ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

暗視野検鏡

索引 暗視野検鏡

暗視野検鏡(あんしやけんきょう, Dark field microscopy)とは、顕微鏡を用いた観察において、観察試料による散乱光(ビーム)を観察することにより、高コントラスト・超微細構造の観察を行う技術のこと。光学顕微鏡や電子顕微鏡で用いられる手法。 暗視野検鏡を行うことを目的としている光学顕微鏡のことを暗視野顕微鏡とよぶ。.

23 関係: 偏光顕微鏡反射吸収位相差顕微鏡微細構造ミー散乱リヒャルト・ジグモンディ分解能アーティファクトエバネッセント場光学顕微鏡回折絞り顕微鏡走査型電子顕微鏡開口数蛍光蛍光顕微鏡電子顕微鏡X線撮影染色 (生物学)散乱

偏光顕微鏡

ライカ製の偏光顕微鏡 偏光顕微鏡(へんこうけんびきょう、polarization microscope または polarizing microscope)は光学顕微鏡の一種。試料に偏光を照射し、偏光および複屈折特性を観察するために用いられる。偏光特性は結晶構造や分子構造と密接な関係があるため、鉱物学や結晶学の研究で多く用いられる。他、高分子化学や液晶の研究、細胞の偏光性構造の研究などにも用いられる。.

新しい!!: 暗視野検鏡と偏光顕微鏡 · 続きを見る »

反射

反射(はんしゃ、reflection)は、光や音などの波がある面で跳ね返る反応のことである。.

新しい!!: 暗視野検鏡と反射 · 続きを見る »

吸収

吸収(きゅうしゅう)(英語: Absorption).

新しい!!: 暗視野検鏡と吸収 · 続きを見る »

位相差顕微鏡

位相差顕微鏡(いそうさけんびきょう)とは、光線の位相差をコントラストに変換して観察できる光学顕微鏡のことである。標本を無染色・非侵襲的に観察することができるため、特に生物細胞を観察する場合や臨床検査に多く用いられる。また、石綿の検出にも使用される。.

新しい!!: 暗視野検鏡と位相差顕微鏡 · 続きを見る »

微細構造

微細構造(びさいこうぞう 英 Ultrastructure)は、生物学の分野では生物体に見られるさまざまな構造のうちで、光学顕微鏡では判別できないくらい細かな構造のことを指す。英原語を直訳すると超構造になり、用語の対訳としては超微細構造という語があるが、現実的にはこの語が使われることが増えている。.

新しい!!: 暗視野検鏡と微細構造 · 続きを見る »

ミー散乱

ミー散乱(ミーさんらん、Mie-Streuung)は、光の波長程度以上の大きさの球形の粒子による光の散乱現象である。粒子のサイズが非常に大きくなると、ミー散乱と幾何光学の二つの手法による計算結果が類似するようになる。なお、波長に対して粒子(散乱体)が大きい場合は回折散乱が、光の波長の1/10以下になるとレイリー散乱が適用される。 により厳密解が導かれたとされているが、同時期にルードヴィヒ・ローレンツやピーター・デバイなども厳密解を得ていた。散乱の特徴として、粒子のサイズが大きくなるにつれて前方への指向性が強くなる。その際には、側方および後方へはあまり散乱しなくなる。 雲が白く見える一因である。これは雲を構成する雲粒の半径が数 - 数 の大きさで、太陽光の可視光線の波長に対してミー散乱の領域となり、可視域の太陽放射がどの波長域でもほぼ同程度に散乱されるためである。.

新しい!!: 暗視野検鏡とミー散乱 · 続きを見る »

リヒャルト・ジグモンディ

リヒャルト・アドルフ・ジグモンディ(Richard Adolf Zsigmondy, ハンガリー名:ジグモンディ・リハールド/Zsigmondy Richárd, 1865年4月1日 - 1929年9月23日)はオーストリア・ハンガリー二重帝国(現オーストリア)ウィーン出身のマジャル人化学者。1925年にノーベル化学賞を受賞した。月には彼の名にちなんだクレーターがある。 化学者を父として生まれるが1880年に父を亡くし、母の手によって教育を受けた。高等学校では化学と物理学に興味を持ち、自宅で実験をするようになった。ウィーン大学の医学部に入学するもウィーン工科大学、ミュンヘン大学へと移籍し、化学を学んだ。ミュンヘン大学ではヴィルヘルム・フォン・ミラーに師事し、研究に勤しんだ。その後ベルリン大学でアウグスト・クントの下につき、次いで1893年に助教授として故郷オーストリアのグラーツ大学に移った。グラーツでの研究はガラスのコロイド溶液の研究を行った。その後、金のハイドロゾルの研究を通して、新型の顕微鏡の開発を行っている。グラーツからゲッティンゲン大学へ移り、そこでコロイドの研究によってノーベル化学賞を受賞し、そこで没した。.

新しい!!: 暗視野検鏡とリヒャルト・ジグモンディ · 続きを見る »

分解能

分解能(ぶんかいのう、Optical resolution)は、装置などで対象を測定または識別できる能力。顕微鏡、望遠鏡、回折格子などにおける能力の指標のひとつである。.

新しい!!: 暗視野検鏡と分解能 · 続きを見る »

アーティファクト

アーティファクト・アーチファクト(artefact、artifact)とは、人工物、工芸品のことである。.

新しい!!: 暗視野検鏡とアーティファクト · 続きを見る »

エバネッセント場

バネッセント場(エバネッセントば、)とは、電磁波(光)が特定の条件下において金属など反射性の媒質内部に誘起する電磁場の変動をいう。エバネッセント場から放出(反射)される電磁波はエバネッセント波やエバネッセント光、近接場光と呼ばれる。 屈折率の高い媒質から低い媒質に電磁波が入射する場合、入射角をある臨界角以上にすると電磁波は全反射するが、その際には波数の(境界面に対する)垂直成分が虚数になっている為に、1波長程度まで低媒質側の内部に電磁波が浸透することになる。 エバネッセント波は反射した物体の表面近傍の状態を観測できる為に近年注目を集めている。ひとつには屈折とは異なる物理現象である為に、波長よりも短い構造を反映することができ波長による回折限界を超えた分解能での観測が可能になる。この原理を応用した観測装置として、フォトン走査型近接場光顕微鏡が挙げられる。 あるいは、光が試料の表面内部に浸透するので、反射光を用いる赤外吸光分析の一種、減衰全反射(ATR)法などにも応用されている。 また、負の屈折率を持つメタマテリアルではエバネッセント場の強度が指数関数的に増大するため、境界面より離れた位置でもエバネッセント場による観測が可能となり、特に完全レンズにおいては無限の解像度が得られる。.

新しい!!: 暗視野検鏡とエバネッセント場 · 続きを見る »

光学顕微鏡

'''研究・実習用光学顕微鏡の例''' 1:接眼レンズ、2:レボルバ、3:対物レンズ、4:粗動ハンドル、5:微動ハンドル、6:ステージ、7:鏡、8:コンデンサ、9:プレパラート微動装置 '''1900年代初頭に用いられていた顕微鏡の模式図''' 1:接眼レンズ、2:レボルバ、3:対物レンズ、4:粗動ハンドル、5:微動ハンドル、6:ステージ、7:鏡、8:絞り 双眼実体顕微鏡(ズーム機構・写真撮影対応鏡筒つき) '''双眼顕微鏡の光学系'''A:対物レンズ、B:ガリレオ望遠鏡接眼側に凹レンズを用いて正立像を得る光学系、C:調整ハンドル、D:内部対物レンズ、E:プリズム、F:リレーレンズ、G:網線、H:接眼レンズ 光学顕微鏡(こうがくけんびきょう)は、可視光線および近傍の波長域の光を利用する、顕微鏡の一種。単に顕微鏡と言う場合、これを指す。.

新しい!!: 暗視野検鏡と光学顕微鏡 · 続きを見る »

回折

平面波がスリットから回折する様子を波面で表わした模式図 回折(かいせつ、英語:diffraction)とは媒質中を伝わる波(または波動)に対し障害物が存在する時、波がその障害物の背後など、つまり一見すると幾何学的には到達できない領域に回り込んで伝わっていく現象のことを言う。1665年にイタリアの数学者・物理学者であったフランチェスコ・マリア・グリマルディにより初めて報告された。障害物に対して波長が大きいほど回折角(障害物の背後に回り込む角度)は大きい。 回折は音波、水の波、電磁波(可視光やX線など)を含むあらゆる波について起こる。単色光を十分に狭いスリットに通しスクリーンに当てると回折によって光のあたる範囲が広がる。また、スリットが複数の場合や単一でも波長より広い場合、干渉によって縞模様ができる。この現象は、量子性が顕著となる粒子のビーム(例:電子線、中性子線など)でも起こる(参照:物質波)。.

新しい!!: 暗視野検鏡と回折 · 続きを見る »

絞り

絞り(しぼり)ないし絞る(しぼる)および搾る(しぼる)とは、固体の物品に圧力を加え、内部の液体ないし気体などの流体を取り出す加工方法のことである。.

新しい!!: 暗視野検鏡と絞り · 続きを見る »

顕微鏡

顕微鏡(けんびきょう)とは、光学的もしくは電子的な技術を用いることによって、微小な物体を視覚的に拡大し、肉眼で見える大きさにする装置である。単に顕微鏡というと、光学顕微鏡を指すことが多い。 光学顕微鏡は眼鏡屋のヤンセン父子によって発明された。その後、顕微鏡は科学の様々な分野でこれまで多大な貢献をしてきた。その中で様々な改良を受け、また新たな形式のものも作られ、現在も随所に使用されている。顕微鏡を使用する技術のことを顕微鏡法、検鏡法という。また、試料を顕微鏡で観察できる状態にしたものをプレパラートという。.

新しい!!: 暗視野検鏡と顕微鏡 · 続きを見る »

胚(はい、独,英: Embryo)とは多細胞生物の個体発生におけるごく初期の段階の個体を指す。胚子ともいう。.

新しい!!: 暗視野検鏡と胚 · 続きを見る »

走査型電子顕微鏡

走査型電子顕微鏡(そうさがたでんしけんびきょう、Scanning Electron Microscope、SEM)は電子顕微鏡の一種である。電子線を絞って電子ビームとして対象に照射し、対象物から放出される二次電子、反射電子(後方散乱電子、BSE)、透過電子、X線、カソードルミネッセンス(蛍光)、内部起電力等を検出する事で対象を観察する。通常は二次電子像が利用される。透過電子を利用したものはSTEM(走査型透過電子顕微鏡)と呼ばれる。 TEMでは主にサンプルの内部、SEMでは主にサンプル表面の構造を微細に観察する。.

新しい!!: 暗視野検鏡と走査型電子顕微鏡 · 続きを見る »

開口数

レンズの分野の開口数(かいこうすう、numerical aperture, NA)は、レンズの分解能を求めるための指標である。 開口数の値が大きい方が明るさを取り込めるため、基本的には値が大きい方がいい。 開口数 NA は、物体から対物レンズに入射する光線の光軸に対する最大角度を θ、物体と対物レンズの間の媒質の屈折率を n (レンズの屈折率ではないので注意)として、次の式で表される。 ジョン・ウィリアム・ストラットの理論によると、光学機器の分解能は、対物レンズの開口数と、見ている光の波長で決まる。波長を λ とすれば、2つの点光源の分解能 δ は で表される(本来は係数が0.61ではない場合もあるのだが、代表的数値として通常用いる)。分解能は波長に比例し、開口数に反比例する。 焦点深度 d は である。焦点深度は、波長に比例し、開口数の2乗に反比例する。.

新しい!!: 暗視野検鏡と開口数 · 続きを見る »

蛍光

蛍光(けいこう、fluorescence)とは、発光現象の分類。.

新しい!!: 暗視野検鏡と蛍光 · 続きを見る »

蛍光顕微鏡

リンパス製の落射型蛍光顕微鏡・鏡筒上にデジタルカメラが接続されている。この蛍光顕微鏡には微分干渉顕微鏡のユニットも組み込まれている。 蛍光染色を行って蛍光顕微鏡で観察したリンパ管内皮細胞 蛍光顕微鏡(けいこうけんびきょう、Fluorescence microscope, Epifluorescent microscope, MFM)は、生体または非生体試料からの蛍光・燐光現象を観察することによって、対象を観察する顕微鏡である。反射光や透過光画像と同時に観察することもある。生物学・医学における研究、臨床検査、浸透探傷検査などに用いられる。.

新しい!!: 暗視野検鏡と蛍光顕微鏡 · 続きを見る »

電子顕微鏡

電子顕微鏡(でんしけんびきょう)とは、通常の顕微鏡(光学顕微鏡)では、観察したい対象に光(可視光線)をあてて拡大するのに対し、光の代わりに電子(電子線)をあてて拡大する顕微鏡のこと。電子顕微鏡は、物理学、化学、工学、生物学、医学(診断を含む)などの各分野で広く利用されている。.

新しい!!: 暗視野検鏡と電子顕微鏡 · 続きを見る »

X線撮影

X線撮影(エックスせんさつえい)は、エックス線を目的の物質に照射し、透過したエックス線を写真乾板・写真フィルム・イメージングプレート・フラットパネルディテクターなどの検出器で可視化することで、内部の様子を知る画像検査法の一種である。 医療のほか、空港の手荷物検査などの非破壊検査に利用されている。X線の発見者であるヴィルヘルム・レントゲンに因み、レントゲン撮影または単にレントゲンとも呼ぶ。医療従事者は を略して X-P ともいう。.

新しい!!: 暗視野検鏡とX線撮影 · 続きを見る »

染色 (生物学)

染色(せんしょく)とは、特定の生物組織、細胞、オルガネラなどに、特殊な色素を用いて色を付ける実験技術のこと。特に、顕微鏡での観察をより容易にするため、観察に先立って染色が行われることが多い。例えば、組織中の一つの細胞を顕微鏡で観察する場合、そのままでも形態の違いだけから結合組織中の細胞や、細胞中の細胞核を見分けることは可能であるが、あらかじめ細胞質や核を染色すればそれぞれの観察が容易になる。 染色の原理には、観察する標本に含まれている特徴的な生体分子(タンパク質、核酸、脂質、炭化水素など)に対して、特定の色素が強く結合する性質を利用したものや、特定の酵素と反応して発色する基質を用いたものなどがある。用いる色素が蛍光色素(主に生物由来物や蛍光染料)の場合、特に蛍光染色と呼ばれる。観察しようとする対象と目的に応じて、さまざまな色素を用いた染色法が考案され、利用されている。 染色は生物学や医学のさまざまな分野で幅広く利用されている。組織学や病理学の分野では、特定の疾患に伴って起きる、組織や細胞の形態的な変化nの観察や、疾患の指標となる酵素やタンパク質の発現を確認するときなどに染色が用いられ、病気の診断などにも応用されている。微生物学の分野では、グラム染色などの染色法が、細菌の同定や形態観察に用いられている。一般的には微視的観察に用いられることが多いが、分類学や発生学の分野では、透明骨格標本の染色など、巨視的観察に用いられることもある。また生化学の分野では、生体から分離したタンパク質や核酸を電気泳動で分析するとき、これらの高分子を可視化するためにも利用されている。.

新しい!!: 暗視野検鏡と染色 (生物学) · 続きを見る »

散乱

散乱(さんらん、)とは、光などの波や粒子がターゲットと衝突あるいは相互作用して方向を変えられること。.

新しい!!: 暗視野検鏡と散乱 · 続きを見る »

ここにリダイレクトされます:

暗視野顕微鏡

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »