ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

C*-環

索引 C*-環

数学における -環(しーすたーかん、C*-algebra)とは複素数体上の完備なノルム環で複素共役に類似の作用をもつものであり、フォン・ノイマン環と並ぶ作用素環論の主要な研究対象である。-代数(シースターだいすう)とも呼ばれる。1943年のGel'fand-Naimarkと1946年のRickartの研究によって公理系が与えられた。'-algebra' という用語は1947年にSegalによって導入された。 -環はその内在的な構造のみにもとづいて公理的に定義されるが、実はどんな -環もヒルベルト空間上の線形作用素のなす環で、随伴操作とノルムに関する位相で閉じたものとして実現されることが知られている。また、可換な -環を考えることは局所コンパクト空間上の複素数値連続関数環を考えることになり、その連続関数環からはもとの位相空間を復元できるので、可換 -環の理論は局所コンパクト空間の理論と等価だといえる。一般の -環は、群(あるいは亜群)など、幾何学的な文脈に現れながら普通の空間とは見なされないようなものを包摂しうる変形(「量子化」)された空間を表していると考えることもできる。.

35 関係: 力学系単位元同型写像場の量子論実数完備性対合対合バナッハ環対合環一様ノルム位相群の群環作用素ノルム作用素環論体上の多元環ノルムノルム代数ハウスドルフ空間バナッハ環ボレル正則測度ヒルベルト空間フォン・ノイマン環コンパクト空間全単射B*-環点ごとの積随伴作用素複素共役複素数関数空間量子力学の数学的定式化量子統計力学量子情報GNS表現数学数理物理学

力学系

力学系(りきがくけい、英語:dynamical system)とは、一定の規則に従って時間の経過とともに状態が変化するシステム(系)、あるいはそのシステムを記述するための数学的なモデルのことである。一般には状態の変化に影響を与える数個の要素を変数として取り出し、要素間の相互作用を微分方程式または差分方程式として記述することによってモデル化される。 力学系では、システムの状態を実数の集合によって定義している。各々の状態の違いは、その状態を代表する変数の差のみによって表現される。システムの状態の変化は関数によって与えられ、現在の状態から将来の状態を一意に決定することができる。この関数は、状態の発展規則と呼ばれる。 力学系の例としては、振り子の振動や自然界に存在する生物の個体数の変動、惑星の軌道などが挙げられるが、この世界の現象すべてを力学系と見なすこともできる。システムの振る舞いは、対象とする現象や記述のレベルによって多種多様である。;力学系の具体例.

新しい!!: C*-環と力学系 · 続きを見る »

単位元

数学、とくに抽象代数学において、単位元(たんいげん, )あるいは中立元(ちゅうりつげん, )は、二項演算を備えた集合の特別な元で、ほかのどの元もその二項演算による単位元との結合の影響を受けない。.

新しい!!: C*-環と単位元 · 続きを見る »

同型写像

数学において,同型写像(isomorphismfrom the Ancient Greek: ἴσος isos "equal", and μορφή morphe "form" or "shape")あるいは単に同型とは,は準同型写像あるいは射であって,逆射を持つものである逆関数ではない..2つの数学的対象が同型 (isomorphic) であるとは,それらの間に同型写像が存在することをいう.自己同型写像は始域と終域が同じ同型写像である.同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使って区別できないという事実にある.したがって同型な対象はこれらの性質やその結果だけを考える限り同じものと考えてよい. 群や環を含むほとんどの代数的構造に対して,準同型写像が同型写像であることと全単射であることは同値である. 位相幾何学において,射とは連続写像のことであるが,同型写像は同相写像あるいは双連続写像とも呼ばれる.解析学において,射は可微分関数であり,同型写像は微分同相とも呼ばれる. 標準的な同型写像 (canonical isomorphism) は同型であるようなである.2つの対象が標準的に同型 (canonically isomorphic) であるとは,それらの間に標準的な同型写像が存在することをいう.例えば,有限次元ベクトル空間 から二重双対空間への標準的な写像は標準的な同型写像である.一方, は双対空間に同型であるが,一般には標準的にではない. 同型写像は圏論を用いて形式化される.ある圏の射 が同型射であるとは,両側逆射を持つことをいう,すなわち,その圏における別の射 があって, かつ となる,ただし と はそれぞれ と の恒等射である..

新しい!!: C*-環と同型写像 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: C*-環と場の量子論 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: C*-環と実数 · 続きを見る »

完備性

数学における完備性(かんびせい、completeness)は、様々な場面においてそれぞれの対象に関して特定の意味を以って考えられ、またそれぞれの意味において完備(かんび、complete)でない対象に対する完備化 (completion) と呼ばれる操作を考えることができる。complete は「完全」と訳されることもある。.

新しい!!: C*-環と完備性 · 続きを見る »

対合

対合(たいごう、ついごう、involution)は、自分自身をその逆として持つ写像である。 これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質 を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元 を指すと言っても同じことであり、それを理由に一般の群(抽象群)においても位数 2 の元を対合と呼ぶことがある。.

新しい!!: C*-環と対合 · 続きを見る »

対合バナッハ環

対合バナッハ環(ついごうバナッハかん、involutive Banach algebra; 対合バナッハ代数)、バナッハ *-環(バナッハ・スターかん、Banach *-algebra; バナッハ *-代数, バナッハ対合環)あるいは対合付きバナッハ環 (Banach algebra with involution) は、複素数体上のバナッハ環 で、対合 を持ち、以下の条件を満たす: および は任意、かつ は の複素共軛として.

新しい!!: C*-環と対合バナッハ環 · 続きを見る »

対合環

数学、特に抽象代数学における対合環(ついごうかん、involutory ring)、-環(スターかん、∗-ring)記法について: 対合 は後置により表される単項演算で、そのグリフはミーンライン付近やや上方に中心がくるように右肩にのせて のように書くが、"" のように中心がミーンライン上にくるようにはしない(スター記号 * とスター演算記号 ∗ との混同に注意: アスタリスクの項も参照)。あるいは対合付き環(ついごうつきかん、involution)は、環構造と両立する対合(共軛演算、随伴)を備える代数系である。可換 -環 上の結合多元環 がそれ自身 -環でもあるとき、二つの -環の -構造が両立するならば、 を -環 上の 対合多元環(ついごうたげんかん、involutive algebra; 対合代数)、-多元環(スターたげんかん、∗-algebra; -代数)あるいは対合付き多元環(ついごうつきたげんかん、algebra with involution; 対合つき代数)という。 対合環における対合(-演算)は複素数体における複素共軛を一般化するものであり、また対合多元環における対合は複素行列環における共軛転置あるいはヒルベルト空間上の線型作用素のエルミート共軛を一般化するものである。.

新しい!!: C*-環と対合環 · 続きを見る »

一様ノルム

'''R'''2 上の最大値ノルム一定な点の軌跡は、図のような黒い正方形を描く。 数学の解析学の分野における一様ノルム(いちようノルム、)は、ある集合 S 上定義される有界な実または複素数値関数 f に対して、非負実数値 を割り当てるものである。このノルムは上限ノルム、チェビシェフノルムあるいは無限大ノルムなどとも呼ばれる。「一様ノルム」という名は、このノルムにより定められる距離についてある関数列 (fn) が f に収束することと、fn が f に一様収束することが必要十分であるという事実による。 一様ノルムに下付きの "∞" が用いられているのは、f が連続なる限り p-次平均収束ノルム が成り立つことによる。ここで D は f の定義域、積分は D が離散集合のときは単なる総和で置き換えられる。 有界でない関数 f をも考慮に入れるならば、上の定義は厳密な意味でのノルムあるいは距離を導くものではない。しかしいわゆる拡張距離が得られるので、それにより考える関数空間上に位相を定義することは可能である。.

新しい!!: C*-環と一様ノルム · 続きを見る »

位相群の群環

数学において、局所コンパクト群の群環(ぐんかん、group algebra)とは、その群の表現が適当な環の表現の表現として読み替えることができるような(いくつかの)構成法が与えられたときの、その環(ふつうは作用素環あるいはもっと一般のバナハ代数)を総称して呼ぶものである。そういった環は、位相を抜きにして考えた群に対する群環と同じような働きを果たす。.

新しい!!: C*-環と位相群の群環 · 続きを見る »

作用素ノルム

数学の分野における作用素ノルム(さようそノルム、Operator norm)とは、線形作用素の大きさを測る際に用いられるある種の指標のことを言う。より正式には、与えられた二つのノルム線形空間の間の有界線形作用素からなる空間上に定義されるノルムのことを言う。.

新しい!!: C*-環と作用素ノルム · 続きを見る »

作用素環論

作用素環論(さようそかんろん、)とは、作用素環とよばれるクラスの位相線型環を主に研究する数学の分野である。研究対象の直接的な定義からは複素数体上無限次元の線型代数学と言え、普通関数解析学に分類されている。しかし、その手法や応用はいわゆる代数学・幾何学・解析学の諸分野に幅広くわたり、アラン・コンヌが提唱する非可換幾何の枠組みを与えていることでも特筆される。 作用素環とは普通ヒルベルト空間上の有界線型作用素(連続な線型写像)のなす複素数体上の線型環に適当なノルムによる位相を定めたもので、随伴作用とよばれる対合変換で閉じたもののことを指す。この随伴作用は複素行列の共役転置作用をヒルベルト空間上の作用素について考えたものであり、有限次元の線型代数学と同様に自己共役作用素やユニタリ作用素が理論の展開に重要な役割をはたす。主要な作用素環のクラスとしては、局所コンパクト空間上の複素数値連続関数環の「量子化」を与えていると考えられるC*-環や、可測関数環に対応するフォン・ノイマン環があげられる。それ以外にも、考える作用素環の無限性をとらえる非有界(自己共役)作用素も決定的な役割を果たしているし、多様体上の微分構造に対応するより繊細な構造の位相環と、それらに対するド・ラームコホモロジーの類似物なども研究されている。 このような作用素環が可換になったり I 型とよばれる簡単な構造を持つ場合にさまざまな(作用素環以前の)古典的な対象が現れ、作用素環の構造が複雑になるほど古典的な数学では捉えにくい複雑な状況が表されていると考えられる。作用素環論の主な目標として、このように作用素環によって「非可換」化・量子化された幾何的対象を表現し、通常の図形と(可分)位相群などとを統一的に理解することや、それらに対するホモロジー・コホモロジー的な理論(K理論)の構成と理解などが挙げられる。 1930年代のとフォン・ノイマンのフォン・ノイマン環に関する一連の論文や、1940年代のイズライル・ゲルファントとによるC*-環に関する研究が作用素環論の始まりだといわれている。可換環と局所コンパクト空間の圏の同値性を与えるゲルファント・ナイマルクの定理はアレクサンドル・グロタンディークによるスキームの概念にも影響を与えている。1970年代に冨田・竹崎理論を駆使してコンヌが III 型フォン・ノイマン環の分類をほぼ完成させた。1980年代にはヴォーン・ジョーンズによって部分因子環の理論と、その派生物としてトポロジーにおける結び目の不変量を与えるようなジョーンズ多項式が得られた。一方で作用素環はそのはじめから数理物理(特に量子力学)の定式化に使われることが意識されており、現在でも物理学とのあいだに活発な交流がある。 日本の作用素環論の研究者で1994年以降、ICMで全体講演をしたものはいないが、招待講演者の中には小沢登高、泉正己がいる。.

新しい!!: C*-環と作用素環論 · 続きを見る »

体上の多元環

数学において体上の代数あるいは多元環(たげんかん、algebra)とは、双線型な乗法を備えた線型空間である(ゆえに「線型環」ともいう)。すなわちベクトル空間とその上の乗法と呼ばれる二項演算——つまり二つのベクトルから第三のベクトルを作り出す操作——とからなり、乗法がベクトル空間の構造と(分配律などの)適当な意味で両立するような代数的構造である。したがって、体上の多元環は、加法と乗法および体の元によるとを演算として備えた集合である。 定義における係数の体を可換環に取り換えることにより、体上の多元環の一般化として環上の多元環の概念を得ることもできる。 文献によっては、単に「多元環」(あるいは「代数」)と言えば単位的結合多元環を指すこともあるが、本項ではそのような制約は課さない。.

新しい!!: C*-環と体上の多元環 · 続きを見る »

ノルム

解析学において、ノルム (norm, Norm) は、平面あるいは空間における幾何学的ベクトルの "長さ" の概念の一般化であり、ベクトル空間に対して「距離」を与えるための数学の道具である。ノルムの定義されたベクトル空間を線型ノルム空間または単にノルム空間という。.

新しい!!: C*-環とノルム · 続きを見る »

ノルム代数

数学の特に函数解析学におけるノルム環(ノルムかん)またはノルム代数(ノルムだいすう、normed algebra; ノルム多元環、ノルム線型環) は適当な位相体 (とくに実数体 または複素数体 )上のノルム空間かつ多元環であって、そのノルムが を満たすものを言う。加えて、 が乗法単位元 を持つ(単位的多元環)ならば も仮定することがある。.

新しい!!: C*-環とノルム代数 · 続きを見る »

ハウスドルフ空間

数学におけるハウスドルフ空間(ハウスドルフくうかん、Hausdorff space)とは、異なる点がそれらの近傍によって分離できるような位相空間のことである。これは分離空間(separated space)またはT2 空間とも呼ばれる。位相空間についてのさまざまな分離公理の中で、このハウスドルフ空間に関する条件はもっともよく仮定されるものの一つである。ハウスドルフ空間においては点列(あるいはより一般に、フィルターやネット)の極限の一意性が成り立つ。位相空間の理論の創始者の一人であるフェリックス・ハウスドルフにちなんでこの名前がついている。ハウスドルフによって与えられた位相空間の公理系にはこのハウスドルフ空間の公理も含まれていた。.

新しい!!: C*-環とハウスドルフ空間 · 続きを見る »

バナッハ環

数学の、特に関数解析学の分野におけるバナッハ環(バナッハかん、; バナッハ代数、バナッハ多元環、バナッハ線型環)は、完備ノルム体(ふつうは実数体 または 複素数体 )上の結合多元環 であって、バナッハ空間(ノルムが存在し、に関して完備)ともなる。バナッハ代数におけるノルムは乗法に関して を満たすことが要求され、それにより乗法の連続性は保証される。名称はステファン・バナッハに由来する。 上述の定義において、バナッハ空間をノルム空間に緩める(つまり完備性を要請しない)場合、同様の構造はノルム環(ノルム線型環)と呼ばれる。 バナッハ環は、乗法単位元を持つとき、単位的(unital)であると言う。また乗法が可換であるとき、可換と言う。単位元を持つ持たないにかかわらず、任意のバナッハ環 は適当な単位的バナッハ環(つまり の「単位化」) にこの閉イデアルとなるように等長的に埋め込める。しばしば、扱っている環は単位的であるということがアプリオリに仮定される。すなわち、 を考えることで多くの理論を展開でき、その結果を元の環に応用するという方法が取られることがある。しかしこの方法は常に有効という訳ではない。例えば、単位元を持たないバナッハ環においては、すべての三角関数を定義することが出来ない。 実バナッハ環の理論は、複素バナッハ環の理論とは非常に異なるものである。例えば、非自明な複素バナッハ環の元のスペクトルは決して空とはならないが、実バナッハ環においてはいくつかの元のスペクトルは空となり得る。 p-進数体 上のバナッハ代数(-進バナッハ代数)は、p-進解析の一部として研究される。.

新しい!!: C*-環とバナッハ環 · 続きを見る »

ボレル正則測度

数学の分野において、n-次元ユークリッド空間 Rn 上の外測度 μ は、次の二つの条件が成り立つとき、ボレル正則測度(ボレルせいそくそくど、)と呼ばれる。.

新しい!!: C*-環とボレル正則測度 · 続きを見る »

ヒルベルト空間

数学におけるヒルベルト空間(ヒルベルトくうかん、Hilbert space)は、ダフィット・ヒルベルトにその名を因む、ユークリッド空間の概念を一般化したものである。これにより、二次元のユークリッド平面や三次元のユークリッド空間における線型代数学や微分積分学の方法論を、任意の有限または無限次元の空間へ拡張して持ち込むことができる。ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる。 ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる。そういった意味でのヒルベルト空間の研究は、20世紀冒頭10年の間にヒルベルト、シュミット、リースらによって始められた。ヒルベルト空間の概念は、偏微分方程式論、量子力学、フーリエ解析(信号処理や熱伝導などへの応用も含む)、熱力学の研究の数学的基礎を成すエルゴード理論などの理論において欠くべからざる道具になっている。これら種々の応用の多くの根底にある抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである。ヒルベルト空間を用いる方法の成功は、関数解析学の実りある時代のさきがけとなった。古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 、自乗総和可能数列の空間 、超関数からなるソボレフ空間 、正則関数の成すハーディ空間 などが挙げられる。 ヒルベルト空間論の多くの場面で、幾何学的直観は重要である。例えば、三平方の定理や中線定理(の厳密な類似対応物)は、ヒルベルト空間においても成り立つ。より深いところでは、部分空間への直交射影(例えば、三角形に対してその「高さを潰す」操作の類似対応物)は、ヒルベルト空間論における最適化問題やその周辺で重要である。ヒルベルト空間の各元は、平面上の点がそのデカルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。ヒルベルト空間上の線型作用素は、ほぼ具体的な対象として扱うことができる。条件がよければ、空間を互いに直交するいくつかの異なる要素に分解してやると、線型作用素はそれぞれの要素の上では単に拡大縮小するだけの変換になる(これはまさに線型作用素のスペクトルを調べるということである)。.

新しい!!: C*-環とヒルベルト空間 · 続きを見る »

フォン・ノイマン環

フォン・ノイマン環(ふぉんのいまんかん、von Neumann algebra)とは、ヒルベルト空間上の有界線型作用素たちのなす C*-環のうちで恒等作用素を含み作用素の弱収束位相について閉じているもののことである。一般の C*-環と並ぶ作用素環論の主要な研究対象であり、理論の創始者の一人ジョン・フォン・ノイマンにちなんでこの名前がついている。可換なフォン・ノイマン環の重要な例として、σ-有限な測度空間 X 上の L∞ 級関数全体のなす環があげられる。.

新しい!!: C*-環とフォン・ノイマン環 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: C*-環とコンパクト空間 · 続きを見る »

全単射

数学において、全単射(ぜんたんしゃ)あるいは双射(そうしゃ)(bijective function, bijection) とは、写像であって、その写像の終域となる集合の任意の元に対し、その元を写像の像とする元が、写像の定義域となる集合に常にただ一つだけ存在するようなもの、すなわち単射かつ全射であるような写像のことを言う。例としては、群論で扱われる置換が全単射の良い例である。 全単射であることを一対一上への写像 (one-to-one onto mapping)あるいは一対一対応 (one-to-one correspondence) ともいうが、紛らわしいのでここでは使用しない。 写像 f が全単射のとき、fは可逆であるともいう。.

新しい!!: C*-環と全単射 · 続きを見る »

B*-環

函数解析学における B*-環(ビー・スターかん、B*-algebra; B*-代数)は、両立するバナッハ環と *-環の構造を持ち、B*-条件と呼ばれる恒等式を満足するものである。言葉を変えれば、完備なノルムと双線型かつ連続な乗法を備える複素ベクトル空間であって、適当な条件を満足する対合を備えた代数系である。.

新しい!!: C*-環とB*-環 · 続きを見る »

点ごとの積

2つの関数の点ごとの積は、定義域の各値における2つの関数の像を掛けることで得られる別の関数である。 と がともに定義域が で終域が の関数で、 の元が掛けることができるとき(例えば は数からなる集合)、 と の点ごとの積は から への を に写す別の関数である。.

新しい!!: C*-環と点ごとの積 · 続きを見る »

随伴作用素

数学の特に函数解析学において、ヒルベルト空間上の各有界線型作用素は、対応する随伴作用素(ずいはんさようそ、adjoint operator)を持つ。作用素の随伴は正方行列の随伴行列の概念の無限次元の場合をも許すような一般化である。ヒルベルト空間上の作用素を「一般化された複素数」と考えれば、作用素の随伴は複素数に対する複素共軛の役割を果たすものである。 作用素 の随伴は、シャルル・エルミートに因んでエルミート共軛 (Hermitian conjugate) とも呼ばれ、 あるいは などで表される(後者は特にブラケット記法とともに用いられる)。.

新しい!!: C*-環と随伴作用素 · 続きを見る »

複素共役

数学において、複素数の複素共役、複素共軛(ふくそきょうやく、complex conjugate)は、複素数に対し、その虚部の符号をいれかえたものである。つまり、i を虚数単位として、複素数 z を a, b を実数として と表したとき、 が z の複素共役である。複素共役を表すのには上線がよく使われる。上付きのアスタリスク (z*) なども使われるが、行列での随伴行列などとの混乱を避けるためにあまり使われない。.

新しい!!: C*-環と複素共役 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: C*-環と複素数 · 続きを見る »

関数空間

関数空間(かんすうくうかん、、函数空間)とは、特定の空間上で、ある性質を持つ関数の全体を幾何学的な考察の対象として捉えたものである。.

新しい!!: C*-環と関数空間 · 続きを見る »

量子力学の数学的定式化

本項では相対論的効果を考えない量子力学の数学的定式化(りょうしりきがくのすうがくてきていしきか)を厳密に述べる。本項では量子力学に対する最低限の知識を仮定する。.

新しい!!: C*-環と量子力学の数学的定式化 · 続きを見る »

量子統計力学

量子統計力学 (りょうしとうけいりきがく、) とは量子力学的な系を扱う統計力学の手法。統計力学の基礎づけは量子力学に拠っているため、広義には統計力学一般を意味し、狭義には古典近似を用いないモデルを指す。対義語は古典統計力学。.

新しい!!: C*-環と量子統計力学 · 続きを見る »

量子情報

量子情報(りょうしじょうほう、quantum information)は、量子力学に基づいて状態が決定する情報のことである。二値もしくはそれらの状態の重ね合わせによって表現される。.

新しい!!: C*-環と量子情報 · 続きを見る »

GNS表現

作用素代数や数理物理学において、GNS表現(-ひょうげん、GNS representation)、またはGelfand-Naimark-Segal表現とは、C*-代数に対し、状態と呼ばれる正値線形汎関数が与えられたときに、ヒルベルト空間上の有界作用素による表現を構成する手法H.

新しい!!: C*-環とGNS表現 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: C*-環と数学 · 続きを見る »

数理物理学

数理物理学(すうりぶつりがく、Mathematical physics)は、数学と物理学の境界を成す科学の一分野である。数理物理学が何から構成されるかについては、いろいろな考え方がある。典型的な定義は、Journal of Mathematical Physicsで与えているように、「物理学における問題への数学の応用と、そのような応用と物理学の定式化に適した数学的手法の構築」である。 しかしながら、この定義は、それ自体は特に関連のない抽象的な数学的事実の証明にも物理学の成果が用いられている現状を反映していない。このような現象は、弦理論の研究が数学の新地平を切り拓きつつある現在、ますます重要になっている。 数理物理には、関数解析学/量子力学、幾何学/一般相対性理論、組み合わせ論/確率論/統計力学などが含まれる。最近では弦理論が、代数幾何学、トポロジー、複素幾何学などの数学の重要分野と交流を持つようになってきている。.

新しい!!: C*-環と数理物理学 · 続きを見る »

ここにリダイレクトされます:

C*-代数C*代数C-star環

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »