ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

片側極限

索引 片側極限

数学の微分積分学における片側極限(かたがわきょくげん、)とは、実変数関数 f(x) の x が、ある点に上側あるいは下側から近付くときに得られる二つの極限のいずれかのことを言う。x が a に減少する形で近付く(x が a に「右から」あるいは「上から」近付く)時の極限は などと書く。同様に、x が a に増加する形で近付く(x が a に「左から」あるいは「下から」近付く)時の極限は などと書く。 f(x) の x が a に近付く時の通常の意味での極限が存在するなら、二つの片側極限は存在し、それらは一致する。極限 が存在しなくても、二つの片側極限が存在する場合もある。そのため、x が a に近付く時の極限を両側極限と呼ぶこともある。片側極限の一方は存在するがもう一方は存在しない場合や、いずれの片側極限も存在しない場合もあり得る。 右側極限は、次のように厳密に定義することが出来る: 同様に、左側極限は次のように厳密に定義することが出来る: ここで I は f の定義域に含まれるある区間を表す。.

9 関係: 収束半径実射影直線実数微分積分学アーベルの連続性定理関数 (数学)関数の極限極限数学

収束半径

収束半径(しゅうそくはんけい、radius of convergence) とは、冪級数が収束する定義域を与える非負量(実数あるいは∞)である。 次の冪級数を考える。 ただし、中心 a や係数 cn は複素数(特に実数)とする。次の条件が成立するとき、r をこの級数の収束半径という。 であるとき、級数は収束し、 であるとき、級数は発散する。 もし、級数が全ての複素数 z に関して収束するならば、収束半径は ∞ となる。.

新しい!!: 片側極限と収束半径 · 続きを見る »

実射影直線

初等幾何学における実射影直線(じつしゃえいちょくせん、real projective line)は、通常の直線の概念の拡張で、歴史的には透視図法に基づいて設定された問題を解決するために導入された。例えば平行線は決して交わらないが、透視図では「無限遠」で交叉するように見える。この問題の解決に際して無限遠点が導入され、そうして得られたにおいて、相異なる二つの射影直線はただ一点のみで交わる。このような無限遠点全体の成す集合は、平面透視図法における「地平線」であり、それ自身がひとつの実射影直線となる。これは任意の点に位置する観測者から発せられた方向を持つ円の、反対にある点を同一視したものである。実射影直線のモデルとしてがある。透視図に地平線を表す直線を描くことで、無限遠に余分な点が地平線へ伸びる平行線の集まりを表現するために追加される。 厳密には、実射影直線は実数体上二次元のベクトル空間内の一次元部分線型空間全体の成す空間として定義される。これにより、2 × 2 の正則行列全体の成す一般線型群が自然に作用する。このとき中心に属する行列の作用は自明となるから、射影一般線型群 もまた射影直線に自然に作用する。これらは射影直線上の群である。射影直線を実数直線位無限遠点を加えたものとして表すとき、射影線型群の元は一次分数変換として作用する。これら実射影直線上の変換は射影変換と呼ばれる。 位相幾何学的には、実射影直線は円周に同相(位相的円周)である。実射影直線は双曲平面の境界を成すが、双曲平面上の任意の等距変換は境界である実射影直線上の幾何学的変換を一意的に誘導し、逆もまた成り立つ。さらに言えば、双曲平面上の任意の調和函数は、等距変換群の作用と両立する仕方で、射影直線上の分布のポワソン積分として与えられる。この位相的円周上には無数の両立可能な射影構造を持ち、そのような構造を持つ空間は(無限次元)と呼ばれる。実射影直線の複素数版は複素射影直線、いわゆるリーマン球面である。.

新しい!!: 片側極限と実射影直線 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 片側極限と実数 · 続きを見る »

微分積分学

微分積分学(びぶんせきぶんがく, )とは、解析学の基本的な部分を形成する数学の分野の一つである。微分積分学は、局所的な変化を捉える微分と局所的な量の大域的な集積を扱う積分の二本の柱からなり、分野としての範囲を確定するのは難しいが、大体多変数実数値関数の微分と積分に関わる事柄(逆関数定理やベクトル解析も)を含んでいる。 微分は、ある関数のある点での接線、或いは接平面を考える演算である。数学的に別の言い方をすると、基本的には複雑な関数を線型近似して捉えようとする考え方である。従って、微分は線型写像になる。但し、多変数関数の微分を線型写像として捉える考え方は 20世紀に入ってからのものである。微分方程式はこの考え方の自然な延長にある。 対して積分は、幾何学的には、曲線、あるいは曲面と座標軸とに挟まれた領域の面積(体積)を求めることに相当している。ベルンハルト・リーマンは(一変数の)定積分の値を、長方形近似の極限として直接的に定義し、連続関数は積分を有することなどを証明した。彼の定義による積分をリーマン積分と呼んでいる。 微分と積分はまったく別の概念でありながら密接な関連性を持ち、一変数の場合、互いに他の逆演算としての意味を持っている(微分積分学の基本定理)。微分は傾き、積分は面積を表す。.

新しい!!: 片側極限と微分積分学 · 続きを見る »

アーベルの連続性定理

アーベルの連続性定理とは、収束半径が1の冪級数が収束円周上の点において連続であるための十分条件を与える定理である。冪級数は収束円板の内部で広義一様に絶対収束するが、収束円上の一般の点での挙動はわからない。この定理はそこでの連続性を保証している。数学者ニールス・アーベルにちなんで名付けられた。.

新しい!!: 片側極限とアーベルの連続性定理 · 続きを見る »

関数 (数学)

数学における関数(かんすう、、、、、函数とも)とは、かつては、ある変数に依存して決まる値あるいはその対応を表す式の事であった。この言葉はライプニッツによって導入された。その後定義が一般化されて行き、現代的には数の集合に値をとる写像の一種であると理解される。.

新しい!!: 片側極限と関数 (数学) · 続きを見る »

関数の極限

関数の極限(かんすうのきょくげん)とは、ある関数において、変数がある値に限りなく近づくとき、それに応じて、関数の値が一定の値に限りなく近づく場合、この一定の値のことである。 このとき、関数は収束するという。 極限を表す記号として、次のような lim (英語:limit、リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 片側極限と関数の極限 · 続きを見る »

極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

新しい!!: 片側極限と極限 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 片側極限と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »