ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

K関数

索引 K関数

数学において、K関数とは、ハイパー階乗(hyperfactorial)の複素数への一般化である。.

11 関係: 微分バーンズのG関数ポリガンマ関数リーマンゼータ関数フルヴィッツのゼータ函数ガンマ関数グレイシャー・キンケリンの定数スターリングの近似階乗複素数数学

微分

数学におけるの微分(びぶん)、微分係数、微分商または導函数(どうかんすう、derivative)は、別の量(独立変数)に依存して決まるある量(函数の値あるいは従属変数)の変化の感度を測るものである。微分は微分積分学の基本的な道具である。例えば、動く物体の位置の時間に関する導函数はその物体の速度であり、これは時間が進んだときその物体の位置がどれほど早く変わるかを測る。 一変数函数の適当に選んだ入力値における微分係数は、その点における函数のグラフの接線の傾きである。これは導函数がその入力値の近くでその函数の最適線型近似を記述するものであることを意味する。そのような理由で、微分係数はしばしば「瞬間の変化率」として記述される。瞬間の変化率は独立変数に依存する従属変数である。 微分はにも拡張できる。この一般化において、導函数はそのグラフが(適当な変換の後)もとの函数のグラフを最適線型近似する線型変換と解釈しなおされる。ヤコビ行列はこの線型変換を独立および従属変数を選ぶことで与えられる基底に関して表現する行列であり、独立変数に関する偏微分を用いて計算することができる。多変数実数値函数に対して、ヤコビ行列は勾配に簡約される。 導函数を求める過程を微分あるいは微分法、微分演算 (differentiation) と言い、その逆の過程(原始函数を求めること)をという。微分積分学の基本定理は反微分が積分と同じであることを主張する。一変数の微分積分学において微分と積分は基本的な操作の二本柱である。.

新しい!!: K関数と微分 · 続きを見る »

バーンズのG関数

数学において、バーンズの -関数(バーンズのGかんすう、G-function) は、スーパー階乗を複素数にまで拡張した特殊関数 である。これはガンマ関数、K関数、グレイシャーの定数に関連するものであり、数学者であるにちなみ名付けられた。 これは(初等函数を掛ける違いを除いて)の特殊な場合である。 正式には、バーンズの -関数は以下のワイエルシュトラスの乗積表示 の形で定義される。ここで はオイラーの定数であり、 は指数関数である。また、 は総乗の Π-記法である。.

新しい!!: K関数とバーンズのG関数 · 続きを見る »

ポリガンマ関数

実数''x'' に対するψ(n)(''x'')の挙動。 オレンジがディガンマ関数、黄色がトリガンマ関数、緑がテトラガンマ関数、赤がペンタガンマ関数、青がヘキサガンマ関数に対応する。 複素平面上でのディガンマ関数ψ(z) 複素平面上でのトリガンマ関数ψ(1)(z) 複素平面上でのテトラガンマ関数ψ(2)(z) 複素平面上でのペンタガンマ関数ψ(3)(z) 数学において、ポリガンマ関数(ぽりがんまかんすう、polygamma function)とはガンマ関数の対数微分による導関数として定義される特殊関数。ディガンマ関数やトリガンマ関数はポリガンマ関数の一種である。.

新しい!!: K関数とポリガンマ関数 · 続きを見る »

リーマンゼータ関数

1.

新しい!!: K関数とリーマンゼータ関数 · 続きを見る »

フルヴィッツのゼータ函数

フルヴィッツのゼータ函数 はゼータ函数の一種で、名前はアドルフ・フルヴィッツに因む。フルヴィッツのゼータ函数は、 なる と なる の 2 つの複素数に対して、形式的に以下のように定義される。 この級数は与えられた値 と に対し絶対収束し、また なるすべての に対して定義される有理型函数へ拡張することができる。フルヴィッツのゼータ函数はリーマンゼータ函数の拡張であり、リーマンゼータ函数はフルヴィッツのゼータ函数を用いて と表される。 1 and q with Re(q) > 0 by This series is absolutely convergent for the given values of s and q and can be extended to a meromorphic function defined for all s≠1.

新しい!!: K関数とフルヴィッツのゼータ函数 · 続きを見る »

ガンマ関数

1.

新しい!!: K関数とガンマ関数 · 続きを見る »

グレイシャー・キンケリンの定数

数学において、グレイシャー・キンケリンの定数(Glaisher–Kinkelin constant)、またはグレイシャーの定数は、K関数やバーンズのG関数に関連する数学定数であり、通常Aとかかれる。この定数は特にガンマ関数や、リーマンゼータ関数などに関係する多くの和や積分に出現する。なお、この定数の名前の由来は数学者であるとである。 グレイシャー・キンケリンの定数の近似値は次の通りである。.

新しい!!: K関数とグレイシャー・キンケリンの定数 · 続きを見る »

スターリングの近似

log ''n''! と ''n'' log ''n'' − ''n'' は ''n'' → ∞ のとき漸近する スターリングの近似(Stirling's approximation)またはスターリングの公式(Stirling's formula)は、階乗、あるいはその拡張の一つであるガンマ関数の漸近近似である。名称は数学者に因む。.

新しい!!: K関数とスターリングの近似 · 続きを見る »

階乗

数学において非負整数 の階乗(かいじょう、factorial) は、1 から までのすべての整数の積である。例えば、 である。空積の規約のもと と定義する。 階乗は数学の様々な場面に出現するが、特に組合せ論、代数学、解析学などが著しい。階乗の最も基本的な出自は 個の相異なる対象を一列に並べる方法(対象の置換)の総数が 通りであるという事実である。この事実は少なくとも12世紀にはインドの学者によって知られていた。は1677年にへの応用として階乗を記述した。再帰的な手法による記述の後、Stedman は(独自の言葉を用いて)階乗に関しての記述を与えている: 感嘆符(!)を用いた、この "" という表記は1808年にによって発明された。 階乗の定義は、最も重要な性質を残したまま、非整数を引数とする函数に拡張することができる。そうすれば解析学における著しい手法などの進んだ数学を利用できるようになる。.

新しい!!: K関数と階乗 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: K関数と複素数 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: K関数と数学 · 続きを見る »

ここにリダイレクトされます:

K函数

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »