上が気管支原性癌 (bronchogenic carcinoma) 、つまり気管支、細気管支あるいは末梢肺由来の癌である。肺腺癌(はいせんがん)とも呼ばれる。 国際肺癌学会によれば、肺癌は世界的に最も致死的な癌であるが、その理由の1つは、多くの場合発見が遅すぎて効果的な治療を行うことができないことであり、早期に発見された場合は手術や放射線治療でその多くを治癒することができる。 全世界での死亡患者数は159万人に上り(2012年)、主な原因としてタバコが挙げられる。.

新しい!!: NCAMと肺癌 · 続きを見る »

脳(のう、brain、Gehirn、encephalon、ἐγκέφαλος, enkephalos)は、動物の頭部にある、神経系の中枢。狭義には脊椎動物のものを指すが、より広義には無脊椎動物の頭部神経節をも含む。脊髄とともに中枢神経系をなし、感情・思考・生命維持その他神経活動の中心的、指導的な役割を担う。 人間の脳は、大脳、間脳、脳幹(中脳、橋、延髄)、小脳の4種類の領域に分類される。 この内、脳幹は、中脳、後脳、延髄に3種類の領域に分類される。 つまり、人間の脳は、大脳、間脳、中脳、後脳、小脳、延髄の6種類の領域に分類される。.

新しい!!: NCAMと脳 · 続きを見る »

長期増強

経科学の分野において、長期増強(ちょうきぞうきょう、英: LTP: Long-term potentiation)とは、神経細胞を同時刺激することにより 2 つの神経細胞間の信号伝達が持続的に向上する現象のことである。神経細胞はシナプス結合を介して信号伝達しており、記憶はこのシナプスに貯えられていると信じられているので、長期増強は学習と記憶の根底にある主要な細胞学的メカニズムの1つであると広く考えられている。 長期増強と長期記憶には多くの共通点が存在するため、長期増強は学習の細胞学的メカニズムの有力な候補となっている。例えば、長期増強と長期記憶はともに、急速に開始され、新しいタンパク質の生合成に依存していて、連合性をもち、何か月もの持続が可能である。長期増強は、すべての動物に見られる比較的単純な古典的条件づけから、ヒトに見られるより複雑な高次の認知までの、様々な種類の学習を説明する現象である可能性がある。 シナプス伝達強度を増加させることで、長期増強はシナプス前細胞とシナプス後細胞がシナプスを介して信号伝達する能力を向上させる。長期増強は脳の領域やその動物の年齢、種類などにより異なる複数のメカニズムで成り立っていることなどにより、その正確なメカニズムは完全に分かっているわけではない。現在最もよく分かっている長期増強の形式は、シナプス前細胞から受け取られるシグナルに対するシナプス後細胞の感受性の増加によって、信号伝達が向上するものである。このシグナルは神経伝達物質の形で、シナプス後細胞の膜表面にある神経伝達物質受容体に受け取られる。長期増強は多くの場合、シナプス後細胞の表面に既に存在する受容体の活動性を増加させるか、受容体の数を増加させることにより、シナプス後細胞の応答性を増加させる。 長期増強は 1966 年に初めてテリエ・レモ (Terje Lomo) によりウサギの 海馬 (脳)で発見され、それ以降多くの研究の対象となった。現在の長期増強の研究の大部分はこの現象の基礎生物学的理解に関するものだが、長期増強と行動学的学習の因果関係に関するものも存在する。さらに他にも、学習と記憶を向上させるために長期増強を強化するような薬理学的手法などの開発も行われている。また、長期増強は臨床研究の対象にもなっている。例えば、アルツハイマー型認知症や薬物依存に関する研究がそれにあたる。.

新しい!!: NCAMと長期増強 · 続きを見る »

腎芽腫

腎芽腫(じんがしゅ、Wilms腫瘍)は、小児の腎腫瘍の一つ。小児腎腫瘍の中ではもっとも頻度が高く90%を占め、全小児悪性腫瘍においても6%をしめる代表的な腹部悪性腫瘍である『病気がみえる 〈vol.8〉 腎・泌尿器』 P236 メディックメディア社発行 ISBN 978-4896324143。ウィルムス腫瘍と呼ばれることも多い。.

新しい!!: NCAMと腎芽腫 · 続きを見る »

腎臓

腎臓(じんぞう、ren、kidney)は、泌尿器系の器官の一つ。血液からの老廃物や余分な水分の濾過及び排出を行って尿を生成するという、体液の恒常性の維持を主な役割とする。.

新しい!!: NCAMと腎臓 · 続きを見る »

L1

L1.

新しい!!: NCAMとL1 · 続きを見る »

N末端

N末端(Nまったん、別名:N終末端、NH2末端、アミノ末端、アミン末端)は、タンパク質またはポリペプチドにおいてフリーなアミノ基で終端している側の末端である。ペプチド配列を書くときはN末端は左に置き、NからC末端にかけて配列を書くのが慣例である。タンパク質がmRNAから翻訳されるときは、N末端から作られる。.

新しい!!: NCAMとN末端 · 続きを見る »

T細胞

T細胞 T細胞(ティーさいぼう、T cell、T lymphocyte)とは、リンパ球の一種で、骨髄で産生された前駆細胞が胸腺での選択を経て分化成熟したもの。細胞表面に特徴的なT細胞受容体(T cell receptor;TCR)を有している。末梢血中のリンパ球の70〜80%を占める。名前の『T』は胸腺を意味するThymusに由来する。.

新しい!!: NCAMとT細胞 · 続きを見る »

抗原

抗原(こうげん、antigen 、略号Ag)は、免疫細胞上の抗原レセプターに結合し、免疫反応を引き起こさせる物質の総称。抗体やリンパ球の働きによって生体内から除去されることになる。 通常、細菌やウイルスなどの外来病原体や人為的な注射などで体内に入るタンパク質などが抗原となるが、自己免疫疾患では自分の体を構成している成分が抗原となって免疫反応が起きてしまう。また、アレルギー反応を引き起こす抗原を特にアレルゲンと呼ぶことがある。 抗原に対して有効な反応性を持った抗体を産生するためには多くの場合T細胞の関与が必要であるが、多糖類などのように抗体産生にT細胞を必要としない抗原 (#胸腺非依存性抗原) もある。.

新しい!!: NCAMと抗原 · 続きを見る »

抗がん剤

抗がん剤(こうがんざい、Anticancer drug)とは、悪性腫瘍(がん)の増殖を抑えることを目的とした薬剤である。抗癌剤、制癌剤とも。がんの三大治療である手術、化学療法、放射線療法のうち化学療法に入る。.

新しい!!: NCAMと抗がん剤 · 続きを見る »

抗体

免疫グロブリン(抗体)。色の薄い部分が軽鎖、先端の黒い部分が可変部。適合する抗原が可変部に特異的に結合する。 抗体(こうたい、antibody)とは、リンパ球のうちB細胞の産生する糖タンパク分子で、特定のタンパク質などの分子(抗原)を認識して結合する働きをもつ。抗体は主に血液中や体液中に存在し、例えば、体内に侵入してきた細菌やウイルス、微生物に感染した細胞を抗原として認識して結合する。抗体が抗原へ結合すると、その抗原と抗体の複合体を白血球やマクロファージといった食細胞が認識・貪食して体内から除去するように働いたり、リンパ球などの免疫細胞が結合して免疫反応を引き起こしたりする。これらの働きを通じ、脊椎動物の感染防御機構において重要な役割を担っている(無脊椎動物は抗体を産生しない)。1種類のB細胞は1種類の抗体しか作れないうえ、1種類の抗体は1種類の抗原しか認識できないため、ヒト体内では数百万〜数億種類といった単位のB細胞がそれぞれ異なる抗体を作り出し、あらゆる抗原に対処しようとしている。 「抗体」の名は、抗原に結合するという機能を重視した名称で、物質としては免疫グロブリン(めんえきグロブリン、immunoglobulin)と呼ばれ、「Ig(アイジー)」と略される。 全ての抗体は免疫グロブリンであり、血漿中のγ(ガンマ)ーグロブリンにあたる。.

新しい!!: NCAMと抗体 · 続きを見る »

抗血清

抗血清(こうけっせい、)とはポリクローナル抗体を含む血清。抗血清は多くの疾病の受動免疫を伝達するために使用される。 過去のヒトの生存者からの受動抗体の導入はエボラ出血熱に対する唯一有効な治療法である。.

新しい!!: NCAMと抗血清 · 続きを見る »

海綿動物

海綿動物(かいめんどうぶつ、sponge)は、海綿動物門(Porifera)に属する動物の総称である。海綿、カイメンなどとも表記される。 熱帯の海を中心に世界中のあらゆる海に生息する。淡水に生息する種も存在する。壺状、扇状、杯状など様々な形態をもつ種が存在し、同種であっても生息環境によって形状が異なる場合もある。大きさは数mmから1mを越すもの(南極海に生息する樽状の海綿 )まで多様である。多細胞生物であるが、細胞間の結合はゆるく、はっきりとした器官等の分化は見られない。細かい網目状の海綿質繊維からなる骨格はスポンジとして化粧用や沐浴用に用いられる。.

新しい!!: NCAMと海綿動物 · 続きを見る »

悪性リンパ腫

悪性リンパ腫(あくせいリンパしゅ、ML: Malignant Lymphoma)は、血液のがんで、リンパ系組織から発生する悪性腫瘍である。.

新しい!!: NCAMと悪性リンパ腫 · 続きを見る »

1908年

記載なし。

新しい!!: NCAMと1908年 · 続きを見る »

1955年

記載なし。

新しい!!: NCAMと1955年 · 続きを見る »

1976年

記載なし。

新しい!!: NCAMと1976年 · 続きを見る »

1977年

記載なし。

新しい!!: NCAMと1977年 · 続きを見る »

1980年

この項目では、国際的な視点に基づいた1980年について記載する。.

新しい!!: NCAMと1980年 · 続きを見る »

1984年

この項目では、国際的な視点に基づいた1984年について記載する。.

新しい!!: NCAMと1984年 · 続きを見る »

1987年

この項目では、国際的な視点に基づいた1987年について記載する。.

新しい!!: NCAMと1987年 · 続きを見る »

1990年

この項目では、国際的な視点に基づいた1990年について記載する。.

新しい!!: NCAMと1990年 · 続きを見る »

ここにリダイレクトされます:

CD56N-CAM

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »