ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

ILLIAC IV

索引 ILLIAC IV

ILLIAC IV 回路基板群のクローズアップ ILLIAC IV(イリアック・フォー)は、イリノイ大学アーバナ・シャンペーン校の一連の研究から生み出された最後のコンピュータである。パターソン&ヘネシーは本機を「間違いなく、スーパーコンピューター・プロジェクトの歴史上で最も不名誉なものであろう。」としている。ILLIAC IV の設計の鍵は、256 プロセッサによる高い並列性で、後にSIMDと呼ばれる、同時に多数のデータセットを処理することを指向していた。マシンは十年の開発期間を経て1975年に完全に稼働した。.

45 関係: ALGOL半導体収穫逓減実行ユニット並列計算ハードディスクドライブハイテクバロースレジスタ (コンピュータ)トランジスタブレッドボードプログラミング言語テキサス・インスツルメンツベクトル計算機命令パイプラインアポロ計画アムダールの法則アメリカ空軍アメリカ航空宇宙局イリノイ大学イリノイ大学アーバナ・シャンペーン校ウェスティングハウス・エレクトリックエミッタ結合論理エイムズ研究センターカリフォルニア州コネクションマシンコンピュータシンキングマシンズシーモア・クレイ国防高等研究計画局CDC 6600CDC 7600CDC STAR-100CPUCray-1超並列マシン集積回路FLOPSFORTRANILLIAC IILLIAC IIILLIAC IIIORDVACSIMD数値流体力学

ALGOL

ALGOL(アルゴル)は、命令型プログラミング言語ファミリーの1つファミリー名は大文字/小文字をまじえて表記される場合 と、全て大文字で表記される場合 (ALGOL 68) がある。本項目では ALGOL で統一する。。名前「ALGOL」は「アルゴリズム言語」を意味する英語「algorithmic language」に由来する。1950年代中ごろに開発され、多くの言語に影響を及ぼし、ACMや教科書や学術論文などでアルゴリズム記述のデファクトスタンダードとして30年以上使われた。現代の多くの言語が「ALGOL系」あるいは「ALGOL風」(algol-like) とされているという意味で、ほぼ同世代の高水準言語である FORTRAN、LISP、COBOL に比べて最も成功したと言うこともできる。FORTRANで明らかとなった問題を防ぐよう設計され、BCPL、B、Pascal、Simula、Cといった様々なプログラミング言語に影響を与えた。ALGOLはLisp以外としては「begin と end で囲む」という構文によるブロック構造を導入し、制御構造を自在に入れ子(ネスト)にできる初の広まった言語となったFORTRANにはそのような構造は無い。COBOLではピリオドで全ての入れ子が終端するという仕様だったため(現在はend-ifなどを使う)、入れ子で書ける論理に制限があり、酷いバグの原因にもなりやすかった。。また構文の形式的定義を真剣に検討した最初のプログラミング言語でもあり、"Algol 60 Report" で導入されたバッカス・ナウア記法は、その後のコンピュータ言語等の構文の形式的定義を示す手法として(プログラミング言語だけに限られず)定番の記法となっている。.

新しい!!: ILLIAC IVとALGOL · 続きを見る »

半導体

半導体(はんどうたい、semiconductor)とは、電気伝導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う(抵抗率だけで半導体を論じるとそれは抵抗器と同じ特性しか持ち合わせない)。代表的なものとしては元素半導体のケイ素(Si)などがある。 電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している。 良導体(通常の金属)、半導体、絶縁体におけるバンドギャップ(禁制帯幅)の模式図。ある種の半導体では比較的容易に電子が伝導帯へと遷移することで電気伝導性を持つ伝導電子が生じる。金属ではエネルギーバンド内に空き準位があり、価電子がすぐ上の空き準位に移って伝導電子となるため、常に電気伝導性を示す。.

新しい!!: ILLIAC IVと半導体 · 続きを見る »

収穫逓減

収穫逓減(しゅうかくていげん、diminishing returns)は、経済学用語であり、収穫逓減の法則とも呼ばれる。固定および可変の入力(例えば工場規模と労働者数)のある生産システムで、可変入力がある点を過ぎると、入力の増加が出力の増加に結びつかなくなっていく。逆に製品をより多く生産するのにかかるコストは増大していく。これを相対費用逓増の法則あるいは機会費用逓増の法則、限界生産力逓減の法則とも呼ぶ。表面上は完全に経済的概念だが、収穫逓減はテクノロジ的関係も暗示している。収穫逓減の法則は、企業の短期限界費用曲線が結局は増大することを示している。.

新しい!!: ILLIAC IVと収穫逓減 · 続きを見る »

実行ユニット

実行ユニット(じっこうゆにっと、Execution unit)とは、コンピュータのプロセッサの構成において、命令を実行する指示を受け、命令を実行するユニットである。。 -->.

新しい!!: ILLIAC IVと実行ユニット · 続きを見る »

並列計算

並列計算(へいれつけいさん、parallel computing)は、コンピュータにおいて複数のプロセッサで1つのタスクを動作させること。並列コンピューティングや並列処理とも呼ばれる。問題を解く過程はより小さなタスクに分割できることが多い、という事実を利用して処理効率の向上を図る手法である。また、このために設計されたコンピュータを並列コンピュータという。ディープ・ブルーなどが有名。 関連する概念に並行計算(へいこうけいさん)があるが、並行計算は一つのタスクの計算を並列化することにとどまらず、複数の相互作用しうるタスクをスレッドなどをもちいて複数の計算資源にスケジューリングするといった、より汎用性の高い処理をさす。 特に、並列計算専用に設計されたコンピュータを用いずに、複数のパーソナルコンピュータやサーバ、スーパーコンピュータを接続することで並列計算を実現するものをコンピュータ・クラスターと呼ぶ。このクラスターをインターネットなどの広域ネットワーク上に分散させるものも、広義には並列計算に属すが、分散コンピューティングあるいはグリッド・コンピューティングと呼び、並列計算とは区別することが多い。.

新しい!!: ILLIAC IVと並列計算 · 続きを見る »

ハードディスクドライブ

AT互換機用内蔵3.5インチHDD(シーゲイト・テクノロジー製) ハードディスクドライブ(hard disk drive, HDD)とは、磁性体を塗布した円盤を高速回転し、磁気ヘッドを移動することで、情報を記録し読み出す補助記憶装置の一種である。.

新しい!!: ILLIAC IVとハードディスクドライブ · 続きを見る »

ハイテク

ハイテクは、ハイ・テクノロジー(High-Technology)の略で、先端分野の技術体系(先端技術)を指し、主に電子回路や情報処理に関連する、応用技術体系を指す。.

新しい!!: ILLIAC IVとハイテク · 続きを見る »

バロース

バロース社 は、アメリカ合衆国の計算機・コンピュータ企業。1886年、アメリカン・アリスモメータとして創業。1986年に同じくアメリカの企業であったスペリーを買収・合併し、ユニシスとなった。当初は機械式を製造から始まり、その後プログラム可能な帳簿作成機を製造、さらにコンピュータへと移行した。メインフレーム製造のかたわら、タイプライターやプリンターも製造していた。.

新しい!!: ILLIAC IVとバロース · 続きを見る »

レジスタ (コンピュータ)

レジスタ(register)はコンピュータのプロセッサなどが内蔵する記憶回路で、制御装置や演算装置や実行ユニットに直結した、操作に要する速度が最速の、比較的少量のものを指す。.

新しい!!: ILLIAC IVとレジスタ (コンピュータ) · 続きを見る »

トランジスタ

1947年12月23日に発明された最初のトランジスタ(複製品) パッケージのトランジスタ トランジスタ(transistor)は、増幅、またはスイッチ動作をさせる半導体素子で、近代の電子工学における主力素子である。transfer(伝達)とresistor(抵抗)を組み合わせたかばん語である。によって1948年に名づけられた。「変化する抵抗を通じての信号変換器transfer of a signal through a varister または transit resistor」からの造語との説もある。 通称として「石」がある(真空管を「球」と通称したことに呼応する)。たとえばトランジスタラジオなどでは、使用しているトランジスタの数を数えて、6石ラジオ(6つのトランジスタを使ったラジオ)のように言う場合がある。 デジタル回路ではトランジスタが電子的なスイッチとして使われ、半導体メモリ・マイクロプロセッサ・その他の論理回路で利用されている。ただ、集積回路の普及に伴い、単体のトランジスタがデジタル回路における論理素子として利用されることはほとんどなくなった。一方、アナログ回路中では、トランジスタは基本的に増幅器として使われている。 トランジスタは、ゲルマニウムまたはシリコンの結晶を利用して作られることが一般的である。そのほか、ヒ化ガリウム (GaAs) などの化合物を材料としたものは化合物半導体トランジスタと呼ばれ、特に超高周波用デバイスとして広く利用されている(衛星放送チューナーなど)。.

新しい!!: ILLIAC IVとトランジスタ · 続きを見る »

ブレッドボード

ブレッドボード(英:breadboard, protoboard)とは、電子回路の試作・実験用の基板のことである。.

新しい!!: ILLIAC IVとブレッドボード · 続きを見る »

プログラミング言語

プログラミング言語(プログラミングげんご、programming language)とは、コンピュータプログラムを記述するための形式言語である。なお、コンピュータ以外にもプログラマブルなものがあることを考慮するならば、この記事で扱っている内容については、「コンピュータプログラミング言語」(computer programming language)に限定されている。.

新しい!!: ILLIAC IVとプログラミング言語 · 続きを見る »

テキサス・インスツルメンツ

テキサス・インスツルメンツのカリフォルニア支店 テキサス・インスツルメンツ(Texas Instruments Inc.、)は、世界的な半導体開発・製造企業。本社はアメリカ・テキサス州ダラス。略称は「TI」。.

新しい!!: ILLIAC IVとテキサス・インスツルメンツ · 続きを見る »

ベクトル計算機

ベクトル計算機 (ベクトルけいさんき) は、ベクトル演算(SIMDを参照)を行えるコンピュータのこと。特に(狭義では)ベクトル演算のための高性能でパイプライン化された実行ユニットを持ち、その演算能力を可能な限り発揮できるように全てが設計されたアーキテクチャを持つスーパーコンピュータを指す。広義にはSIMDによる、ベクトルを対象とした並列演算も指す。以下、主に狭義の、すなわちパイプラインによるベクトル計算機について述べる。 ベクトル計算機のプロセッサを ベクトルプロセッサ (Vector Processor) または アレイプロセッサ (Array Processor) と呼ぶ。ベクトルプロセッサは数値演算を複数のデータに対してパイプラインにより次々と実行できる。ベクトルプロセッサは科学技術計算分野でよく使われ、特に1980年代から1990年代にかけてのスーパーコンピュータでは一般的であった。、ベクトルプロセッサを名乗るプロセッサは少ないが(特にスーパコンピュータでは、パイプライン形のベクトルプロセッサはSXシリーズを残すのみである)、SIMDと呼ばれる並列ベクトル演算を行う機能を備えたマイクロプロセッサは多い。グラフィックスやマルチメディアのため、とメーカーはうたっており、実際そのように使われていることは多いが、研究発表などとしては科学技術計算への利用やコンパイラ最適化による利用なども見られる。200x年代後半頃から、GPUによる汎目的計算 (GPGPU) が行われるようになってきている。.

新しい!!: ILLIAC IVとベクトル計算機 · 続きを見る »

命令パイプライン

命令パイプライン(Instruction pipeline)は、コンピュータなどのデジタル電子機器で命令スループット(単位時間当たりに実行できる命令数)を向上させる設計技法の1つで、命令レベルの並列性を高める1技法。 命令パイプラインのあるプロセッサは、命令の処理を独立して実行できる工程(ステージ)に分割する。各工程は、前の工程の出力を自身の入力とし、自身の出力を次の工程の入力とするように相互接続されている。このような構成で各工程を並列化し、全体としての処理時間を大幅に削減する。.

新しい!!: ILLIAC IVと命令パイプライン · 続きを見る »

アポロ計画

Apollo program insignia アポロ計画(アポロけいかく、Apollo program)とは、アメリカ航空宇宙局(NASA)による人類初の月への有人宇宙飛行計画である。1961年から1972年にかけて実施され、全6回の有人月面着陸に成功した。 アポロ計画(特に月面着陸)は、人類が初めてかつ現在のところ唯一、有人宇宙船により地球以外の天体に到達した事業である。これは宇宙開発史において画期的な出来事であっただけではなく、人類史における科学技術の偉大な業績としてもしばしば引用される。.

新しい!!: ILLIAC IVとアポロ計画 · 続きを見る »

アムダールの法則

複数のプロセッサを使って並列計算してプログラムの高速化を図る場合、そのプログラムの逐次的部分は、制限を受ける。例えば、プログラムの95%を並列化できたとしても、またどれだけプロセッサ数を増やしたとしても、図で示したように20倍以上には高速化しない。 アムダールの法則(アムダールのほうそく、Amdahl's law)は、ある計算機システムとその対象とする計算についてのモデルにおいて、その計算機の並列度を上げた場合に、全体として期待できる全体の性能向上の程度を数式として表現したものである。コンピュータ・アーキテクトのジーン・アムダールが主張したものであり、Amdahl's argument(アムダールの主張)という呼称もある。並列計算の分野において、複数のプロセッサを使ったときの理論上の性能向上の限界を予測するのによく使われる。 複数のプロセッサを使い並列計算によってプログラムの高速化を図る場合、そのプログラムの中で逐次的に実行しなければならない部分の時間によって、高速化が制限される。例えば、1プロセッサでは20時間かかるプログラムがあり、その中の1時間かかる部分が並列化できないとする。したがって、19時間ぶん(95%)は並列化できるが、どれだけプロセッサを追加して並列化したとしても、そのプログラムの最小実行時間は1時間より短くならない。なぜなら、並列化できない部分に必ず1時間かかるため、図にも示したように、この場合の高速化は20倍までが限界だからである。.

新しい!!: ILLIAC IVとアムダールの法則 · 続きを見る »

アメリカ空軍

アメリカ空軍(アメリカくうぐん、United States Air Force, 略称:USAF(ユサフ))は、アメリカ軍の航空部門である。アメリカ合衆国空軍、あるいは単に合衆国空軍、ほかに米空軍とも呼ばれる。任務は「アメリカ合衆国を防衛し、航空宇宙戦力によってその国益を守ること」である。.

新しい!!: ILLIAC IVとアメリカ空軍 · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: ILLIAC IVとアメリカ航空宇宙局 · 続きを見る »

イリノイ大学

イリノイ大学(University of Illinois)は、イリノイ州の州立大学システムの名称。本部はアーバナ市とシャンペーン市にまたがるアーバナ・シャンペーン校(1867年創立、略称UIUC)である。このほか、シカゴ市と州都スプリングフィールドにもキャンパスを有する。本部であるアーバナ・シャンペーン校は、研究機関型総合大学としてイリノイ大学システムの旗艦校(Flagship)となっており、英国Times誌が毎年発表する世界大学ランキングで31位に位置する難関(2011年)。いわゆるパブリック・アイビーと称される名門公立大学の一つで、特に工学・自然科学分野における研究実績は国際的にも評価が高い。これまでに送り出したノーベル賞受賞者の数は11名(2014年現在)。アメリカ大学協会会員。.

新しい!!: ILLIAC IVとイリノイ大学 · 続きを見る »

イリノイ大学アーバナ・シャンペーン校

イリノイ大学システムは、アーバナ・シャンペーン校、シカゴ校、スプリングフィールド校から構成されるが、一般に「イリノイ大学」という場合、アーバナ・シャンペーン校を指すことが多い。アーバナ・シャンペーン校は、イリノイ大学システムの中核たる旗艦校(Flagship)である。米国東部の名門私立大学群をアイビーリーグと称することから派生した、公立の名門校群であるパブリック・アイビーの一つ。2016年現在、U.S. NewsのTop Public Schoolsランキングでは第11位。 Academic Ranking of World Universities では、2010年、世界第25位を獲得。特に工学系の専攻は、世界第4位にランクされた。LED(発光ダイオード)やMosaicは、イリノイ大学における著名な発明の例である。コンピューターサイエンスの強みは特筆に価し、ビル・ゲイツ氏は2004年2月のスピーチで、マイクロソフト社は、同大学のコンピュータ・サイエンス学科の卒業生を最も多く採用したことに触れた。 Youtubeの設立者であるスティーブ・チェンも同校工学部コンピューター・サイエンス専攻の出身である。.

新しい!!: ILLIAC IVとイリノイ大学アーバナ・シャンペーン校 · 続きを見る »

ウェスティングハウス・エレクトリック

ウェスティングハウス・エレクトリック()は、1886年から1999年まで存在したアメリカ合衆国の総合電機メーカー。略称はWHないしはWEC。 正式社名は数度変更されたが、第二次世界大戦が終戦するまではWestinghouse Electric & Manufacturing Company(ウェスティングハウス電気製造会社) として良く知られていた。1945年から1997年まではWestinghouse Electric Corporation(ウェスティングハウス・エレクトリック社)であった。歴史的な経緯からGEのライバル企業として見なされていたが、1997年にCBSコーポレーションと名を変え、1999年にバイアコムによって買収され消滅した。.

新しい!!: ILLIAC IVとウェスティングハウス・エレクトリック · 続きを見る »

エミッタ結合論理

Motorola ECL 10,000 シリーズの基本ゲート回路図Original drawing based on William R. Blood Jr. (1972). ''MECL System Design Handbook'' 2nd ed. n.p.: Motorola Semiconductor Products. 1. エミッタ結合論理(エミッタけつごうろんり、Emitter-coupled logic, ECL)は、単一入力のバイポーラトランジスタ差動増幅回路を駆使して高速性を実現した論理回路の実現方式のひとつで、汎用ロジックICファミリもある。エミッタ電流を制限することでトランジスタが飽和することを防ぎ、ベース領域のキャリア蓄積をさせない為、高速性を保つ。エミッタを結合した対の2つの脚の間で電流を操るため、ECLを current-steering logic (CSL)、current-mode logic (CML)、current-switch emitter-follower (CSEF) logicと呼ぶこともある。 ECLではトランジスタを非飽和領域内で動作させ、入出力電圧のLO/HIの差は小さく(0.8V)、入力インピーダンスが高く、出力抵抗は低い。結果としてトランジスタは素早く状態遷移でき、ゲート遅延が小さく、ファンアウト能力が高い。さらに出力が相補的である(YとYのように常に反対の出力がある)ために余分なインバータを挿入する必要がなく、回路全体の伝播遅延も短縮できる。ECLの欠点は、常に電流が流れ続けるため電力消費が大きく、発熱量も多いという点である。 エミッタ結合論理と等価な回路をFETで構成したものを ソース結合FET論理(source-coupled FET logic、SCFL)と呼ぶ。 ECLの変種として全ての信号経路やゲート入力が差動形となっているものがあり、DCS (differential current switch) 論理と呼ぶ。.

新しい!!: ILLIAC IVとエミッタ結合論理 · 続きを見る »

エイムズ研究センター

モフェットフィールドとエイムズ研究センターの航空写真 エイムズ研究センターの地図 エイムズ研究センター(エイムズけんきゅうセンター、Ames Research Center、ARC)は、モフェットフィールド(かつての空軍基地)にあるアメリカ航空宇宙局(NASA)の施設である。アメリカ合衆国カリフォルニア州のマウンテンビューとの境界に近いサニーベールの43エーカーの土地を使っている。.

新しい!!: ILLIAC IVとエイムズ研究センター · 続きを見る »

カリフォルニア州

リフォルニア州(State of California、Estado de California、中:加利福尼亚州、加州)は、アメリカ合衆国西部、太平洋岸の州。アメリカ西海岸の大部分を占める。州都は、サクラメントである。.

新しい!!: ILLIAC IVとカリフォルニア州 · 続きを見る »

コネクションマシン

ネクションマシン(Connection Machine)は、スーパーコンピュータシリーズの名称である。1980年代初頭、マサチューセッツ工科大学の Danny Hillis によるノイマン型コンピュータの代替となるアーキテクチャの研究から発展して製品化された。最初の CM-1 は、MITで考案されたもので、数千の単純なプロセッサノード(それぞれにRAMを持つ)をハイパーキューブ型に接続した超並列マシンであり、各CPUノードにはRAMを持ちSIMD方式で動作した。人工知能や記号処理に使うことを目的としていたが、計算科学分野で成功した。 Hillis と Sheryl Handler はシンキングマシンズ社をマサチューセッツ州 Waltham に設立し(1983年)、CM-1 を製造し、後に最大 65,536プロセッサ構成の CM-2を開発した。各プロセッサは非常に単純な 1ビットプロセッサである。後に数値演算コプロセッサ(Weitek 3132)を追加できるように改良され、32ノードがひとつの数値演算コプロセッサを共有する構成となっていた。CM-2 の小規模版 CM-2a(最大 4096プロセッサか 8192プロセッサ)や、高速版 CM-200 も後にリリースされた。 その本来の目的がAI研究であったため、CM-1/CM-2 のソフトウェアはLISPが基本とされ、Common Lispの派生版である *Lisp(スターリスプ)が実装された。CM-1/2のユーティリティの大半は *Lisp で書かれていた。 1991年に発表された CM-5 では、アーキテクチャを完全に変更し、Fat Tree構成のネットワークでSPARC RISCプロセッサを接続し、MIMD方式で動作した。後継の CM-5E では、SPARC を SuperSPARC に置き換えている。 コネクションマシン(CM-1)は一辺が 1.5メートルの立方体型であった。8個の同サイズの立方体に分かれている。その各立方体内に16枚のプリント基板とプロセッサが収められていた。各プリント基板には32個のチップが搭載されている。各チップには、ルーターと呼ばれる伝送路、16個のプロセッサ、16個のRAM、その他電子部品が集積されている。コネクションマシンは、全体としてはルーティングネットワークと主記憶と入出力プロセッサから構成されていた。そのスイッチングネットワーク部分を nexus と呼ぶ。主記憶装置は512メガバイト、補助記憶装置は 10ギガバイトであった。 コネクションマシンはその特異なデザインで記憶されている。CM-2 は立方体型で、その表面の大部分で LED が点滅しているのが見えた。CM-5 は上から見ると稲妻型になっていて、やはりLEDが多数並んだパネルが付いていた。そのデザインのためと思われるが、CM-5は、映画『ジュラシックパーク』で中央制御室に置かれていた。 コネクションマシンについて書かれた Danny Hillis 自身の著作 The Connection Machine (MIT Press Series in Artificial Intelligence) (ISBN 0262081571) は既に絶版となっている(2005年現在)。この本ではコネクションマシンの哲学、アーキテクチャ、ソフトウェアを概観しており、CPUノード間のデータルーティング手法、超並列マシンでのLISPプログラミング手法などが解説されている。なお、邦訳は1990年にパーソナルメディアより刊行(ISBN 4-89362-062-2)され、現在でも入手可能である(2009年10月現在)。邦訳にあたっては1985年発行の原書の内容が古くなったため、Danny Hillis自身の希望により、訳者がCM-2の記述を第2部として追加している。.

新しい!!: ILLIAC IVとコネクションマシン · 続きを見る »

コンピュータ

ンピュータ(Computer)とは、自動計算機、とくに計算開始後は人手を介さずに計算終了まで動作する電子式汎用計算機。実際の対象は文字の置き換えなど数値計算に限らず、情報処理やコンピューティングと呼ばれる幅広い分野で応用される。現代ではプログラム内蔵方式のディジタルコンピュータを指す場合が多く、特にパーソナルコンピュータやメインフレーム、スーパーコンピュータなどを含めた汎用的なシステムを指すことが多いが、ディジタルコンピュータは特定の機能を実現するために機械や装置等に組み込まれる組み込みシステムとしても広く用いられる。電卓・機械式計算機・アナログ計算機については各項を参照。.

新しい!!: ILLIAC IVとコンピュータ · 続きを見る »

シンキングマシンズ

ンキングマシンズ(Thinking Machines Corporation)は、1982年に W.D. Hillis と Sheryl Handler が設立したスーパーコンピュータ製造企業である。 Hillis がマサチューセッツ工科大学で研究していた並列コンピューティングアーキテクチャであるコネクションマシンを商用化するのが企業の目的であった。1984年には、MIT人工知能研究所に近いマサチューセッツ州ケンブリッジのケンドール・スクエアに移転している。そこはまた競合しているケンドール・スクエア・リサーチ社とも近かった。他の競合企業としては、MasPar(CM-2に良く似たマシンを販売)やMeiko(後にCM-5に良く似たマシンを販売)がある。.

新しい!!: ILLIAC IVとシンキングマシンズ · 続きを見る »

シーモア・クレイ

ーモア・ロジャー・クレイ(Seymour Roger Cray、1925年9月28日 - 1996年10月5日)は、アメリカ合衆国の電気工学者でスーパーコンピュータの設計者であり、クレイ・リサーチ社を設立した人物。「スーパーコンピュータの父」と称され、スーパーコンピュータ市場を生み出した人物とされている。ヒューレット・パッカードのCTOジョエル・バーンバウムはクレイについて次のように述べている。.

新しい!!: ILLIAC IVとシーモア・クレイ · 続きを見る »

国防高等研究計画局

アメリカ国防高等研究計画局(アメリカこくぼうこうとうけんきゅうけいかくきょく、Defense Advanced Research Projects Agency)は、軍隊使用のための新技術開発および研究を行うアメリカ国防総省の機関である。日本語では防衛高等研究計画局、国防高等研究事業局、国防高等研究計画庁などとも表記される。略称はダーパ(DARPA)。ARPAの時期にインターネットの原型であるARPANET・全地球測位システムのGPSを開発したことで知られている。.

新しい!!: ILLIAC IVと国防高等研究計画局 · 続きを見る »

CDC 6600

CDC 6600 CDC 6600は、1964年から製造された、コントロール・データ・コーポレーション (CDC) の汎用コンピュータ。一般に世界で初めて成功したスーパーコンピュータと言われており、当時の最速のマシンの三倍程度の性能を誇った。1964年にIBM 7030から世界最高速の地位を奪い、1969年に後継機 CDC 7600 にその地位を譲った。.

新しい!!: ILLIAC IVとCDC 6600 · 続きを見る »

CDC 7600

CDC 7600 の1号機 CDC 7600は、CDC 6600 の後継機としてシーモア・クレイが設計したコンピュータであり、1970年代に向かうスーパーコンピュータ市場におけるコントロール・データ・コーポレーションのシェアを伸ばすことに貢献した。クロック周波数は36.4MHz(クロックサイクルは27.5ナノ秒)で、65Kワードの主記憶(磁気コアメモリ)と可変容量(最大512Kワード)の二次記憶を備えている。6600の約10倍の速さであり、アセンブリ言語で書いたコードでは約10MFLOPSの性能を発揮し、理論上のピーク性能は36MFLOPSとされていたGordon Bell - 。さらに1970年初めに行われたベンチマークテストで、ライバルであるIBMの System/360 Model 195 より若干よい性能を示した。1969年にリリースされた当時、オプションや機能を追加すると価格は500万ドル以上となった。.

新しい!!: ILLIAC IVとCDC 7600 · 続きを見る »

CDC STAR-100

STAR-100は、コントロール・データ・コーポレーション (CDC) のスーパーコンピュータであり、数値演算性能を向上させるためにベクトルプロセッサを使用した最初のマシンのひとつである。 STARという名称は STrings と ARrays に由来する。100は設計時点の性能である100MFLOPSを指している。1970年代初めに発表され、当時世界最高速だった CDC 7600(36MFLOPS)の数倍の性能だとされた。1971年8月17日、CDCはゼネラルモーターズがSTAR-100の最初の顧客となったことを発表した。 1974年に初めて商用に使用されたが、基本設計上の様々な問題のために期待されていた性能を実アプリケーションで発揮することができず、1975年に発表されたCray-1が数年後に登場したときにCDCがスーパーコンピュータ市場のシェアを失う原因になった。.

新しい!!: ILLIAC IVとCDC STAR-100 · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: ILLIAC IVとCPU · 続きを見る »

Cray-1

ドイツ博物館に保管されているCray-1 EPFLのCray-1 Cray-1(クレイ ワン)は、シーモア・クレイ率いるクレイ・リサーチ社が設計したベクトル型スーパーコンピュータである。この種類のコンピュータの基本構成を確立し、当時世界最高速であった。最初のCray-1システムはロスアラモス国立研究所に 1976年に納入された。Cray-1のアーキテクトはシーモア・クレイ、主任技術者はクレイ・リサーチの共同創設者であるレスター・デーヴィスだった。.

新しい!!: ILLIAC IVとCray-1 · 続きを見る »

超並列マシン

超並列マシン (ちょうへいれつマシン、Massively parallel machine) は1990年代から台頭してきた、並列計算機の中で規模の大きなもの(CPU数の多いもの)を言う。大規模クラスターマシン、大規模ワークステーションクラスター、地球シミュレーターなども超並列マシンの範疇に入れることができる。時代と共に並列度は大きくなり、CPU性能は向上するため、何個以上のCPU数(或いは性能)で超並列であるというはっきりとした定義はない。 超並列マシンは分散メモリ型のコンピュータシステムであり、多数のノードから構成され、各ノードは基本的に独立したコンピュータとなっている。本来の超並列マシンはnCUBEやコネクションマシンなどのように、ほとんどのノードがCPUとメモリとノード間接続用の通信ポートのみで構成されるものであった。ノード間通信にはMPIのような標準的なプロトコルを使用してメッセージをやり取りする。2005年現在のスーパーコンピュータはほとんどが超並列マシンである。超並列マシンの性能は、実行しようとするアプリケーションの並列性と、スレッド間の通信量に左右される。アプリケーションの並列性が高ければ多くのノードに展開して並列実行できるため、性能向上が期待できる。しかし、共有メモリ型と異なり、あるスレッドの実行結果をメモリに置くだけでは他のスレッドからは見えないため、通信が必要となる。したがって、計算途中に他のスレッドの結果を待ち合わせなければならないようなアプリケーションではノード数に比例した性能向上は期待できない。超並列マシンでの計算性能の向上は研究の活発な領域である。.

新しい!!: ILLIAC IVと超並列マシン · 続きを見る »

集積回路

SOPパッケージに封入された標準ロジックICの例 集積回路(しゅうせきかいろ、integrated circuit, IC)は、主としてシリコン単結晶などによる「半導体チップ」の表面および内部に、不純物の拡散による半導体トランジスタとして動作する構造や、アルミ蒸着とエッチングによる配線などで、複雑な機能を果たす電子回路の多数の素子が作り込まれている電子部品である。多くの場合、複数の端子を持つ比較的小型のパッケージに封入され、内部で端子からチップに配線されモールドされた状態で、部品・製品となっている。.

新しい!!: ILLIAC IVと集積回路 · 続きを見る »

FLOPS

FLOPS(フロップス、Floating-point Operations Per Second)はコンピュータの性能指標の一つ。.

新しい!!: ILLIAC IVとFLOPS · 続きを見る »

FORTRAN

FORTRAN(フォートラン)は、1954年にIBMのジョン・バッカスによって考案された、コンピューターにおいて広く使われた世界最初の高級言語である。.

新しい!!: ILLIAC IVとFORTRAN · 続きを見る »

ILLIAC I

ILLIAC I(イリアック・ワン、Illinois Automatic Computer、イリノイ自動計算機)は、イリノイ大学で1952年に開発された初期のコンピュータであり、教育研究機関が自前で開発して所有した最初のコンピュータでもある。 ILLIAC I はプリンストン高等研究所(IAS)の数学者ジョン・フォン・ノイマンが編集したノイマン・アーキテクチャーに基づいている。当時の他のコンピュータとは異なり、ILLIAC I と ORDVACコンピュータは完全互換性があり、同じソフトウェアが動作した。約 2800本の真空管で構成され、大きさは長さ3m、幅0.6m、高さ2.6m、重さは4.5tである。ILLIAC Iは当時としては非常に高性能で、1956年のベル研究所に存在した全コンピュータの能力を合わせても、1台の ILLIAC I に敵わなかった。 真空管の寿命は約1年で、概算すると1日数本の真空管がダメになる勘定である。そのため、予防的保守としてマシンを毎日シャットダウンし、怪しい真空管をその時に交換する、という運用がされていた。マシンは ILLIAC II が使用可能になった 1962年に現役を退いた。.

新しい!!: ILLIAC IVとILLIAC I · 続きを見る »

ILLIAC II

ILLIAC II(イリアック・ツー)は、1962年に開発されたイリノイ大学のコンピュータである。.

新しい!!: ILLIAC IVとILLIAC II · 続きを見る »

ILLIAC III

ILLIAC III(イリアック・スリー)は、1966年、イリノイ大学が開発したSIMD型パターン認識用コンピュータである。 ILLIAC III の当初の仕事は核子を検出するための泡箱実験でイメージ処理をすることであった。後に生物学関連のイメージ処理にも活用された。 1968年、このマシンは火災で焼失している。木製作業台の上の可変変圧器がショートしたことが原因であった。1970年代初めに再建され、中核部である Pattern Articulation Unit という並列処理部分は実装できている。さらにいくつかの拡張の試みもなされたが、プロジェクトは結局中止となった。 が一貫してこのプロジェクトのリーダーであった。 File:ILLIAC III IMG 4178.jpg|ILLIAC III の回路基板 File:ILLIAC III IMG 4177.jpg|ILLIAC III の回路基板 File:ILLIAC III IMG 4176.jpg|ILLIAC III の回路基板.

新しい!!: ILLIAC IVとILLIAC III · 続きを見る »

ORDVAC

ORDVAC ORDVAC(Ordnance Discrete Variable Automatic Computer、オードヴァック)は、イリノイ大学がアバディーン性能試験場の弾道学研究室のために開発した初期のコンピュータのひとつである。ジョン・フォン・ノイマンが開発したIASアーキテクチャに基づくもので、このアーキテクチャがフォン・ノイマン・アーキテクチャとして知られるようになった。イリノイ大学の電子技術者たちはこのデザインを最初に実装し、ORDVAC を完成させた。ORDVAC は世界初のコンパイラが開発されたコンピュータでもある。ORDVAC は1951年春からアバディーン性能試験場で運用を開始した(EDVACと同じ場所である)。用途はアメリカ陸軍のための弾道計算である。.

新しい!!: ILLIAC IVとORDVAC · 続きを見る »

SIMD

SIMDの概念図PU.

新しい!!: ILLIAC IVとSIMD · 続きを見る »

数値流体力学

数値流体力学(すうちりゅうたいりきがく、computational fluid dynamics、略称:)とは、流体の運動に関する方程式(オイラー方程式、ナビエ-ストークス方程式、またはその派生式)をコンピュータで解くことによって流れを観察する数値解析・シミュレーション手法。計算流体力学とも。コンピュータの性能向上とともに飛躍的に発展し、航空機・自動車・鉄道車両・船舶等の流体中を移動する機械および建築物の設計をするにあたって風洞実験に並ぶ重要な存在となっている。.

新しい!!: ILLIAC IVと数値流体力学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »