ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

極限

索引 極限

数学においては、数列など、ある種の数学的対象をひとまとまりに並べて考えたものについての極限(きょくげん、limit)がしばしば考察される。数の列がある値に限りなく近づくとき、その値のことを数列の極限あるいは極限値といい、この数列は収束するという。収束しない場合は、発散するという。 極限を表す記号として、次のような lim (英語:limit, リミット、ラテン語:limes)という記号が一般的に用いられる。.

40 関係: 双対 (圏論)同値各点収束実数対角関手射 (圏論)射影極限帰納極限一様収束一様ノルム位相空間圏 (数学)ユークリッド空間ワイエルシュトラスのM判定法フィルター (数学)アルキメデスの性質イプシロン-デルタ論法カール・ワイエルシュトラスコンパクト一様収束コンパクト空間図式 (圏論)積 (圏論)等化子無限片側極限随伴関手距離函数関手関手圏自然数連続 (数学)逆数極限 (圏論)極限の一覧有向点族有界族 (数学)数学数列普遍性

双対 (圏論)

圏論という数学の分野において,双対性(そうついせい,duality)は圏 の性質と反対圏 の双対的な性質の間の対応である.圏 についてのステートメントが与えられると,各射の始域と終域を入れ替え,2つの射の合成の順序を入れ替えることによって,反対圏 についての対応する双対命題が得られる.双対性は,そのようなものとして,ステートメントに関するこの操作の下で正しさが不変であるという主張である.言い換えると,あるステートメントが について正しければ,その双対のステートメントは について正しい.また,あるステートメントが について間違いならば,その双対のステートメントは について間違いである. が与えられたとき,その反対圏 はしばしばそれ自体が抽象的である. は数学的実践から生じる圏である必要はない.この場合,別の圏 と が圏として同値であるとき, も と双対にあると言われる. とその反対圏 が同値であるとき,そのような圏は自己双対 (self-dual) である..

新しい!!: 極限と双対 (圏論) · 続きを見る »

同値

同値(どうち)または等価(とうか)とは、2つの命題が共に真または共に偽のときに真となる論理演算である。 英語ではequivalence (EQ)。「if and only if」を略して、iff ともいう。否定排他的論理和 (XNOR) に等しい。 演算子記号は ⇔、↔、≡、.

新しい!!: 極限と同値 · 続きを見る »

各点収束

数学において、各点収束 (pointwise convergence) は関数列の収束の概念の1つである。.

新しい!!: 極限と各点収束 · 続きを見る »

実数

数学における実数(じっすう、 nombre réel, reelle Zahl, real number)は、様々な量の連続的な変化を表す数の体系である。実数全体の空間は、途切れのなさにあたる完備性とよばれる位相的な性質を持ち、代数的には加減乗除ができるという体の構造を持っている。幾何学や解析学ではこれらのよい性質を利用して様々な対象が定義され、研究されている。一方でその構成方法に自明でない手続きが含まれるため、実数の空間は数学基礎論の観点からも興味深い性質を持っている。また、自然科学における連続的なものの計測値を表すのに十分な数の体系だとも考えられている。 実数の概念は、その形式的な定義が19世紀に達成される前から数の体系として使われていた。「実数」という名前は複素数の概念が導入された後に「普通の数」を表現する言葉として導入されたものである。.

新しい!!: 極限と実数 · 続きを見る »

対角関手

圏論において、積 a\times a が存在する任意の圏 \mathcal の任意の対象 a に対して、 を満たす対角射 (diagonal morphism) が存在する。ただし \pi_k は k 次成分への自然な射影射である。この射の存在は(同型を除いて)積を特徴づける普遍性の結果である。ここでの二項の積への制限は表記の簡単さのためである。対角射は同様に任意の積に対して存在する。集合の圏の対角射の像は、カルテジアン積の部分集合として、定義域上の関係、すなわち等式である。 に対して、対角射は対象 a の元 x 上のその作用によって単純に記述することができる。すなわち、\delta_a(x).

新しい!!: 極限と対角関手 · 続きを見る »

射 (圏論)

数学の多くの分野において、型射あるいは射(しゃ、morphism; モルフィズム)は、ある数学的構造を持つ数学的対象から別の数学的対象への「構造を保つ」写像の意味で用いられる(準同型)。この意味での射の概念は現代的な数学のあらゆる場所で繰り返し生じてくる。例えば集合論における射は写像であり、線型代数学における線型写像、群論における群準同型、位相空間論における連続写像、… といったようなものなどがそうである。 圏論における射はこのような概念を広く推し進め、しかしより抽象的に扱うものである。考える数学的対象は集合である必要はないし、それらの間の関係性である射は写像よりももっと一般の何ものかでありうる。 射の、そして射がその上で定義される構造(対象)を調べることは圏論の中核を成す。射に関する用語法の多くは、その直観的背景でもある(対象が単に付加構造を備えた集合で、射がその構造を保つ写像であるような圏)に由来するものとなっている。また圏論において、圏を図式と呼ばれる有向グラフによって見る立場から、射は有向辺あるいは矢印 (arrow) と呼ばれることもある。.

新しい!!: 極限と射 (圏論) · 続きを見る »

射影極限

数学における逆極限(ぎゃくきょくげん、inverse limit)あるいは射影極限(しゃえいきょくげん、projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。.

新しい!!: 極限と射影極限 · 続きを見る »

帰納極限

数学における順極限(じゅんきょくげん)または直極限(ちょくきょくげん、direct limit)もしくは帰納極限(きのうきょくげん、inductive limit)は、「対象の向き付けられた族」の余極限である。本項ではまず群や加群などの代数系に対する帰納極限の定義から始めて、あらためて任意の圏において通用する一般的な定義を与える。.

新しい!!: 極限と帰納極限 · 続きを見る »

一様収束

数学の分野である解析学において、一様収束(いちようしゅうそく、uniform convergence)は、各点収束よりも強いの概念である。関数列 が極限関数 f に一様収束する (converge uniformly) とは、fn(x) の f(x) への収束のはやさが x に依らないということである。 関数 fn の連続性やリーマン可積分性といったいくつかの性質は、収束が一様であれば極限 f に引き継がれるが、収束が一様でない場合はそうとは限らないから、一様収束の概念は重要である。 与えられた区間上の関数への一様収束は一様ノルムのことばによって定義できる。 The term uniform convergence was probably first used by Christoph Gudermann, in an 1838 paper on elliptic functions, where he employed the phrase "convergence in a uniform way" when the "mode of convergence" of a series \textstyle is independent of the variables \phi and \psi.

新しい!!: 極限と一様収束 · 続きを見る »

一様ノルム

'''R'''2 上の最大値ノルム一定な点の軌跡は、図のような黒い正方形を描く。 数学の解析学の分野における一様ノルム(いちようノルム、)は、ある集合 S 上定義される有界な実または複素数値関数 f に対して、非負実数値 を割り当てるものである。このノルムは上限ノルム、チェビシェフノルムあるいは無限大ノルムなどとも呼ばれる。「一様ノルム」という名は、このノルムにより定められる距離についてある関数列 (fn) が f に収束することと、fn が f に一様収束することが必要十分であるという事実による。 一様ノルムに下付きの "∞" が用いられているのは、f が連続なる限り p-次平均収束ノルム が成り立つことによる。ここで D は f の定義域、積分は D が離散集合のときは単なる総和で置き換えられる。 有界でない関数 f をも考慮に入れるならば、上の定義は厳密な意味でのノルムあるいは距離を導くものではない。しかしいわゆる拡張距離が得られるので、それにより考える関数空間上に位相を定義することは可能である。.

新しい!!: 極限と一様ノルム · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 極限と位相空間 · 続きを見る »

圏 (数学)

数学の一分野である圏論において中核的な概念を成す圏(けん、category)は、数学的構造を取り扱うための枠組みであり、数学的対象をあらわす対象とそれらの間の関係を表す射の集まりによって与えられる。圏はそれ自体、群に類似した代数的構造として理解することができる 二つの圏が等しい(相等)とは、それらの対象の集まりが等しく、かつそれら対象の間の射の集まりが等しく、さらにそれら射の対の結合の仕方が相等となることを言う。圏論の目的に照らせば、圏がまったく相等しいことは非常に強すぎる条件であり(それよりも緩いでさえ強すぎる)、圏同値がしばしば考慮される(二つの圏が同値であるとは、大まかに言えば圏の相等において等式で与えられる関係を、それぞれの圏における同型で置き換えたものとして与えられる)。 圏論が初めて現れるのは Eilenberg–Mac Lane, "General Theory of Natural Equivalences" (1945) と題された論文である。古典的だが今もなお広く用いられる教科書として、マクレーンの がある。.

新しい!!: 極限と圏 (数学) · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 極限とユークリッド空間 · 続きを見る »

ワイエルシュトラスのM判定法

数学におけるワイエルシュトラスのM判定法(わいえるしゅとらすのえむはんていほう、Weierstrass M-test)とは、無限級数に対する比較判定法に類似した判定法で、実数あるいは複素数に値をとる関数を項とする級数に適用する方法である。 を集合 A 上で定義された実数値ないし複素数値関数列とする。ある正数 Mn が存在して、任意の n ≥ 1 と任意の x ∈ Aに対して が成り立ち、また級数 が収束するとすると、級数 は A 上一様収束する。 ワイエルシュトラスのM判定法のより一般の場合として、関数 の終域が一般のバナッハ空間である場合を考えることができる。その場合はステートメントの の部分を と置き換えればよい。ここで ||·|| はバナッハ空間のノルムである。このバナッハ空間における判定法の用例は:en:Fréchet derivativeを参照。.

新しい!!: 極限とワイエルシュトラスのM判定法 · 続きを見る »

フィルター (数学)

フィルター (filter) とは半順序集合の特別な部分集合のことである。実際には半順序集合として、特定の集合の冪集合に包含関係で順序を入れた物が考察されることが多い。フィルターが初めて用いられたのは一般位相幾何学の研究であったが、現在では順序理論や束の理論でも用いられている。順序理論的な意味でのフィルターの双対概念はイデアルである。 類似の概念として1922年にエリアキム・H・ムーアとH.L.スミスによって導入されたネットの概念がある。.

新しい!!: 極限とフィルター (数学) · 続きを見る »

アルキメデスの性質

ヒルベルトによるアルキメデスの公理の定式化 数学におけるアルキメデスの性質(〜せいしつ、Archimedean property)とは、古代ギリシャの数学者シラクサのアルキメデスにちなんで名付けられた、実数の体系を典型的な例として一定の種類の群や体などいくつかの代数的構造が共通として持っている性質のことである。ふつう、アルキメデスの性質とは考えている体系の中に無限大や無限小が現れないこと、という意味で理解される。この概念は古代ギリシャにおける量の理論に端を発しているが、近現代の数学の教育や研究においてもヒルベルトの幾何の公理、順序群や順序体、局所体の理論などにおいて重要な役割を果たしている。 0でない元の任意の対について、それぞれ他方に対して無限小量ではないという意味で、「比較可能」な代数系はアルキメデス的であると呼ばれる。反対に二つの0でない元で片方がもう一方に対して無限小であるような代数系は非アルキメデス的であると呼ばれる。例えば、アルキメデス的な順序群はアルキメデス的順序群あるいはArchimedes的順序群、Archimedes順序群と呼ばれることになる。 アルキメデスの性質は様々な文脈に応じて異なった方法で定式化される。たとえば順序体の文脈ではアルキメデスの公理と呼ばれる命題によってアルキメデス性が定義され、実数体はその意味でのアルキメデス性を持つ一方で、実係数の有理関数体は適当な順序構造によってはアルキメデス性を持たない順序体になる。.

新しい!!: 極限とアルキメデスの性質 · 続きを見る »

イプシロン-デルタ論法

ε-δ 論法(イプシロンデルタろんぽう、(ε, δ)-definition of limit)は、解析学において、(有限な)実数値のみを用いて極限を議論する方法である。.

新しい!!: 極限とイプシロン-デルタ論法 · 続きを見る »

カール・ワイエルシュトラス

ール・ワイエルシュトラス カール・テオドル・ヴィルヘルム・ワイエルシュトラス(Karl Theodor Wilhelm Weierstraß, 1815年10月31日 – 1897年2月19日)はドイツの数学者である。姓のワイ (Wei) の部分はヴァイと表記するほうが正確である。また、"er" に当たる部分はエル/ヤ/ア、"st" はシュト/スト、"raß" はラス/ラースとそれぞれ表記されることがある。.

新しい!!: 極限とカール・ワイエルシュトラス · 続きを見る »

コンパクト一様収束

数学においてコンパクト一様収束あるいはコンパクト収束、あるいは広義一様収束 (compact convergence, uniform convergence on compact sets) とは、一様収束の概念を一般化したのタイプである。コンパクト開位相と関係する。.

新しい!!: 極限とコンパクト一様収束 · 続きを見る »

コンパクト空間

数学において、コンパクト(compact)は位相空間の性質である。詳細は後述するがコンパクト性の定義それ自身は直観性に乏しいものであり、証明を容易にする為のいわば操作的なものである。しかし距離空間であればより直観的な言葉でいいかえる事ができ、特に有限次元のユークリッド空間においては有界閉集合であることとコンパクト集合であることとは同値になる。したがってコンパクトの概念はユークリッド空間における有界閉集合の概念を一般の位相空間に拡張したものとしてとらえる事ができる。 なお無限次元では有界閉集合はコンパクトとは限らず、例えばヒルベルト空間内の(縁を含んだ)単位球体は有界かつ閉集合であるがコンパクトではない(距離位相を入れた場合)。 ブルバキでは、ここでいう定義を満たす位相空間を準コンパクト(quasi-compact)と呼び、さらにハウスドルフの分離公理を満たすものをコンパクトであると呼んでいる。距離空間など多くの空間ではハウスドルフの分離公理が満たされるので両者の概念は一致するが、一般には注意が必要である。.

新しい!!: 極限とコンパクト空間 · 続きを見る »

図式 (圏論)

集合論における添え字付き集合族に類似した概念が、圏論における図式である。一番の違いは、圏論では射にも添え字を付ける必要があることである。添え字付き集合族は、ある固定した集合で添え字付けた集合の集まりのことであり、これは、固定した添え字集合から集合全体のクラスへの関数のことであると言っているのと同じである。これに対して、図式は、ある固定した圏で添え字付けた対象と射の集まりのことであり、固定した添え字圏からある圏への関手のことであると言うこともできる。 図式は極限と余極限の定義において中心となる概念であり、とも関連している。.

新しい!!: 極限と図式 (圏論) · 続きを見る »

積 (圏論)

圏論において、考えている圏の二つの(あるいはそれ以上の)対象の(圏論的)積(せき、product)または直積 (direct product) は集合の直積(デカルト積)、群の直積、環の直積、位相空間の直積といった数学の他の分野における構成の背後にある本質を捉えるために考えられた概念である。本質的に対象の族の積は与えられた対象のそれぞれへの射をもつ「最も一般な」対象である。.

新しい!!: 極限と積 (圏論) · 続きを見る »

等化子

数学における等化子(とうかし、equalizer, equaliser)は、与えられた複数の写像に対してそれらの値が等しくなるような引数全体の成す集合を言う。従って各等化子は特定の形の方程式のとして得られる。特定の文脈では、ちょうど二つの写像の等化子を、それら写像の差核 (difference kernel) と呼ぶ。.

新しい!!: 極限と等化子 · 続きを見る »

無限

無限(むげん、infinity、∞)とは、限りの無いことである。 直感的には「限界を持たない」というだけの単純に理解できそうな概念である一方で、直感的には有限な世界しか知りえないと思われる人間にとって、無限というものが一体どういうことであるのかを厳密に理解することは非常に難しい問題を含んでいる。このことから、しばしば哲学、論理学や自然科学などの一部の分野において考察の対象として無限という概念が取り上げられ、そして深い考察が得られている。 本項では、数学などの学問分野において、無限がどのように捉えられ、どのように扱われるのかを記述する。.

新しい!!: 極限と無限 · 続きを見る »

片側極限

数学の微分積分学における片側極限(かたがわきょくげん、)とは、実変数関数 f(x) の x が、ある点に上側あるいは下側から近付くときに得られる二つの極限のいずれかのことを言う。x が a に減少する形で近付く(x が a に「右から」あるいは「上から」近付く)時の極限は などと書く。同様に、x が a に増加する形で近付く(x が a に「左から」あるいは「下から」近付く)時の極限は などと書く。 f(x) の x が a に近付く時の通常の意味での極限が存在するなら、二つの片側極限は存在し、それらは一致する。極限 が存在しなくても、二つの片側極限が存在する場合もある。そのため、x が a に近付く時の極限を両側極限と呼ぶこともある。片側極限の一方は存在するがもう一方は存在しない場合や、いずれの片側極限も存在しない場合もあり得る。 右側極限は、次のように厳密に定義することが出来る: 同様に、左側極限は次のように厳密に定義することが出来る: ここで I は f の定義域に含まれるある区間を表す。.

新しい!!: 極限と片側極限 · 続きを見る »

随伴関手

数学の特に圏論における随伴(ずいはん、adjunction)は、二つの関手の間に考えることができる(ある種の双対的な)関係をいう。随伴の概念は数学に遍在し、最適化や効率に関する直観的概念を明らかにする。 最も簡潔な対称的定義において、圏 と の間の随伴とは、二つの関手 の対であって、全単射の族 が変数 に関して自然(あるいは函手的)となるものを言う。このとき、関手 を左随伴函手と呼び、他方 を右随伴函手と呼ぶ。また、「 は の左随伴である」 (同じことだが、「 は の右随伴である」)という関係を と書く。 以下では、この定義や他の定義を詳細化する。.

新しい!!: 極限と随伴関手 · 続きを見る »

距離函数

距離函数(きょりかんすう、distance function)、距離計量(きょりけいりょう)あるいは単に距離(きょり、distance)、計量(けいりょう、metric)は、集合の二点間の距離を定義する函数である。距離が定義されている集合を距離空間(きょりくうかん、metric space)と呼ぶ。距離はその集合上の位相(距離位相)を誘導するが、必ずしもすべての位相空間が距離位相によって生成されるわけではない。ある位相空間の位相を距離によって記述することができるとき、その位相空間は距離化可能 (metrizable) であるという。.

新しい!!: 極限と距離函数 · 続きを見る »

関手

圏論における関手(かんしゅ、functor)は、圏から圏への構造と両立する対応付けである。関手によって一つの数学体系から別の体系への組織的な対応が定式化される。関手は「圏の圏」における射と考えることもできる。 関手の概念の萌芽はエヴァリスト・ガロアによる群を用いた代数方程式の研究に見ることができる。20世紀はじめのエミー・ネーターらによる加群の研究において拡大加群などさまざまな関手的構成が蓄積された。20世紀半ばの代数的位相幾何学において実際に関手が定義され、図形から様々な「自然な」代数的構造を取り出す操作を定式化するために利用された。ここでは(基本群のような)代数的対象が位相空間から導かれ、位相空間の間の連続写像は基本群の間の代数的準同型を導いている。その後アレクサンドル・グロタンディークらによる代数幾何学の変革の中でさまざまな数学的対象の関手による定式化が徹底的に追求された。.

新しい!!: 極限と関手 · 続きを見る »

関手圏

圏論という数学の分野において、与えられた2つの圏の間の関手たちは関手圏(かんしゅけん、functor category)と呼ばれる圏をなす。その対象は関手であり、射は関手の間の自然変換である。関手圏は主に2つの理由によって興味が持たれる:.

新しい!!: 極限と関手圏 · 続きを見る »

自然数

自然数(しぜんすう、natural number)とは、個数、もしくは順番を表す一群の数のことである。集合論においては、自然数は物の個数を数える基数のうちで有限のものであると考えることもできるし、物の並べ方を示す順序数のうちで有限のものであると考えることもできる。 自然数を 1, 2, 3, … とする流儀と、0, 1, 2, 3, … とする流儀があり、前者は数論などでよく使われ、後者は集合論、論理学などでよく使われる(詳しくは自然数の歴史と零の地位の節を参照)。いずれにしても、0 を自然数に含めるかどうかが問題になるときは、その旨を明記する必要がある。自然数の代わりに非負整数または正整数と言い換えることによりこの問題を避けることもある。 数学の基礎付けにおいては、自然数の間の加法についての形式的な逆元を考えることによって整数を定義する。正の整数ないしは負でない整数を自然数と同一視し、自然数を整数の一部として取扱うことができる。自然数と同様に整数の全体も可算無限集合である。 なお、文脈によっては、その一群に属する個々の数(例えば 3 や 18)を指して自然数ということもある。.

新しい!!: 極限と自然数 · 続きを見る »

連続 (数学)

数学において、連続(れんぞく、continuous)および連続性(れんぞくせい、continuity)とは、いくら拡大しても近くにあって差が無いことを示す極限概念である。位相空間のあいだの写像について、開集合や極限といった位相的な概念を一定の方法でたもつという条件によって連続性の概念が定められる。これは異なる位相空間のあいだの関係を表す最も基本的な枠組みである。日常語としては「連続」が「切れずに繋がっている」という意味で使われることがあるが、位相空間の性質として「切れずに繋がっている」ということを表す概念は「連結性」である。事実として「連結領域の連続像は必ず連結」であり、従って連結な定義域を持つ連続函数のグラフは文字通り「切れずに繋がっている」ことになるが、それは連続性の本質ではない。.

新しい!!: 極限と連続 (数学) · 続きを見る »

逆数

逆数(ぎゃくすう、reciprocal)とは、ある数に掛け算した結果が となる数である。すなわち、数 の逆数 とは次のような関係を満たす。 通常、 の逆数は分数の記法を用いて のように表されるか、冪の記法を用いて のように表される。 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、 と の役割を入れ替えれば、 は の逆数であると言える。従って、 の逆数が であるとき の逆数は である。 が である場合、任意の数との積は になるため、(0 ≠ 1 であれば) に対する逆数は存在しない。 また、任意の について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は 以外には存在しない。 を除く任意の数 について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。.

新しい!!: 極限と逆数 · 続きを見る »

極限 (圏論)

数学の一分野圏論において、極限とは積やや逆極限といった普遍的な構成たちの根底にある性質を捉えた抽象概念である。双対的に余極限とは非交和、直和、余積、、直極限のような構成を一般化したものである。 極限と余極限は、強く関連した概念である普遍性や随伴関手と同様に、高度に抽象化された存在である。これらを理解するために、一般化される前の特定の概念を先に学ぶのがよい。.

新しい!!: 極限と極限 (圏論) · 続きを見る »

極限の一覧

極限の一覧は、解析学における代表的な関数の極限の一覧である。極限に関しては極限の項を参照のこと。 以下で、xは変数、a、b、cは定数である。.

新しい!!: 極限と極限の一覧 · 続きを見る »

有向点族

有向点族(ゆうこうてんぞく、directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。 点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。 有向点族の概念の利点として以下の2つがある:.

新しい!!: 極限と有向点族 · 続きを見る »

有界

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。 数学において集合が有界(ゆうかい、bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。 単純閉曲線はそれを境界として平面 '''R'''2 を有界(内側)および非有界(外側)な二つの領域に分ける。.

新しい!!: 極限と有界 · 続きを見る »

族 (数学)

数学における族(ぞく、family)は、添字付けされた元(要素)の(一般には非可算無限個の)集まりで、対、n-組、列などの概念の一般化である。系(けい、collection)と呼ぶこともある。元がどのような対象であるかによって、点族、集合族(集合系)、関数族(関数系)などと呼ばれる。.

新しい!!: 極限と族 (数学) · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 極限と数学 · 続きを見る »

数列

数学において数列(すうれつ、numerical sequence)とは、数が列になったもの (sequence of numbers) を言う。 ある数はそれ単独で興味深い性質や深い意味を持っているかもしれない。単独ではそれほど面白くはない数たちもまとめて考えると興味深い性質を持つかもしれない。数列を考える意識は後者に属する。数列とは例えば正の奇数を小さい順に並べた のような数の“並び”である。並べる数に制限を加えて、たとえば自然数のみを並べるならば、これを自然数列と略称する。整数、有理数、実数などのほかの数体系を用いる場合も同様の略称を用いる。各々の数の“置かれるべき場所”は数列の項 (こう、term) と呼ばれる。数の並びが数列と呼ばれるためには、数列の各項を“順番に並べる”こと、つまりそれぞれの数が何番目の項に配置されているのかを一意に示すように番号付けができなければならない。したがって、“最も簡単”な数列は自然数を小さい順に並べた数列 ということになる(これは自然数が順序数であることによる)。 考える数列に端が存在する場合がある。数列の端に存在する項は、その数列の最初の項、または最後の項であると考えることができる。数列の最初の項をその数列の初項(しょこう、first term)といい、最後の項を数列の末項(まっこう、last term)と呼ぶ。 数列に対して必ずしも初項と末項を定めることはできない。たとえば「すべての自然数」を表わす数列の項の数は「自然数の個数」に等しいが、自然数は無限に存在するため、その末項は存在しない。このように末項が定まらないような数列は、無限数列(むげんすうれつ、infinite sequence)と呼ばれ、末項を持つ数列は有限数列(ゆうげんすうれつ、finite sequence)と呼ばれる。 初項を表わす添字は自由に与えることができ、議論や計算を簡単にするように選ばれるが、慣習的に 0 または 1 が与えられることも多い。たとえば有限数列の初項の添字を 1 から始めた場合、末項は項数に等しい添字 が与えられるため、記述が簡単になる。 特別な数列には、項の並びに規則性のあるものがある。代表的なものは、等差数列や等比数列あるいはフィボナッチ数列のように漸化式で定義される数列である。.

新しい!!: 極限と数列 · 続きを見る »

普遍性

数学の様々な分野において、ある特定の状況下にて一意に射を定めるような抽象的性質が、特定の構成を定義、あるいは特徴づけたりする事がしばしばある。このような性質を普遍性(universal property)と呼ぶ。普遍性は圏論を用いて抽象的に論考される。 結果として、我々は普遍性の一般的な扱い方を得ることになる。例えば、群の直積や直和、自由群、積位相, ストーン-チェックのコンパクト化, テンソル積, 逆極限 と 順極限, 核と余核, 引き戻し, 押し出し および イコライザ、など。.

新しい!!: 極限と普遍性 · 続きを見る »

ここにリダイレクトされます:

一様収斂収束収束性各点収斂函数の極限極限 (数学)極限値数列の収束数列の収束性

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »