ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

線毛

索引 線毛

線毛(せんもう)は、細菌の細胞外構造体で、タンパク質が重合して繊維状となるもので、鞭毛以外を指す。英語では pilus(複数形 pili)、または fimbria(複数形 fimbriae)という。通常、pilus と fimbria は区別しないで使用される。線毛は1950年代に走査型電子顕微鏡観察によって発見されたが、2つの研究グループがこれらの名称を別々に用いたことが、現代まで続いている。 線毛の主要なサブユニットタンパク質はピリン(pilin)またはフィンブリリン(fimbrillin)という(フィンブリンとは異なる)。性線毛(sex pili)、クラスI型線毛、IV型線毛など多数の種類が知られており、一つの細胞が複数種の線毛をもつことも多い。線毛は、細菌の鞭毛(らせん型の剛体で、根元で回転して推進力を与える)とは本質的に異なるが、その構造やはたらきは多種多様である。真核生物の繊毛ともまったく異なる。また、医学用語では、この繊毛を「線毛」と呼ぶので注意が必要である。.

35 関係: 古細菌大腸菌外膜形質転換ペリプラズムペプチドグリカンペプチド結合バイオフィルムレンサ球菌プラスミドデオキシリボ核酸アグロバクテリウムグラム陰性菌グラム陽性菌シャペロンセルロースタンパク質サルモネラ緑膿菌繊維繊毛真核生物真正細菌鞭毛螺旋遺伝子走査型電子顕微鏡藍藻重合反応電子顕微鏡接合 (生物)推力枯草菌淋菌1950年代

古細菌

古細菌(こさいきん、アーキア、ラテン語:archaea/アルカエア、単数形:archaeum, archaeon)は、生物の分類の一つで、''sn''-グリセロール1-リン酸のイソプレノイドエーテル(他生物はsn-グリセロール3-リン酸の脂肪酸エステル)より構成される細胞膜に特徴付けられる生物群、またはそこに含まれる生物のことである。古"細菌"と名付けられてはいるが、細菌(バクテリア。本記事では明確化のため真正細菌と称する)とは異なる系統に属している。このため、始原菌(しげんきん)や後生細菌(こうせいさいきん)という呼称が提案されたが、現在では細菌や菌などの意味を含まない を音写してアーキアと呼ぶことが多くなっている。 形態はほとんど細菌と同一、細菌の一系統と考えられていた時期もある。しかしrRNAから得られる進化的な近縁性は細菌と真核生物の間ほども離れており、現在の生物分類上では独立したドメインまたは界が与えられることが多い。一般には、メタン菌・高度好塩菌・好熱好酸菌・超好熱菌など、極限環境に生息する生物として認知されている。.

新しい!!: 線毛と古細菌 · 続きを見る »

大腸菌

大腸菌(だいちょうきん、学名: Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特にヒトなどの場合大腸に生息する。アルファベットで短縮表記でとすることがある(詳しくは#学名を参照のこと)。大きさは通常短軸0.4-0.7μm、長軸2.0-4.0μmだが、長軸が短くなり球形に近いものもいる。 バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで化学物質の生産にも利用される(下図)。 大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。.

新しい!!: 線毛と大腸菌 · 続きを見る »

外膜

外膜(がいまく、adventitia)は、器官、血管、その他の構造における結合組織の最外層。例えば、tunica adventitiaと呼ばれる動脈を包む結合組織は動脈とは無関係であるとみなされている。外膜の役割はある程度は器官を包む組織の層である漿膜より優先する。腹部においては、腹部かあるいは腹部後方かにより器官を包む膜は外膜と漿膜に分かれる。.

新しい!!: 線毛と外膜 · 続きを見る »

形質転換

分子生物学において形質転換(けいしつてんかん、Transformation)は、細胞外部からDNA を導入し、その遺伝的性質を変える、またその操作を意味する。 英語のtransformation には上記の意味に加えて、正常な動物細胞が無制限に分裂を行うようになる、つまりがん化の意味(悪性形質転換を参照)や、化生の中で特にダイナミックなもの(幹細胞まで脱分化したり組織の基本形の壁を越えて変化したりするもの)の意味を含み、混同を避けるため、動物細胞への遺伝子導入はトランスフェクション(英:transfection)が通常使用される。またファージやウイルスを用いた遺伝子導入は形質導入(英:transduction)と呼ばれる。 形質転換は、1928年フレデリック・グリフィス(Frederick Griffith)によって肺炎双球菌に対する実験(グリフィスの実験)により発見された。自然界において普通に起こりうる形質転換は実験室内においては人為的に作成出来るようになった。 バクテリアに対する形質転換としては、電気パルスにより瞬間的に細胞に穴を開けるエレクトロポレーション法や、塩化カルシウム存在下でコンピテントセル化した菌を用いる方法が広く使用されている。通常はファージ、プラスミドなどのベクターを用いて外来遺伝子を導入する。植物細胞に対してはアグロバクテリウム、パーティクル・ガン法やエレクトロポレーションがよく使用される。糸状菌などに対してはプロトプラスト-PEG法やエレクトロポレーション法、酵母に対してはLi法などがよく使用される。また、この他にもBiolistic法などもある。 これらの形質転換法は、生物学の研究にとって欠かすことのできないツールである。この形質転換法の開発によって、現在のバイオテクノロジーの発展があった。 応用としては発現誘導プロモーターを用いた転換、ジーントラップ法、エンハンサートラップ法、アクティベーションタギング法などが挙げられる。.

新しい!!: 線毛と形質転換 · 続きを見る »

ペリプラズム

ラム陰性菌の細胞壁 ペリプラズム (Periplasmic space) はグラム陰性菌において、細胞膜と細胞外膜の2枚の生体膜に囲まれた空間である。グラム陽性菌には細胞外膜が存在しないが、細胞膜と細胞壁の間は”inner wall zone”(IWZ) と呼ばれ、厳密な意味でのペリプラズムとしてみなされる, Matias, V. R., and T. J. Beveridge.

新しい!!: 線毛とペリプラズム · 続きを見る »

ペプチドグリカン

ペプチドグリカン(Peptidoglycan)はペプチドと糖からなる高分子のこと。狭義にはムレイン(murein)としても知られ、真正細菌の細胞膜の外側に層を形成する細胞壁の主要物質である。構造上の重要な役割を果たし、細胞質の浸透圧に対する耐久性を与え、細胞の形態、強度を保持させる。また、増殖時の細胞分裂にも関わる。.

新しい!!: 線毛とペプチドグリカン · 続きを見る »

ペプチド結合

2つのアミノ酸の脱水縮合によって形成するペプチド結合 ペプチド結合(ペプチドけつごう、)とは、アミド結合のうちアミノ酸同士が脱水縮合して形成される結合である。 このようにして生成する物質はペプチドであり、その縮合しているアミノ酸の数が2つ、3つ、4つ、5つ……となるごとにジペプチド、トリペプチド、テトラペプチド、ペンタペプチド……という。多数のアミノ酸が縮合した高分子物質はタンパク質であり、このため、タンパク質をポリペプチドとも呼ぶ。 アミド結合は強固な結合であり、加水分解は強酸性や強アルカリ性の条件でしか起こらない。しかし生体内にはペプチド結合のみを選択的に加水分解する酵素ペプチダーゼ、プロテアーゼが存在し、これらの中には中性に近い生物の体温程度の温度でかなり迅速にペプチド結合を加水分解することができるものもある。.

新しい!!: 線毛とペプチド結合 · 続きを見る »

バイオフィルム

テーテルに生成した黄色ブドウ球菌のバイオフィルム バイオフィルム、菌膜(きんまく、)とは、微生物により形成される構造体。.

新しい!!: 線毛とバイオフィルム · 続きを見る »

レンサ球菌

レンサ球菌(レンサきゅうきん、連鎖球菌)とは、レンサ球菌属(Streptococcus 属)に属するグラム陽性球菌である真正細菌の総称。 一つ一つの球菌が規則的に、直鎖状に配列して増殖し、光学顕微鏡下で観察すると「連なった鎖」のように見えるため、もう一つのグラム陽性球菌のグループであるブドウ球菌(ブドウの房状に配列する)との対比から「レンサ(連鎖)球菌」と名付けられた。属名の Streptococcus は、ギリシャ語で「よじる」を意味する στρέφω から派生した στρεπτός (streptos: 曲げやすい、柔軟な)と、球菌を意味する coccus (元はラテン語で「(穀物の)粒」や「木の実」の意)に由来し、曲がりやすい紐のような配列をする球菌を意味する。また旧来は漢字表記の「連鎖球菌」が用いられていたが、2005年現在では仮名交じりの「レンサ球菌」の表記が、微生物学や医学の分野では優勢である。 元来の「レンサ球菌」(streptococcus) とは、細菌が発見されて間もない、分類法が整理されていない頃に細菌の形態および配列から名付けられた名称である。その後の分類によって、当初レンサ球菌属として分類されていたグループから腸球菌 (Enterococcus) が独立した科 (Enterococcaceae) として分類された。またレンサ球菌属として分類されてきた中にも、肺炎球菌 (S. pneumoniae) のように連鎖状を示さない双球菌も含まれている。ここでは、レンサ球菌属に属する細菌全般 (Streptococcus sp.) を解説する。形態上の分類に基づく古典的なレンサ球菌については球菌の項を参照。.

新しい!!: 線毛とレンサ球菌 · 続きを見る »

プラスミド

プラスミド (plasmid) は細胞内で複製され、娘細胞に分配される染色体以外のDNA分子の総称。1952年にジョシュア・レーダーバーグによって提案された。 細菌や酵母の細胞質内に存在し、核様体のDNAとは独立して自律的に複製を行う。一般に環状2本鎖構造をとる。 細菌の接合を起こすもの(Fプラスミドなど)、抗生物質に対する耐性を宿主にもたらすものなどがある。 遺伝子工学分野においては、遺伝子組み換えの際に多く用いられる。様々な人工的な改変がなされた数 kbpのプラスミドが多く作られており、研究用キットとして市販されている(詳細はベクターを参照。) 細菌のみではなく酵母や哺乳類の細胞内で複製・維持されるものもある。 大腸菌を用いた遺伝子クローニングでは、まずプラスミドを取り出し、次いで制限酵素で切断し、切断部位に増幅しようとするDNA断片(プラスミドと同じ制限酵素で切り出したもの)をDNAリガーゼで結合させる。この組み換えプラスミドを大腸菌に導入し、大腸菌の大量培養により組み換えDNAを増幅する。 土壌菌の一種であるアグロバクテリウムがもつTiプラスミドは植物の遺伝子導入において頻繁に利用される。 複製機構が類似しているプラスミド同士は同一宿主菌内では共存できない(不和合性, incompatibility)。.

新しい!!: 線毛とプラスミド · 続きを見る »

デオキシリボ核酸

DNAの立体構造 デオキシリボ核酸(デオキシリボかくさん、deoxyribonucleic acid、DNA)は、核酸の一種。地球上の多くの生物において遺伝情報の継承と発現を担う高分子生体物質である。.

新しい!!: 線毛とデオキシリボ核酸 · 続きを見る »

アグロバクテリウム

アグロバクテリウム (Agrobacterium) とはグラム陰性菌に属する土壌細菌であるリゾビウム属 (Rhizobium) の内、植物に対する病原性を持つものの総称。特にその中で根頭癌腫病に関連するAgrobacterium tumefaciens(Rhizobium radiobacterの異名)を指すことが多い。かつてアグロバクテリウム属という独立の属が与えられていたが、系統解析の結果多くはリゾビウム属に含まれることがわかり、その他も新設された (Ruegeria)、 (Pseudorhodobacter)、 (Stappia) に分類され、学名としては廃された。このため使用には注意が必要である。しかしながら、アグロバクテリウムという分類は便利なため、分野や用途によってはこの呼称も広く使われている。 アグロバクテリウムは、植物細胞に感染してDNAを送り込む(形質転換)性質があるため、植物のバイオテクノロジーでよく利用される。.

新しい!!: 線毛とアグロバクテリウム · 続きを見る »

グラム陰性菌

ラム陰性菌(グラムいんせいきん、gram-negative bacteria)とはグラム染色においてクリスタルバイオレットによる染色が脱色される細菌の総称。グラム陽性菌ではクリスタルバイオレットは脱色されない。グラム染色試験では対比染色として通常はサフラニンがクリスタルバイオレットの後に加えられ、全てのグラム陰性菌は赤あるいは桃色に染色される。 かつてグラム陰性の真正細菌には、グラキリクテス(Gracilicutes)というラテン語の分類名が与えられ、門相当として扱われた。命名はグラム陰性菌の薄い細胞壁にちなんでおり、ラテン語のグラキリス(gracilis: 細い、貧弱な)とクティス(cutis: 皮膚)の合成語であった。.

新しい!!: 線毛とグラム陰性菌 · 続きを見る »

グラム陽性菌

ラム陽性菌(グラムようせいきん、)とは、グラム染色により紺青色あるいは紫色に染色される細菌の総称。これに対して赤色あるいは桃色を呈すものをグラム陰性菌と呼ぶ。大まかにいえば、フィルミクテス門と放線菌門がグラム陽性菌に属している。 かつてグラム陽性の真正細菌は、フィルミクテス門Firmicutesに一括してまとめられた時期がある。命名はグラム陽性菌の厚い細胞壁にちなんでおり、ラテン語のFirmisフィルミス(強固な)とcutisクティス(皮膚)の合成語であった。ここには、現在のフィルミクテス門に含まれる低GCグラム陽性細菌の他に、現在は別の門として扱われる放線菌(高GCグラム陽性細菌)やデイノコックスなども含まれていた。.

新しい!!: 線毛とグラム陽性菌 · 続きを見る »

シャペロン

ャペロン(chaperone)とは、他のタンパク質分子が正しい折りたたみ(フォールディング)をして機能を獲得するのを助けるタンパク質の総称である。分子シャペロン(molecular chaperone)、タンパク質シャペロンともいう。 シャペロンとは元来、西洋の貴族社会において、若い女性が社交界にデビューする際に付き添う年上の女性を意味し、タンパク質が正常な構造・機能を獲得するのをデビューになぞらえた命名である。.

新しい!!: 線毛とシャペロン · 続きを見る »

セルロース

ルロース (cellulose) とは、分子式 (C6H10O5)n で表される炭水化物(多糖類)である。植物細胞の細胞壁および植物繊維の主成分で、天然の植物質の1/3を占め、地球上で最も多く存在する炭水化物である。繊維素とも呼ばれる。自然状態においてはヘミセルロースやリグニンと結合して存在するが、綿はそのほとんどがセルロースである。 セルロースは多数のβ-グルコース分子がグリコシド結合により直鎖状に重合した天然高分子である。構成単位であるグルコースとは異なる性質を示す。いわゆるベータグルカンの一種。.

新しい!!: 線毛とセルロース · 続きを見る »

タンパク質

ミオグロビンの3D構造。αヘリックスをカラー化している。このタンパク質はX線回折によって初めてその構造が解明された。 タンパク質(タンパクしつ、蛋白質、 、 )とは、20種類存在するL-アミノ酸が鎖状に多数連結(重合)してできた高分子化合物であり、生物の重要な構成成分のひとつである生化学辞典第2版、p.810 【タンパク質】。 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する。連結したアミノ酸の個数が少ない場合にはペプチドと言い、これが直線状に連なったものはポリペプチドと呼ばれる武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。 タンパク質は、炭水化物、脂質とともに三大栄養素と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている『見てわかる!栄養の図解事典』。.

新しい!!: 線毛とタンパク質 · 続きを見る »

サルモネラ

ルモネラ とは、グラム陰性 通性嫌気性桿菌の腸内細菌科の一属(サルモネラ属)に属する細菌のこと。主にヒトや動物の消化管に生息する腸内細菌の一種であり、その一部はヒトや動物に感染して病原性を示す。ヒトに対して病原性を持つサルモネラ属の細菌は、三類感染症に指定されている腸チフスやパラチフスを起こすもの(チフス菌 とパラチフス菌 )と、感染型食中毒を起こすもの(食中毒性サルモネラ:ネズミチフス菌 や腸炎菌 など)とに大別される。食品衛生の分野では、後者にあたる食中毒の原因となるサルモネラを特にサルモネラ属菌と呼ぶが、一般には、これらを指して狭義にサルモネラあるいはサルモネラ菌と呼ぶこともある。細胞内寄生性細菌であり、チフス菌やパラチフス菌は主にマクロファージに感染して菌血症を、それ以外の食中毒性サルモネラは腸管上皮細胞に感染して胃腸炎を起こす性質を持ち、この細胞内感染がサルモネラの病原性に関与している。 という属名は、1885年にアメリカでサルモネラ属の基準株であるブタコレラ菌 を発見した細菌学者、にちなんで名付けられた。ただし、サルモネラ属に属する細菌の分離はそれ以前から行われており、ヒトに対する病原性サルモネラとして最初に分離されたのはチフス菌 である。チフス菌は1880年にカール・エーベルトにより命名され、1884年にゲオルク・ガフキーがその純培養に成功した。.

新しい!!: 線毛とサルモネラ · 続きを見る »

緑膿菌

緑膿菌(りょくのうきん、学名、Pseudomonas aeruginosa)とは、真正細菌に分類される、グラム陰性で好気性の桿菌の1種であり、地球上の環境中に広く分布している代表的な常在菌の1つでもある。ヒトに対しても病原性を持つものの、仮に健常者に感染しても発病させることはほとんど無い。対して、免疫力の低下した者に感染すると、日和見感染症の1つとして数えられる緑膿菌感染症の原因となる。 元々、緑膿菌は消毒薬や抗菌薬に対する抵抗性が高い上に、ヒトが抗菌薬を使用したことによって薬剤に対して耐性を獲得したものも多いため、緑膿菌感染症を発症すると治療が困難である。このために、日和見感染症や院内感染の原因菌として、緑膿菌は医学上重要視されている。.

新しい!!: 線毛と緑膿菌 · 続きを見る »

繊維

炭素繊維 ガラス繊維 繊維(せんい、fibre、fiber)は、動物の毛・皮革や植物などから得られる自然に伸びた、または人工的に伸ばされた細くしなやかで凝集性のある紐状の素材のことである。現在では化学などの技術によって人工的に作られたものも数多い。.

新しい!!: 線毛と繊維 · 続きを見る »

繊毛

繊毛(せんもう)は、細胞小器官の一つで、鞭毛と同様、細胞の遊泳に必要な推進力を生み出すものである。構造的には鞭毛と全く同じであるが、鞭毛運動に加えて繊毛運動が可能である点が異なる。また分布様式の点から、短い毛が多数並んだものを繊毛と呼ぶのに対し、長短に関わらず本数が少ない場合は鞭毛とする区別もある。原生生物においては繊毛虫が持つもののみが繊毛と呼ばれる。なお、細菌類の細胞外繊維で、鞭毛でないものを線毛という。.

新しい!!: 線毛と繊毛 · 続きを見る »

真核生物

真核生物(しんかくせいぶつ、学名: 、英: Eukaryote)は、動物、植物、菌類、原生生物など、身体を構成する細胞の中に細胞核と呼ばれる細胞小器官を有する生物である。真核生物以外の生物は原核生物と呼ばれる。 生物を基本的な遺伝の仕組みや生化学的性質を元に分類する3ドメイン説では、古細菌(アーキア)ドメイン、真正細菌(バクテリア)ドメインと共に生物界を3分する。他の2つのドメインに比べ、非常に大型で形態的に多様性に富むという特徴を持つ。かつての5界説では、動物界、植物界、菌界、原生生物界の4界が真核生物に含まれる。.

新しい!!: 線毛と真核生物 · 続きを見る »

真正細菌

真正細菌(しんせいさいきん、bacterium、複数形 bacteria バクテリア)あるいは単に細菌(さいきん)とは、分類学上のドメインの一つ、あるいはそこに含まれる生物のことである。sn-グリセロール3-リン酸の脂肪酸エステルより構成される細胞膜を持つ原核生物と定義される。古細菌ドメイン、真核生物ドメインとともに、全生物界を三分する。 真核生物と比較した場合、構造は非常に単純である。しかしながら、はるかに多様な代謝系や栄養要求性を示し、生息環境も生物圏と考えられる全ての環境に広がっている。その生物量は膨大である。腸内細菌や発酵細菌、あるいは病原細菌として人との関わりも深い。語源はギリシャ語の「小さな杖」(βακτήριον)に由来している。.

新しい!!: 線毛と真正細菌 · 続きを見る »

鞭毛

鞭毛(べんもう、英:flagellum)は毛状の細胞小器官で、遊泳に必要な推進力を生み出す事が主な役目である。構造的に真核生物鞭毛と真正細菌鞭毛、古細菌鞭毛とに分けられる。.

新しい!!: 線毛と鞭毛 · 続きを見る »

螺旋

螺旋(らせん、helice, helix)とは、3次元曲線の一種で、回転しながら回転面に垂直成分のある方向へ上昇する曲線である。螺線(らせん)とも。英語の helix はギリシャ語の ἕλιξ が語源で、ラテン語の helice(ヘリケー)を経由して英語に導入された。「螺」は「ラ」「にし」と読み、タニシ(田螺)やサザエ(栄螺)のような巻き貝の貝殻を意味する。 2次元曲線の渦巻も螺旋・螺線と呼ぶことがある。渦巻と区別するために、3次元曲線の螺旋を弦巻線または蔓巻線(つるまきせん)と呼ぶことがある。 数学の世界においては、慣用的に螺旋を弦巻線、螺線を渦巻線の意味で使っている。 岩波書店『広辞苑』第4版の記述を要約。(螺線ワイヤーのように構造物にも螺線は使われるので、一般的ではない) --> 以下では弦巻線(ヘリックス)について述べる。.

新しい!!: 線毛と螺旋 · 続きを見る »

遺伝子

遺伝子(いでんし)は、ほとんどの生物においてDNAを担体とし、その塩基配列にコードされる遺伝情報である。ただし、RNAウイルスではRNA配列にコードされている。.

新しい!!: 線毛と遺伝子 · 続きを見る »

走査型電子顕微鏡

走査型電子顕微鏡(そうさがたでんしけんびきょう、Scanning Electron Microscope、SEM)は電子顕微鏡の一種である。電子線を絞って電子ビームとして対象に照射し、対象物から放出される二次電子、反射電子(後方散乱電子、BSE)、透過電子、X線、カソードルミネッセンス(蛍光)、内部起電力等を検出する事で対象を観察する。通常は二次電子像が利用される。透過電子を利用したものはSTEM(走査型透過電子顕微鏡)と呼ばれる。 TEMでは主にサンプルの内部、SEMでは主にサンプル表面の構造を微細に観察する。.

新しい!!: 線毛と走査型電子顕微鏡 · 続きを見る »

藍藻

藍藻(らんそう、blue-green algae)は、藍色細菌(らんしょくさいきん、cyanobacteria)の旧名である。藍色細菌は、シアノバクテリア、ラン色細菌とも呼ばれる細菌の1群であり、光合成によって酸素を生み出す酸素発生型光合成細菌である。単細胞で浮遊するもの、少数細胞の集団を作るもの、糸状に細胞が並んだ構造を持つものなどがある。また、ネンジュモなどの一部のものは寒天質に包まれて肉眼的な集団を形成する。.

新しい!!: 線毛と藍藻 · 続きを見る »

重合反応

重合反応(じゅうごうはんのう、polymerization)とは重合体(ポリマー)を合成することを目的にした一群の化学反応の呼称である。また重合反応はその元となる反応の反応機構や化学反応種により細分化され、区分された反応名に重または重合の語を加えることで重合体合成反応であることを表す。.

新しい!!: 線毛と重合反応 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: 線毛と電子顕微鏡 · 続きを見る »

接合 (生物)

接合(せつごう)というのは、細胞間で生じる現象のひとつで、いわゆる有性生殖において重要な段階である。2つの細胞が互いに融合し、そこで核の融合などを生じる。生物群によって様々なやり方がある。 接合は、有性生殖における重要な段階であり、直接にはこのことを有性生殖と言う。具体的な内容は、生物群によって事なる部分がある。元来は真核生物について適用された語であり、その大部分では2つの細胞とその核の融合という、基本的に同じような形で行われる。しかし、真核生物でも繊毛虫においてはやや特殊な形態のものが古くから接合として知られ、そこでは2つの細胞は部分的に融合するだけで、互いの核の交換が行われる。また、細菌類においてもやや異なった様相の現象が接合と呼ばれている。 しかし、いずれの場合でも、他個体、あるいは他系統との間での遺伝子の交換が行われ、新たな組み合わせを生じるという点で、共通の意味を持つものと考えられ、有性生殖を構成する段階と考えられる。.

新しい!!: 線毛と接合 (生物) · 続きを見る »

推力

推力(すいりょく、スラスト、thrust)とは、移動する物体(走行物体や飛行物体 等々)を進行方向に推し進める力のこと平凡社『世界大百科事典』 第2版 「推力」。「推進力」とも。.

新しい!!: 線毛と推力 · 続きを見る »

枯草菌

枯草菌(こそうきん)は、土壌や植物に普遍的に存在し、反芻動物やヒトの胃腸管に存在するグラム陽性の カタラーゼ陽性の真正細菌である。学名はBacillus subtilisである。片仮名表記ではしばしばバチルス・サブティリス日本細菌学会用語委員会編『微生物学用語集 英和・和英』南山堂、2007かバシラス・サチリス日本細菌学会用語委員会編『英和・和英微生物学用語集』第3版、菜根出版、1985が使用される。.

新しい!!: 線毛と枯草菌 · 続きを見る »

淋菌

淋菌(りんきん、Neisseria gonorrhoeae)はナイセリア属のグラム陰性双球菌である。ナイセリア属の菌は全部で11種類あり、その内病原性のものは、この淋菌と髄膜炎菌のみである。淋菌は淋病、角結膜炎、咽頭炎などの原因となる。 その他の9種類のナイセリア菌は全て口腔内に存在する常在菌(日本人の5〜10%に常在)である。粘膜から離れると数時間で感染性を失う国立感染症研究所 感染症情報センター。日光、乾燥や温度の変化、消毒剤で簡単に死滅するので、分離培養が必要な場合には検体の取り扱いに注意を要する。 1879年、アルベルト・ナイサーが発見してゴノコックス(Gonococcus)と命名したが、1885年にヴィルヘルム・ツォプフにより、ナイサーにちなみ命名された。.

新しい!!: 線毛と淋菌 · 続きを見る »

1950年代

1950年代(せんきゅうひゃくごじゅうねんだい)は、西暦(グレゴリオ暦)1950年から1959年までの10年間を指す十年紀。この項目では、国際的な視点に基づいた1950年代について記載する。.

新しい!!: 線毛と1950年代 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »