ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

超弦理論

索引 超弦理論

ラビ-ヤウ空間 超弦理論(ちょうげんりろん、)は、物理学の理論、仮説の1つ。物質の基本的単位を、大きさが無限に小さな0次元の点粒子ではなく、1次元の拡がりをもつ弦であると考える弦理論に、超対称性という考えを加え、拡張したもの。超ひも理論、スーパーストリング理論とも呼ばれる。 宇宙の姿やその誕生のメカニズムを解き明かし、同時に原子、素粒子、クォークといった微小な物のさらにその先の世界を説明する理論の候補として、世界の先端物理学で活発に研究されている理論である。この理論は現在、理論的な矛盾を除去することには成功しているが、なお不完全な点を指摘する専門家もおり、また実験により検証することが困難であろうとみなされているため、物理学の定説となるまでには至っていない。.

96 関係: AdS/CFT対応An Exceptionally Simple Theory of EverythingArXiv原子単位南部陽一郎双対場の量子論多元宇宙論大統一理論大阪大学学研ホールディングス宇宙宇宙のインフレーション宇宙論万物の理論一般相対性理論京都大学仮説弦理論弱い相互作用強い相互作用ミチオ・カクノーベル物理学賞マイケル・グリーン (物理学者)マクスウェルの方程式ハドロンリー・スモーリンリサ・ランドールレオナルド・サスキンドボース粒子トゥーリオ・レッジェヘテロティック弦理論ブラックホールブライアン・グリーンブレーンワールドプランク長ビッグバンテオドール・カルツァディラトンデイビッド・グロスフアン・マルダセナフェルミ粒子ベータ関数アルベルト・アインシュタインウィークボソンエントロピーエドワード・ウィッテンエキピロティック宇宙論...オスカル・クラインカラビ・ヤウ多様体カルツァ=クライン理論ガブリエーレ・ヴェネツィアーノクォークグルーオンゲージ理論ゲージ粒子コンパクト化 (物理学)ジョン・シュワルツジョセフ・ポルチンスキースピン角運動量スティーヴン・ホーキングソリトンタイプII超弦理論タキオン八元数共形場理論光子理化学研究所理論素粒子統一場理論統計力学点粒子熱力学物理学物質相対性理論Dブレーン草思社非可換幾何超対称性超対称性理論超重力理論重力重力子量子量子力学量子重力理論電磁相互作用M理論林一核子標準模型数学 インデックスを展開 (46 もっと) »

AdS/CFT対応

論物理学では、AdS/CFT対応(AdS/CFTたいおう、anti-de Sitter/conformal field theory correspondence)は、マルダセーナ双対(Maldacena duality)あるいはゲージ/重力双対(gauge/gravity duality)とも呼ばれ、2つの物理理論の種類の間の関係を予言するものである。対応の片側は、共形場理論 (CFT) で、場の量子論で基本粒子を記述するヤン=ミルズ理論の類似物を意味し、対応する反対側は、反ド・ジッター空間(AdS)で、量子重力の理論で使われる空間である。この対応は弦理論やM-理論のことばで定式化された。 双対性は、弦理論と量子重力の理解の主要な発展の現れである。この理由は、双対性がある境界条件を持つ弦理論の(non-perturbative)な定式化であるからであり、注目を浴びている量子重力のアイデアのホログラフィック原理を最もうまく実現しているからである。ホログラフィック原理は、もともとジェラルド・トフーフトが提唱し、レオナルド・サスキンドにより改善されている。 加えて、の場の量子論の研究への強力なツールを提供している。 双対性の有益さの大半は、強弱双対性から来ている。つまり、場の量子論が強い相互作用である場合に、重力理論の側は弱い相互作用であるので、数学的に取り扱い易くなっている。この事実は、強結合の理論を強弱対称性により数学的に扱い易い弱結合の理論に変換することにより、原子核物理学や物性物理学での多くの研究に使われてきている。 AdS/CFT対応は、最初に1997年末、フアン・マルダセナにより提起された。この対応の重要な面は、、、アレクサンドル・ポリヤコフの論文や、エドワード・ウィッテンの論文により精査された。2014にはマルダセナの論文の引用は10000件を超え、高エネルギー物理学の分野の最も多く引用される論文となっている。.

新しい!!: 超弦理論とAdS/CFT対応 · 続きを見る »

An Exceptionally Simple Theory of Everything

E8の幾何学的イメージ An Exceptionally Simple Theory of Everything(直訳:例外的に単純な万物の理論)とは、アントニー・ギャレット・リージが2007年11月6日にarXivに提出したプレプリント(論文)のタイトル。彼の理論(E8理論)は、E8と呼ばれる248次元のリー群を用いて、標準模型に重力を統一することができると主張している。査読や科学雑誌での発表は行われていないが、多くの専門家の反応を招き、この話題と彼への公的な関心を呼んでいる。また、大学や研究機関に所属しておらず、(論文発表時)ハワイでサーフィンやスノーボードのインストラクターをして生計を立てていたり、公開されたWIKIで研究内容を公表しているような型破りさから、サーファー物理学者として様々なメディアに広く取り上げられた。 論題は、E8が単純群および例外型リー群に分類されることと、この分野にしては珍しく単純な理論であることを掛けた数学的な洒落である。.

新しい!!: 超弦理論とAn Exceptionally Simple Theory of Everything · 続きを見る »

ArXiv

arXiv(アーカイヴ、archiveと同じ発音)は、物理学、数学、計算機科学、量的生物学、計量ファイナンス、統計学の、を含む様々な論文が保存・公開されているウェブサイトである。論文のアップロード(投稿)、ダウンロード(閲覧)ともに無料で、論文はPDF形式である。1991年にスタートして、プレプリント・サーバーの先駆けとなったウェブサイトである。大文字の X をギリシャ文字のカイ(Χ)にかけて archive と読ませている。 現代(2012年)においてはこうした仕組みのサイトは特に珍しいものでもない。しかし、arXivの設立当初(1990年代初頭)においては、学術出版社や大学図書館を介さずに研究者同士がインターネットを介して直接に論文をやりとりできる場として、学術出版関係者に大きな驚きをもって受けとめられた。 2015年8月現在106万報以上の論文が保存されている。毎月8,000報を超える論文が追加されている。1991年、LANL preprint archiveという名称でロスアラモス国立研究所を運営元としてスタートし、1999年にarXiv.orgと改名。現在はコーネル大学図書館が運営元となっている。.

新しい!!: 超弦理論とArXiv · 続きを見る »

原子

原子(げんし、άτομο、atom)という言葉には以下の3つの異なった意味がある。.

新しい!!: 超弦理論と原子 · 続きを見る »

単位

単位(たんい、unit)とは、量を数値で表すための基準となる、約束された一定量のことである。約束ごとなので、同じ種類の量を表すのにも、社会や国により、また歴史的にも異なる多数の単位がある。.

新しい!!: 超弦理論と単位 · 続きを見る »

南部陽一郎

南部 陽一郎(なんぶ よういちろう、1921年1月18日 - 2015年7月5日 産経新聞 2015年7月17日閲覧 大阪大学 2015年7月17日閲覧)は日本出身、アメリカ国籍の理論物理学者。シカゴ大学名誉教授、大阪市立大学名誉教授、大阪大学特別栄誉教授、立命館アジア太平洋大学アカデミック・アドバイザー。専門は素粒子理論。理学博士(東京大学 1952年)。 日本の福井県福井市出身。自宅が大阪府豊中市にあり、シカゴに在住していた。1970年に日本からアメリカ合衆国へ帰化した。.

新しい!!: 超弦理論と南部陽一郎 · 続きを見る »

双対

双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(双対の双対はある意味で "元に戻る")。また、2つのものが互いに双対の関係にあることを「双対性がある」などとよぶ。双対は数学や物理学をはじめとする多くの分野に表れる。 なお読みについて、双対を「そうたい」と読む流儀もあり「相対 (relative)」と紛らわしい。並行して相対を「そうつい」と読む流儀もある。一般には「双対」を「そうつい」、「相対」を「そうたい」と呼び分ける場合が多いようである。 双対の具体的な定義は、双対関係の成立している対象の種類によって様々に与えられる。.

新しい!!: 超弦理論と双対 · 続きを見る »

場の量子論

場の量子論(ばのりょうしろん、英:Quantum Field Theory)は、量子化された場(素粒子物理ではこれが素粒子そのものに対応する)の性質を扱う理論である。.

新しい!!: 超弦理論と場の量子論 · 続きを見る »

多元宇宙論

多元宇宙論(たげんうちゅうろん、multiverse)とは、複数の宇宙の存在を仮定した理論物理学による論説である。物理的に観測不可能な様々な事象を数学や物理学を元に理論構築し、既知の観測や観察とともに予想された物理理論の一つである。 様々なSFやオカルトにより理論的裏付けのない解釈で語られることも多い。.

新しい!!: 超弦理論と多元宇宙論 · 続きを見る »

大統一理論

大統一理論(だいとういつりろん、grand unified theory, GUT)とは、電磁相互作用、弱い相互作用と強い相互作用を統一する理論である。幾つかのモデルが作られているが、未完成の理論である。 電磁相互作用と弱い相互作用の統一は電弱統一理論(ワインバーグ=サラム理論)としてシェルドン・グラショウ、スティーヴン・ワインバーグ、アブドゥ・サラムにより完成されている。.

新しい!!: 超弦理論と大統一理論 · 続きを見る »

大阪大学

文部科学省が実施しているスーパーグローバル大学事業のトップ型指定校である。.

新しい!!: 超弦理論と大阪大学 · 続きを見る »

学研ホールディングス

株式会社学研ホールディングス(がっけんホールディングス)は、日本の教育事業・出版社を統括する持株会社である。2009年(平成21年)10月1日に学習研究社(がくしゅうけんきゅうしゃ)より組織改編・社名変更を実施した。.

新しい!!: 超弦理論と学研ホールディングス · 続きを見る »

宇宙

宇宙(うちゅう)とは、以下のように定義される。.

新しい!!: 超弦理論と宇宙 · 続きを見る »

宇宙のインフレーション

宇宙のインフレーション(うちゅうのインフレーション、)とは、初期の宇宙が指数関数的な急膨張(インフレーション)を引き起こしたという、初期宇宙の進化モデルである。ビッグバン理論のいくつかの問題を一挙に解決するとされる。インフレーション理論・インフレーション宇宙論などとも呼ばれる。この理論は、1981年に佐藤勝彦K.

新しい!!: 超弦理論と宇宙のインフレーション · 続きを見る »

宇宙論

宇宙論(うちゅうろん、cosmology)とは、「宇宙」や「世界」などと呼ばれる人間をとりかこむ何らかの広がり全体、広義には、それの中における人間の位置、に関する言及、論、研究などのことである。 宇宙論には神話、宗教、哲学、神学、科学(天文学、天体物理学)などが関係している。 「Cosmology コスモロジー」という言葉が初めて使われたのはクリスティアン・ヴォルフの 『Cosmologia Generalis』(1731)においてであるとされている。 本項では、神話、宗教、哲学、神学などで扱われた宇宙論も幅広く含めて扱う。.

新しい!!: 超弦理論と宇宙論 · 続きを見る »

万物の理論

万物の理論(ばんぶつのりろん、Theory of Everything; ToE)とは、自然界に存在する4つの力、すなわち電磁気力(電磁力とも言う)・弱い力・強い力・重力を統一的に記述する理論(統一場理論)の試みである。 このうち、電磁気力と弱い力はワインバーグ・サラム理論(電弱理論)によって電弱力という形に統一されている。電弱力と強い力を統一的に記述する理論は大統一理論(GUT:Great Unification Therory)と呼ばれ、現在研究が進められている。最終的には重力も含めた全ての力を統一的に記述する理論が考えられ、これを万物の理論または超大統一理論(SUT; Super Unification Therory)という。.

新しい!!: 超弦理論と万物の理論 · 続きを見る »

一般相対性理論

一般相対性理論(いっぱんそうたいせいりろん、allgemeine Relativitätstheorie, general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、general relativity)とも。.

新しい!!: 超弦理論と一般相対性理論 · 続きを見る »

京都大学

記載なし。

新しい!!: 超弦理論と京都大学 · 続きを見る »

仮説

仮説(かせつ、hypothesis)とは、真偽はともかくとして、何らかの現象や法則性を説明するのに役立つ命題のこと。.

新しい!!: 超弦理論と仮説 · 続きを見る »

弦(げん)とは.

新しい!!: 超弦理論と弦 · 続きを見る »

弦理論

弦理論(げんりろん、string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。.

新しい!!: 超弦理論と弦理論 · 続きを見る »

弱い相互作用

弱い相互作用(よわい そうごさよう、)とは、素粒子の間で作用する4つの基本相互作用の内の一つである。弱い核力、あるいは単に弱い力とも呼ばれる。この相互作用による効果として代表的なものにベータ崩壊がある。電磁相互作用と比較して、力が非常に弱いことからこの名がついた。.

新しい!!: 超弦理論と弱い相互作用 · 続きを見る »

強い相互作用

強い相互作用(つよいそうごさよう、Strong interaction)は、基本相互作用の一つである。ハドロン間の相互作用や、原子核内の各核子同士を結合している力(核力)を指し、標準模型においては量子色力学によって記述される。強い力、強い核力とも。その名の通り電磁相互作用に比べて約137倍の強さがある。 強い相互作用の理解は、歴史的には湯川秀樹による、パイ中間子の交換によって核子に働く核力の説明に始まるが、1970年代前半の量子色力学の成立によって、ゲージ理論として完成した。.

新しい!!: 超弦理論と強い相互作用 · 続きを見る »

ミチオ・カク

ミチオ・カク(加來 道雄、Michio Kaku、1947年1月24日 - )は日系アメリカ人(3世)の理論物理学者、作家。専門は素粒子論、とくに超弦理論。.

新しい!!: 超弦理論とミチオ・カク · 続きを見る »

ノーベル物理学賞

ノーベル物理学賞(ノーベルぶつりがくしょう、Nobelpriset i fysik)は、ノーベル賞の一部門。アルフレッド・ノーベルの遺言によって創設された6部門のうちの一つ。物理学の分野において重要な発見を行った人物に授与される。 ノーベル物理学賞のメダルは、表面にはアルフレッド・ノーベルの横顔(各賞共通)、裏面には宝箱を持ち雲の中から現れた自然の女神のベールを科学の神が持ち上げて素顔を眺めている姿(化学賞と共通)がデザインされている。.

新しい!!: 超弦理論とノーベル物理学賞 · 続きを見る »

マイケル・グリーン (物理学者)

マイケル・ボリス・グリーン(Michael Boris Green、1946年5月22日 - )は、イギリスの物理学者で、弦理論研究者である。ケンブリッジ大学にて、応用数学および理論物理学の教授をつとめている。1967年ケンブリッジ大学にて学士号を取得後、1970年に同大学にて博士号を取得した。 弦理論の黎明期において理論の構築に貢献した。特に、1984年にジョン・シュワルツとともにタイプI超弦理論がアノマリーのない無矛盾な理論であることを示したことは、第1次ストリング革命のきっかけとなった。 米制作のドキュメンタリー番組「美しき大宇宙」(原題:)にも出演している。 1989年王立協会フェロー選出。2009年にスティーヴン・ホーキングからケンブリッジ大学のルーカス教授職を引き継ぎ、2015年までの6年間務めた。.

新しい!!: 超弦理論とマイケル・グリーン (物理学者) · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: 超弦理論とマクスウェルの方程式 · 続きを見る »

ハドロン

ハドロン (hadron) は、素粒子標準模型において強い相互作用で結びついた複合粒子のグループである。 強粒子とも訳されるが、現代では素粒子物理学者がこの和名で呼ぶことはほとんどない。 この名称は、ギリシャ語の「強い」の意のἁδρόςに由来し、1962年にレフ・オクンによって付けられた。.

新しい!!: 超弦理論とハドロン · 続きを見る »

リー・スモーリン

リー・スモーリン (1955年6月6日生まれ)アメリカの理論物理学者、ペリメーター理論物理研究所教員、ウォータールー大学の物理学教授、トロント大学の哲学部の大学院教授のメンバー。スモーリンが2006年に出版した『 The Trouble with Physics』の中で実行可能な科学的な理論だと弦理論を批判した。彼は量子重力理論、特にループ量子重力理論として知られるアプローチに貢献した。ループ量子重力理論と弦理論、の2つの主なアプローチは、同じ基礎理論の異なる側面として調和できると主張する。彼の研究分野には、宇宙論、素粒子論、量子力学の基礎、数理生物学などがある。,.

新しい!!: 超弦理論とリー・スモーリン · 続きを見る »

リサ・ランドール

リサ・ランドール(Lisa Randall、1962年6月18日 - )はアメリカ合衆国の理論物理学者。専門は、素粒子物理学、宇宙論。.

新しい!!: 超弦理論とリサ・ランドール · 続きを見る »

レオナルド・サスキンド

レオナルド・サスキンド(Leonard Susskind、1940年 - )はアメリカの物理学者。素粒子物理学における弦理論の創始者の一人。.

新しい!!: 超弦理論とレオナルド・サスキンド · 続きを見る »

ボース粒子

ボース粒子 (ボースりゅうし) とは、スピン角運動量の大きさが\hbarの整数倍の量子力学的粒子である。ボソンまたはボゾン (Boson) とも呼ばれ、その名称はインドの物理学者、サティエンドラ・ボース (Satyendra Nath Bose) に由来する。.

新しい!!: 超弦理論とボース粒子 · 続きを見る »

トゥーリオ・レッジェ

トゥーリオ・レッジェ(Tullio Regge、1931年7月11日 - 2014年10月23日)はイタリアの理論物理学者。1960年代の初め頃から素粒子物理学で流行したレッジェ仮説や、南部陽一郎らのハドロンのひもモデルを要請したスピンと質量の関係をプロットしたレッジェ軌道などで科学史に残る。 トリノに生まれた。トリノで物理学を学んだ後、アメリカに渡り、ロチェスター大学で学位を得る。1961年にトリノ大学の教授となる。1960年代から1970年代はプリンストン大学で研究した。トリノ工科大学教授などを務めた。1964年にハイネマン賞数理物理学部門、1987年Città di Como prize、1987年、アインシュタイン・メダル、1987年にセシル・パウエル・メダル、1996年ディラック・メダルを受賞している。1989年, 欧州議会の議員に選ばれた。 Category:イタリアの物理学者 Category:トリノ工科大学の教員 Category:トリノ大学の教員 Category:プリンストン高等研究所の人物 Category:トリノ出身の人物 Category:1931年生 Category:2014年没.

新しい!!: 超弦理論とトゥーリオ・レッジェ · 続きを見る »

ヘテロティック弦理論

ヘテロティック弦理論(ヘテロティックげんりろん、heterotic string theory)とは、ボゾン的な弦理論と超弦理論を組み合わせて作られた理論である。弦理論では、弦の右巻きの自由度の励起と左巻きの自由度の励起はほとんど独立であるため、左巻きの自由度はボゾン弦の定義される26次元の時空に存在し、右巻きの自由度は超対称な弦の定義される10次元に存在すると考えて理論を構築することが出来る。 16次元分の差は、自己双対な偶格子(線形空間の離散部分群)による商空間としてコンパクト化されなければならない。16次元の自己双対な偶格子としては2つの可能性があり、それが2種類のヘテロティック弦理論となる。これらは10次元時空上の理論としては、ゲージ群が異なる。一つはSO(32) (HO弦) で、もう一つはE8×E8 (HE弦) である。 10次元で \mathcal.

新しい!!: 超弦理論とヘテロティック弦理論 · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 超弦理論とブラックホール · 続きを見る »

ブライアン・グリーン

ブライアン・グリーン(Brian Greene、1963年2月9日 - )は、アメリカ合衆国の理論物理学者。超弦理論や多元宇宙論などの最先端の理論物理学を一般向けに紹介する著作やTVメディアへの出演で広く知られている。.

新しい!!: 超弦理論とブライアン・グリーン · 続きを見る »

ブレーンワールド

ブレーンワールド(膜宇宙、braneworld)またはブレーン宇宙論(brane cosmology)とは、『我々の認識している4次元時空(3次元空間+時間)の宇宙は、さらに高次元の時空(バルク(bulk))に埋め込まれた膜(ブレーン(brane))のような時空なのではないか』と考える宇宙モデルである。低エネルギーでは(我々自身を含む)標準模型の素粒子の相互作用が4次元世界面(ブレーン)上に閉じ込められ、重力だけが余剰次元(5次元目以降の次元)方向に伝播できる、とする。.

新しい!!: 超弦理論とブレーンワールド · 続きを見る »

プランク長

プランク長(プランクちょう、Planck length)は、長さのプランク単位である。記号 \ell_P で表す。コンプトン波長を \pi で割ったものとシュワルツシルト半径とが等しい長さとなる質量で定義される。このときの質量をプランク質量という。.

新しい!!: 超弦理論とプランク長 · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 超弦理論とビッグバン · 続きを見る »

テオドール・カルツァ

テオドール・カルツァ(Theodor Franz Eduard Kaluza、1885年11月9日 - 1954年1月19日)は、ドイツの数学者、物理学者である。1929年からキール大学教授、1935年からゲッティンゲン大学教授を務めた。 カルツァ=クライン理論は5次元での空間での場の方程式を含んでいる。彼の着想は基本的な力が高次元を導入することで統一することができることで、のちに超弦理論に表れる。 Category:ドイツの物理学者 Category:ドイツの数学者 Category:ゲオルク・アウグスト大学ゲッティンゲンの教員 Category:クリスティアン・アルブレヒト大学キールの教員 Category:オポーレ出身の人物 Category:シレジア・ドイツ人 Category:1885年生 Category:1954年没.

新しい!!: 超弦理論とテオドール・カルツァ · 続きを見る »

ディラトン

ディラトン(英:dilaton)とは、超弦理論に登場する仮説上の粒子である。.

新しい!!: 超弦理論とディラトン · 続きを見る »

デイビッド・グロス

デイビッド・グロス(David Jonathan Gross、1941年2月19日 - )は、アメリカ合衆国ワシントンD.C.生まれの理論物理学者。カリフォルニア大学サンタバーバラ校カブリ理論物理学研究所所長。2004年に、ウィルチェック 、H. デビッド・ポリツァーとともに「強い相互作用の理論における漸近的自由性の発見」の功績によりノーベル物理学賞を受賞した。.

新しい!!: 超弦理論とデイビッド・グロス · 続きを見る »

フアン・マルダセナ

フアン・マルティン・マルダセナ(Juan Martin MALDACENA、1968年9月10日 - )は、アルゼンチンのブエノスアイレス出身の理論物理学者である。専門は素粒子理論。アメリカ合衆国のプリンストンにある高等研究所自然科学部門の教授を務めている。.

新しい!!: 超弦理論とフアン・マルダセナ · 続きを見る »

フェルミ粒子

フェルミ粒子(フェルミりゅうし)は、フェルミオン(Fermion)とも呼ばれるスピン角運動量の大きさが\hbarの半整数 (1/2, 3/2, 5/2, …) 倍の量子力学的粒子であり、その代表は電子である。その名前は、イタリア=アメリカの物理学者エンリコ・フェルミ (Enrico Fermi) に由来する。.

新しい!!: 超弦理論とフェルミ粒子 · 続きを見る »

ベータ関数

数学において、ベータ関数(ベータかんすう、beta function)とは、ルシャンドルの定義に従って第一種オイラー積分とも呼ばれる特殊関数である。.

新しい!!: 超弦理論とベータ関数 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: 超弦理論とアルベルト・アインシュタイン · 続きを見る »

ウィークボソン

ウィークボソン (weak boson) は素粒子物理学において、弱い相互作用を媒介する素粒子である。弱ボソンとも言う。 ウィークボソンはスピン1のベクトルボソンで、WボソンとZボソンの二種類が存在する。Wボソンは陽子の約80倍、Zボソンは約90倍と他の素粒子に比べて大きな質量をもち、ごく短時間のうちに別の粒子に崩壊してしまうという特徴を持つ。 Wボソンは電荷 ±1 (W+,W−)をもち、両者は互いに反粒子の関係にある。 Zボソンは電荷 0 で、反粒子は自分自身である。 1968年に理論で存在が予言され、1983年に欧州合同原子核研究所にてその存在が確認された。.

新しい!!: 超弦理論とウィークボソン · 続きを見る »

エントロピー

ントロピー(entropy)は、熱力学および統計力学において定義される示量性の状態量である。熱力学において断熱条件下での不可逆性を表す指標として導入され、統計力学において系の微視的な「乱雑さ」「でたらめさ」と表現されることもある。ここでいう「でたらめ」とは、矛盾や誤りを含んでいたり、的外れであるという意味ではなく、相関がなくランダムであるという意味である。を表す物理量という意味付けがなされた。統計力学での結果から、系から得られる情報に関係があることが指摘され、情報理論にも応用されるようになった。物理学者ののようにむしろ物理学におけるエントロピーを情報理論の一応用とみなすべきだと主張する者もいる。 エントロピーはエネルギーを温度で割った次元を持ち、SIにおける単位はジュール毎ケルビン(記号: J/K)である。エントロピーと同じ次元を持つ量として熱容量がある。エントロピーはサディ・カルノーにちなんで一般に記号 を用いて表される。.

新しい!!: 超弦理論とエントロピー · 続きを見る »

エドワード・ウィッテン

ドワード・ウィッテン(Edward Witten, 1951年8月26日 - )は超弦理論においてM理論を提唱した理論物理学者。現在はプリンストン高等研究所教授。 メリーランド州ボルチモア生まれ。父親は一般相対性理論の研究者で元シンシナティ大学教授のルイス・ウィッテン。当初はジャーナリストを志望し、ブランダイス大学時代は歴史学や言語学を専攻。米国雑誌『The Nation』や『THE NEW REPUBLIC』に寄稿する他、1972年の大統領選で大敗したジョージ・マクガヴァンの選挙運動に携わった。 ウィスコンシン大学マディソン校大学院で経済学を専攻するが中退し、1973年にプリンストン大学大学院で応用数学を専攻。後に物理学に移り、デビッド・グロスの下で1976年に博士号を取得した。 その後ハーヴァード大学のフェローなどを経て、1980年から1987年までプリンストン大学物理学科の教授を務めた。1995年に南カリフォルニア大学で開かれたスーパーストリング理論国際会議で、仮説M理論を発表し学会に衝撃を与える。1990年、数学に関する最高権威を有するフィールズ賞を受賞。 ネーサン・サイバーグとは友人で共同研究者。米制作ドキュメンタリー「美しき大宇宙」(原題:The Elegant Universe)に出演している。.

新しい!!: 超弦理論とエドワード・ウィッテン · 続きを見る »

エキピロティック宇宙論

ピロティック宇宙論(エキピロティックうちゅうろん)とは、 によって提唱された宇宙論モデルである。 ビッグバンのエネルギー生成のメカニズムは、高次元時空にうかぶ3次元のブレーンワールド同士の衝突によって生じるとする。.

新しい!!: 超弦理論とエキピロティック宇宙論 · 続きを見る »

オスカル・クライン

ル・クライン オスカル・クライン(Oskar Klein, 1894年9月15日 - 1977年2月5日)は スウェーデンの理論物理学者である。仁科芳雄と散乱に関するクライン=仁科の式を導いたことなどで知られる。 スウェーデンのストックホルム県ダンデリードに、ストックホルムのラビを務めるゴットリーブ・クラインの息子として生れた。ノーベル研究所でスヴァンテ・アレニウスに学んだ。その後ジャン・ペランに学んだが、第1次大戦の勃発により、兵役についた。 1917年から数年デンマークのコペンハーゲンにおいてニールス・ボーアのもとで研究し、1921年ストックホルム大学で博士号を取得した。1923年にアメリカミシガン州、アナーバーのミシガン大学で講師の職を得て、デンマーク人の妻ゲルダ・コッホとともに移り住んだ。1925年、クラインは再びコペンハーゲンに戻ると、オランダのライデンでポール・エーレンフェストとともに働き、1926年にルンド大学の講師になった。1930年には、かつてイヴァール・フレッドホルムが1927年に死去するまでその椅子にあったストックホルム大学の物理学教授職のオファーを受け、1961年に名誉教授として退任するまでその職を務めた。1959年、マックス・プランク・メダルを受章した。.

新しい!!: 超弦理論とオスカル・クライン · 続きを見る »

カラビ・ヤウ多様体

ラビ・ヤウ多様体は、代数幾何などの数学の諸分野や数理物理で注目を浴びている特別なタイプの多様体。特に超弦理論では、時空の余剰次元が6次元(実次元)のカラビ・ヤウ多様体の形をしていると予想されている。この余剰次元の考え方が、ミラー対称性の考えを導くことになった。 カラビ・ヤウ多様体は、1次元の楕円曲線や2次元のK3曲面の高次元版の複素多様体であり、コンパクトケーラー多様体で標準バンドルが自明なものとして定義されることが多い。ただし、他にも類似の(しかし互いに同値ではない)いくつかの定義がある。では、"カラビ・ヤウ空間"と呼ばれた。最初は微分幾何学の立場から、エウゲニオ・カラビで研究され、シン=トゥン・ヤウが、これらがリッチ平坦な計量を持つであろうというカラビ予想を証明したことから、カラビ・ヤウ多様体と命名された。.

新しい!!: 超弦理論とカラビ・ヤウ多様体 · 続きを見る »

カルツァ=クライン理論

ルツァ=クライン理論(カルツァ=クラインりろん、Kaluza-Klein theory、KK理論)は、重力と電磁気力を統一するために五次元以上の時空を仮定する理論である。理論物理学者のテオドール・カルツァが1921年に提唱し、1926年にオスカル・クラインが修正した。.

新しい!!: 超弦理論とカルツァ=クライン理論 · 続きを見る »

ガブリエーレ・ヴェネツィアーノ

右 ガブリエーレ・ヴェネツィアーノ(Gabriele Veneziano, גבריאל ונציאנו‎、1942年9月7日生まれ)は、イタリアの物理学者である。1960年代後半、ひも理論の創始者のひとりとなった。 フィレンツェに生まれ、フィレンツェ大学、イスラエルのワイツマン研究所、マサチューセッツ工科大学で学んだ。1968年、ヨーロッパ素粒子物理学研究所(CERN)で研究中にオイラーのベータ関数が素粒子の相互作用を満足する性質を備えていることを発見した。1972年からワイツマン研究所の教授、1976年からCERNのスタッフとなった。.

新しい!!: 超弦理論とガブリエーレ・ヴェネツィアーノ · 続きを見る »

クォーク

ーク(quark)とは、素粒子のグループの一つである。レプトンとともに物質の基本的な構成要素であり、クォークはハドロンを構成する。クオークと表記することもある。 クォークという名称は、1963年にモデルの提唱者の一人であるマレー・ゲルマンにより、ジェイムズ・ジョイスの小説『フィネガンズ・ウェイク』中の一節 "Three quarks for Muster Mark" から命名された 。.

新しい!!: 超弦理論とクォーク · 続きを見る »

グルーオン

ルーオン()とは、ハドロン内部で強い相互作用を伝える、スピン1のボース粒子である。質量は0で、電荷は中性。また、「色荷(カラー)」と呼ばれる量子数を持ち、その違いによって全部で8種類のグルーオンが存在する。膠着子(こうちゃくし)、糊粒子という呼び方もあるが、あまり使われない。 他のゲージ粒子と違い、通常の温度・密度ではクォーク同様単独で取り出すことは不可能であるとされる。 また、グルーオン自身が色荷を持つため、グルーオンどうしにも相互作用が働く。これは電磁相互作用を伝える光子にはない性質である。この性質により、グルーオンのみで構成された粒子、グルーボールの存在が、格子QCD及び超弦理論によって示唆されている。.

新しい!!: 超弦理論とグルーオン · 続きを見る »

ゲージ理論

ージ理論(ゲージりろん、gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。.

新しい!!: 超弦理論とゲージ理論 · 続きを見る »

ゲージ粒子

ージ粒子(ゲージりゅうし、gauge boson)とは、素粒子物理学において、ゲージ相互作用を媒介するボース粒子の総称である。 特にその相互作用がゲージ理論で記述されている素粒子間において、(仮想粒子として)ゲージ粒子の交換により力が生じる。 標準模型においては、電磁相互作用を媒介する光子、弱い相互作用を伝えるウィークボソン、強い相互作用を伝えるグルーオンの3種類がある。 また重力相互作用もゲージ理論で記述されていると考えられており、これを伝える重力子がある。.

新しい!!: 超弦理論とゲージ粒子 · 続きを見る »

コンパクト化 (物理学)

物理学では、コンパクト化(compactification)は、時空の次元の観点より理論を変更することを意味する。無限次元であるような次元も含む次元に替わりに、有限の次元を持つような理論に変更して、周期的な理論することを言う。 時間をコンパクト化する熱場の量子論では、コンパクト化が重要な部分を担い、理論の余剰次元をコンパクト化し、2次元もしくは 1次元の固体物理学では、3次元の普通の空間次元の極限である系を考える。 コンパクト化される次元の大きさが 0 となる極限で、この余剰次元に依存する場は存在せず、理論は(Dimensional reduction)される。 M \times C is compactified over the compact C and after Kaluza–Klein decomposition, we have an effective field theory over M.-->.

新しい!!: 超弦理論とコンパクト化 (物理学) · 続きを見る »

ジョン・シュワルツ

ョン・ヘンリー・シュワルツ(John Henry Schwarz、1941年11月22日 - )は、アメリカの理論物理学者。弦理論の黎明期において理論の構築に貢献した。特に、1984年にマイケル・グリーンとともにタイプI超弦理論がアノマリーのない無矛盾な理論であることを示したことは、第1次ストリング革命のきっかけとなった。 カリフォルニア工科大学教授。.

新しい!!: 超弦理論とジョン・シュワルツ · 続きを見る »

ジョセフ・ポルチンスキー

ョセフ・ポルチンスキー(Joseph Polchinski、1954年5月16日 - 2018年2月2日)は、アメリカ合衆国の超弦理論の物理学者。カリフォルニア大学サンタバーバラ校教授。 1975年カリフォルニア工科大学卒。1980年カリフォルニア大学バークレー校で博士号取得。.

新しい!!: 超弦理論とジョセフ・ポルチンスキー · 続きを見る »

スピン角運動量

ピン角運動量(スピンかくうんどうりょう、spin angular momentum)は、量子力学上の概念で、粒子が持つ固有の角運動量である。単にスピンとも呼ばれる。粒子の角運動量には、スピン以外にも粒子の回転運動に由来する角運動量である軌道角運動量が存在し、スピンと軌道角運動量の和を全角運動量と呼ぶ。ここでいう「粒子」は電子やクォークなどの素粒子であっても、ハドロンや原子核や原子など複数の素粒子から構成される複合粒子であってもよい。 「スピン」という名称はこの概念が粒子の「自転」のようなものだと捉えられたという歴史的理由によるものであるが、現在ではこのような解釈は正しいとは考えられていない。なぜなら、スピンは古典極限 において消滅する為、スピンの概念に対し、「自転」をはじめとした古典的な解釈を付け加えるのは全くの無意味だからであるランダウ=リフシッツ小教程。 量子力学の他の物理量と同様、スピン角運動量は演算子を用いて定義される。この演算子(スピン角運動量演算子)は、スピンの回転軸の方向に対応して定義され、 軸、 軸、 軸方向のスピン演算子をそれぞれ\hat_x,\hat_y,\hat_z と書き表す。これらの演算子の固有値(=これら演算子に対応するオブザーバブルを観測したときに得られる値)は整数もしくは半整数である値 を用いて、 と書き表せる。値 は、粒子のみに依存して決まり、スピン演算子の軸の方向には依存せずに決まる事が知られている。この を粒子のスピン量子数という。 スピン量子数が半整数 になる粒子をフェルミオン、整数 になる粒子をボゾンといい、両者の物理的性質は大きく異る(詳細はそれぞれの項目を参照)。2016年現在知られている範囲において、.

新しい!!: 超弦理論とスピン角運動量 · 続きを見る »

スティーヴン・ホーキング

ティーヴン・ウィリアム・ホーキング(Stephen William Hawking、1942年1月8日 - 2018年3月14日)は、イギリスの理論物理学者である。大英帝国勲章(CBE)受勲、FRS(王立協会フェロー)、FRA(ロイヤル・ソサエティ・オブ・アーツフェロー)。スティーブン・ホーキングとも。 一般相対性理論と関わる分野で理論的研究を前進させ、1963年にブラックホールの特異点定理を発表し世界的に名を知られた。1971年には「宇宙創成直後に小さなブラックホールが多数発生する」とする理論を提唱、1974年には「ブラックホールは素粒子を放出することによってその勢力を弱め、やがて爆発により消滅する」とする理論(ホーキング放射)を発表、量子宇宙論という分野を形作ることになった。現代宇宙論に多大な影響を与えた人物である。 また、一般人向けに現代の理論的宇宙論を平易に解説するサイエンス・ライターの才能も持ち合わせており、その著作群が各国で翻訳されており、これでも人々によく知られている(日本語版は『ホーキング、宇宙を語る』など)。 「車椅子の物理学者」としても知られる。1960年代、学生の頃に筋萎縮性側索硬化症(ALS)を発症したとされている。ALSは長い間、発症から5年程度で死に至る病であると考えられていたが、途中で進行が急に弱まり、発症から50年以上にわたり研究活動を続けた。晩年は意思伝達のために重度障害者用意思伝達装置を使っており、スピーチや会話ではコンピュータプログラムによる合成音声を利用していた。.

新しい!!: 超弦理論とスティーヴン・ホーキング · 続きを見る »

ソリトン

リトン波の再現例 ソリトン()は、おおまかにいって非線形方程式に従う孤立波で、次の条件を満たす安定したパルス状の波動のことである。.

新しい!!: 超弦理論とソリトン · 続きを見る »

タイプII超弦理論

タイプII超弦理論(英語:type II superstring theory)とは、10次元時空において定義される5種類の超弦理論のうちの2つ(タイプIIA、タイプIIB)のことである。この2つの理論は、ともに最大の超対称性(32の超対称性チャージ)を持っている。これらはともに向き付けのある閉じた弦の理論であるが、世界面上でのGSO射影の課し方による違いがある。.

新しい!!: 超弦理論とタイプII超弦理論 · 続きを見る »

タキオン

タキオン(tachyon)は、超光速で動くと仮定されている粒子である。タキオンの存在は特殊相対性理論に反しないが、場の理論において否定的であり、現在においても存在は確認されていない。語源はギリシャ語の「ταχύς(速い)」に由来する。 SF作品中で超光速通信の手段として用いられたり、疑似科学の世界でタキオングッズとして「製品化」されたりしている。.

新しい!!: 超弦理論とタキオン · 続きを見る »

八元数

数学における八元数(はちげんすう、octonions; オクトニオン)の全体は実数体上のノルム多元体で、ふつう大文字アルファベットの O を使って、太字の O(あるいは黒板太字の 𝕆)で表される。実数体上のノルム多元体はたった四種類であり、O のほかは、実数の全体 R, 複素数の全体 C, 四元数の全体 H しかない。O はこれらノルム多元体の中で最大のもので、実八次元、これは H の次元の二倍である(O は H を拡大して得られる)。八元数の全体 O における乗法は非可換かつ非結合的だが、弱い形の結合性である冪結合律は満足する。 より広く調べられ利用されている四元数や複素数に比べれば、八元数についてはそれほどよく知られているわけではない。にもかかわらず、八元数にはいくつも興味深い性質があり、それに関連して(例外型リー群が持つような)例外的な構造もいくつも備えている。加えて、八元数は弦理論などといった分野に応用を持っている。 八元数は、ハミルトンの四元数の発見に刺激を受けたジョン・グレイヴスによって1843年に発見され、グレイヴスはこれを octaves と呼んだ。それとは独立にケイリーも八元数を発見しており、八元数のことをケイリー数、その全体をケイリー代数と呼ぶことがある。.

新しい!!: 超弦理論と八元数 · 続きを見る »

共形場理論

共形場理論(きょうけいばりろん、Conformal Field Theory, CFT)とは、共形変換に対して作用が不変な場の理論である。特に、1+1次元系では複素平面をはじめとするリーマン面上での理論として記述される。 共形変換に対する不変性はWard-Takahashi恒等式を要請し、これをもとにエネルギー-運動量テンソル(あるいはストレステンソル)に関する保存量が導出される。また1+1次元系においては、エネルギー-運動量テンソルを展開したものは、Virasoro代数と呼ばれる無限次元リー代数をなし、理論の中心的役割を果たす。 共形変換群は、時空間の対称性であるポアンカレ群の自然な拡張になっており、空間d-1次元+時間1次元のd次元時空間ではリー群SO(d,2)で記述される。この変換群の生成子は(d+2)(d+1)/2個あり、その内訳は以下のとおり。.

新しい!!: 超弦理論と共形場理論 · 続きを見る »

光子

|mean_lifetime.

新しい!!: 超弦理論と光子 · 続きを見る »

理化学研究所

国立研究開発法人理化学研究所(こくりつけんきゅうかいはつほうじんりかがくけんきゅうしょ、RIKEN、Institute of Physical and Chemical Research)は、埼玉県和光市に本部を持つ自然科学系総合研究所。略称は「理研」。.

新しい!!: 超弦理論と理化学研究所 · 続きを見る »

理論

論(りろん、theory, théorie, Theorie)とは対象となる事象の原因と結果の関係を説明する一般的な論述である。自然科学、人文科学、社会科学などの科学または学問において用いられている。.

新しい!!: 超弦理論と理論 · 続きを見る »

素粒子

物理学において素粒子(そりゅうし、elementary particle)とは、物質を構成する最小の単位のことである。基本粒子とほぼ同義語である。.

新しい!!: 超弦理論と素粒子 · 続きを見る »

統一場理論

統一場理論(とういつばりろん)とは、場の理論において種々の相互作用力を一種類に統一する理論である。自然界の四つの力を全て統一することが到達点で、この全ての力を統一した理論のことを万物の理論と呼ぶ。現在、万物の理論の候補は、超弦理論のみであると考えられている。.

新しい!!: 超弦理論と統一場理論 · 続きを見る »

統計力学

統計力学(とうけいりきがく、statistical mechanics)は、系の微視的な物理法則を基に、巨視的な性質を導き出すための学問である。統計物理学 (statistical physics)、統計熱力学 (statistical thermodynamics) とも呼ぶ。歴史的には系の熱力学的な性質を気体分子運動論の立場から演繹することを目的としてルートヴィッヒ・ボルツマン、ジェームズ・クラーク・マクスウェル、ウィラード・ギブズらによって始められた。理想気体の温度と気圧ばかりでなく、実在気体についても扱う。.

新しい!!: 超弦理論と統計力学 · 続きを見る »

点粒子

点粒子(point particle)は、物理学においてよく用いられる理想化された粒子である。理想粒子 (ideal particle) または点様粒子 (point-like particle, pointlike&mdash) とも言う。 それを定義付ける特徴は空間的を持たないことである。ゼロ次元であり空間を占有しない。.

新しい!!: 超弦理論と点粒子 · 続きを見る »

熱力学

熱力学(ねつりきがく、thermodynamics)は、物理学の一分野で、熱や物質の輸送現象やそれに伴う力学的な仕事についてを、系の巨視的性質から扱う学問。アボガドロ定数個程度の分子から成る物質の巨視的な性質を巨視的な物理量(エネルギー、温度、エントロピー、圧力、体積、物質量または分子数、化学ポテンシャルなど)を用いて記述する。 熱力学には大きく分けて「平衡系の熱力学」と「非平衡系の熱力学」がある。「非平衡系の熱力学」はまだ、限られた状況でしか成り立たないような理論しかできていないので、単に「熱力学」と言えば、普通は「平衡系の熱力学」のことを指す。両者を区別する場合、平衡系の熱力学を平衡熱力学、非平衡系の熱力学を非平衡熱力学 と呼ぶ。 ここでいう平衡 とは熱力学的平衡、つまり熱平衡、力学的平衡、化学平衡の三者を意味し、系の熱力学的(巨視的)状態量が変化しない状態を意味する。 平衡熱力学は(すなわち通常の熱力学は)、系の平衡状態とそれぞれの平衡状態を結ぶ過程とによって特徴付ける。平衡熱力学において扱う過程は、その始状態と終状態が平衡状態であるということを除いて、系の状態に制限を与えない。 熱力学と関係の深い物理学の分野として統計力学がある。統計力学は熱力学を古典力学や量子力学の立場から説明する試みであり、熱力学と統計力学は体系としては独立している。しかしながら、系の平衡状態を統計力学的に記述し、系の状態の遷移については熱力学によって記述するといったように、一つの現象や定理に対して両者の結果を援用している 。しかしながら、アインシュタインはこの手法を否定している。.

新しい!!: 超弦理論と熱力学 · 続きを見る »

物理学

物理学(ぶつりがく, )は、自然科学の一分野である。自然界に見られる現象には、人間の恣意的な解釈に依らない普遍的な法則があると考え、自然界の現象とその性質を、物質とその間に働く相互作用によって理解すること(力学的理解)、および物質をより基本的な要素に還元して理解すること(原子論的理解)を目的とする。化学、生物学、地学などほかの自然科学に比べ数学との親和性が非常に強い。 古代ギリシアの自然学 にその源があり, という言葉も、元々は自然についての一般的な知識の追求を意味しており、天体現象から生物現象までを含む幅広い概念だった。現在の物理現象のみを追求する として自然哲学から独立した意味を持つようになったのは19世紀からである。 物理学の古典的な研究分野は、物体の運動、光と色彩、音響、電気と磁気、熱、波動、天体の諸現象(物理現象)である。.

新しい!!: 超弦理論と物理学 · 続きを見る »

物質

物質(ぶっしつ)は、.

新しい!!: 超弦理論と物質 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: 超弦理論と相対性理論 · 続きを見る »

Dブレーン

Dブレーンとは弦理論において、特殊な条件下で存在するとされる物体である。 弦理論におけるブレーン(membrane=膜)は、弦なども含む、広がりを持った物理的対象全般を表す語である。Dブレーンもまた弦と同様に、伸縮や振動などの運動を行う。通常、Dブレーンは弦に比べて非常に大きいものとして記述されるが、素粒子サイズのものを考えることも可能である。例えばハドロン物理学をブレーン上の物理現象として記述するホログラフィックQCDでは、陽子もまた微小なDブレーンとして記述される。 DブレーンのDは、後述するディリクレ境界条件(Dirichlet)に由来する。DブレーンはDai、Leighおよびジョセフ・ポルチンスキー、そしてそれとは独立にHoravaによって1989年に発見された。.

新しい!!: 超弦理論とDブレーン · 続きを見る »

草思社

渋谷区千駄ヶ谷に所在していた初代本社ビル(豊島区巣鴨移転後の2010年7月撮影) 株式会社草思社(そうししゃ)とは日本の出版社である。.

新しい!!: 超弦理論と草思社 · 続きを見る »

非可換幾何

数学における非可換幾何(ひかかんきか、noncommutative geometry)とは可換性が成り立たない(「積」について xy と yx が一致しない)ような代数構造に対する空間的・幾何学的な解釈を研究する分野である。通常の幾何学では様々な関数の積に関して可換性が要求されるが、その条件を外すことによってどんな現象がとらえられるかが追求される。.

新しい!!: 超弦理論と非可換幾何 · 続きを見る »

超対称性

超対称性(ちょうたいしょうせい,supersymmetry,SUSY)はボソンとフェルミオンの入れ替えに対応する対称性である。この対称性を取り入れた理論は超対称性理論などのように呼ばれる。また、超対称性粒子の一部はダークマターの候補の一つである。2013年1月現在、超対称性粒子は未発見である。.

新しい!!: 超弦理論と超対称性 · 続きを見る »

超対称性理論

超対称性理論(ちょうたいしょうせいりろん)とは、理論のボース粒子とフェルミ粒子に対して、それぞれ対応するフェルミ粒子とボース粒子(超対称性粒子)が存在すると考える理論、仮説のこと。ボース粒子とフェルミ粒子を入れ替える数学的変換を超対称変換と呼び、特にゲージ粒子に対しても超対称性粒子を考える理論の事を超対称ゲージ理論と呼ぶ。また、超対称性を考えた標準模型や重力理論(一般相対論)は、それぞれ超対称標準模型、超重力理論と呼ばれる。超弦理論も超対称性理論の一種である。 もし超対称性が自然界で近似としてではなく実現されているならば、現在までに知られている各素粒子に、その対となる同質量の超対称粒子が存在する。すなわち、素粒子の数が既知のものから倍増するはずである。しかしながら、現在、超対称粒子はひとつも実験的に発見されていない。2008年に稼動予定のLHC実験計画は、この超対称粒子の発見を目的のひとつとして推進されている。.

新しい!!: 超弦理論と超対称性理論 · 続きを見る »

超重力理論

超重力理論(ちょうじゅうりょくりろん)とは、一般相対論を超対称化した理論、言い方を変えれば局所超対称性の理論である。量子化した際は、単なる一般相対論より紫外発散が弱くなるため、量子重力理論の文脈において1980年代初頭に精力的に研究された。超対称性のゲージ理論と考えることもできる。対応するゲージ場がグラヴィティーノである。.

新しい!!: 超弦理論と超重力理論 · 続きを見る »

重力

重力(じゅうりょく)とは、.

新しい!!: 超弦理論と重力 · 続きを見る »

重力子

重力子(じゅうりょくし、graviton、グラビトン)は、素粒子物理学における四つの力のうちの重力相互作用を伝達する役目を担わせるために導入される仮説上の素粒子。2016年までのところ未発見である。 アルベルト・アインシュタインの一般相対性理論より導かれる重力波を媒介する粒子として提唱されたものである。スピン2、質量0、電荷0、寿命無限大のボース粒子であると予想され、力を媒介するゲージ粒子である。.

新しい!!: 超弦理論と重力子 · 続きを見る »

量子

量子(りょうし、quantum)は、量子論・量子力学などで顕れてくる、物理量の最小単位である。古典論では物理量は実数で表される連続量だが、量子論では、「量子」と呼ばれるような性質を持った粒子である基本粒子の素粒子に由来するものとして物理量は扱われる。そのため、たとえば電気量は電気素量の整数倍の値しかとらないものとなる。量子には、波のようにもふるまうこともあれば粒子のようにふるまうこともあるという、直感では一見不思議に思われるような性質(「粒子と波動の二重性」)がある(どちらが「本質」か、その「解釈」は、といったような問いは普通は無意味である)。.

新しい!!: 超弦理論と量子 · 続きを見る »

量子力学

量子力学(りょうしりきがく、quantum mechanics)は、一般相対性理論と同じく現代物理学の根幹を成す理論として知られ、主として分子や原子、あるいはそれを構成する電子など、微視的な物理現象を記述する力学である。 量子力学自身は前述のミクロな系における力学を記述する理論だが、取り扱う系をそうしたミクロな系の集まりとして解析することによって、ニュートン力学に代表される古典論では説明が困難であった巨視的な現象についても記述することができる。たとえば量子統計力学はそのような応用例の一つである。従って、生物や宇宙のようなあらゆる自然現象もその記述の対象となり得る。 代表的な量子力学の理論として、エルヴィン・シュレーディンガーによって創始された、シュレーディンガー方程式を基礎に置く波動力学と、ヴェルナー・ハイゼンベルク、マックス・ボルン、パスクアル・ヨルダンらによって構成された、ハイゼンベルクの運動方程式を基礎に置く行列力学がある。ただしこの二つは数学的に等価である。 基礎科学として重要で、現代の様々な科学や技術に必須な分野である。 たとえば科学分野について、太陽表面の黒点が磁石になっている現象は、量子力学によって初めて解明された。 技術分野について、半導体を利用する電子機器の設計など、微細な領域に関するテクノロジーのほとんどは量子力学を基礎として成り立っている。そのため量子力学の適用範囲の広さと現代生活への影響の大きさは非常に大きなものとなっている。一例として、パソコンや携帯電話、レーザーの発振器などは量子力学の応用で開発されている。工学において、電子工学や超伝導は量子力学を基礎として展開している。.

新しい!!: 超弦理論と量子力学 · 続きを見る »

量子重力理論

量子重力理論(りょうしじゅうりょくりろん、)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基本的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(基本相互作用)の中で最も弱い。従って、量子化された重力が関係していると考えられる現象が現在到達できる技術レベルでは観測できないためである。.

新しい!!: 超弦理論と量子重力理論 · 続きを見る »

電磁相互作用

電磁相互作用(でんじそうごさよう)は、電場あるいは磁場から電荷が力を受ける相互作用のことをいい、基本相互作用の一つである。電磁気学によって記述される。場の理論においてラグランジアンに対してU(1)ゲージ対称性を付与することで現れるU(1)ゲージ場の成分が電磁気学におけるいわゆるスカラーポテンシャル及びベクトルポテンシャルと対応し、また自身についても対応する自由ラグランジアンを持っている。ラグランジュ形式で議論することで、物質に対応する変数でオイラーラグランジュ方程式を解くことで電磁場から物質に対しての影響を、逆に電磁場に対応する変数でオイラーラグランジュ方程式を解くことで物質側から電磁場に与える影響を導き出すことができ、それぞれ、通常の力学でのローレンツ力とマクスウェル方程式のうちのガウスの法則とアンペールマクスウェル方程式を導出することになる。.

新しい!!: 超弦理論と電磁相互作用 · 続きを見る »

M理論

M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。.

新しい!!: 超弦理論とM理論 · 続きを見る »

林一

林 一(はやし はじめ、1933年-)は理論物理学を主なフィールドとする日本の翻訳家、物理学者・科学史家。昭和薬科大学名誉教授。 英語で書かれた一般向けの科学書(主に理論物理学関係のもの)を中心に多数の書籍を日本語に翻訳している。翻訳名義に「はやしはじめ」もある。有名な訳書に『エレガントな宇宙』、『ホーキング、宇宙を語る』などがある。.

新しい!!: 超弦理論と林一 · 続きを見る »

核子

核子(かくし、nucleon)は、原子核を構成する陽子と中性子の総称。原子の原子核は陽子と中性子により構成されていることにより、これらを総称して核子と呼ぶ。陽子も中性子もバリオンの一種であるため、核子もまたバリオンの一種である。 核子はダウンクォーク(d)とアップクォーク(u)により構成される(中性子は2個のdと1個のu、陽子は1個のdと2個のu)。これに対し、ストレンジという重いクォークを含んだ重いバリオンをハイペロンと呼び、Λ(アイソスピン0、uds), Σ(アイソスピン1、uus, uds, dds), Ξ(アイソスピン1/2、uss, dss), Ω(アイソスピン0, sss)と呼ばれる。また、原子核を構成する粒子にハイペロンを含んだ核をハイパー核と呼ぶ。.

新しい!!: 超弦理論と核子 · 続きを見る »

標準模型

標準模型(ひょうじゅんもけい、、略称: SM)とは、素粒子物理学において、強い相互作用、弱い相互作用、電磁相互作用の3つの基本的な相互作用を記述するための理論のひとつである。標準理論(ひょうじゅんりろん)または標準モデル(ひょうじゅんモデル)とも言う。.

新しい!!: 超弦理論と標準模型 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 超弦理論と数学 · 続きを見る »

ここにリダイレクトされます:

超ひも理論超紐理論

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »