ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

エバネッセント場

索引 エバネッセント場

バネッセント場(エバネッセントば、)とは、電磁波(光)が特定の条件下において金属など反射性の媒質内部に誘起する電磁場の変動をいう。エバネッセント場から放出(反射)される電磁波はエバネッセント波やエバネッセント光、近接場光と呼ばれる。 屈折率の高い媒質から低い媒質に電磁波が入射する場合、入射角をある臨界角以上にすると電磁波は全反射するが、その際には波数の(境界面に対する)垂直成分が虚数になっている為に、1波長程度まで低媒質側の内部に電磁波が浸透することになる。 エバネッセント波は反射した物体の表面近傍の状態を観測できる為に近年注目を集めている。ひとつには屈折とは異なる物理現象である為に、波長よりも短い構造を反映することができ波長による回折限界を超えた分解能での観測が可能になる。この原理を応用した観測装置として、フォトン走査型近接場光顕微鏡が挙げられる。 あるいは、光が試料の表面内部に浸透するので、反射光を用いる赤外吸光分析の一種、減衰全反射(ATR)法などにも応用されている。 また、負の屈折率を持つメタマテリアルではエバネッセント場の強度が指数関数的に増大するため、境界面より離れた位置でもエバネッセント場による観測が可能となり、特に完全レンズにおいては無限の解像度が得られる。.

26 関係: 反射媒質屈折屈折率マクスウェルの方程式メタマテリアルレーザートンネル効果プラズモンフーリエ変換分解能分散関係スーパーレンズ全反射全反射照明蛍光顕微鏡光導波路回折走査型近接場光顕微鏡臨界角電磁場電磁波波動方程式波長波数波数ベクトル

反射

反射(はんしゃ、reflection)は、光や音などの波がある面で跳ね返る反応のことである。.

新しい!!: エバネッセント場と反射 · 続きを見る »

媒質

媒質(ばいしつ、medium)とは波動が伝播する場となる物質・物体のことである。.

新しい!!: エバネッセント場と媒質 · 続きを見る »

屈折

光が屈折しているため、水中の棒が曲がって見える。 屈折(くっせつ、)とは、波(波動)が異なる媒質を通ることによって進行方向を変えることである。異なる媒質を通るときに、波の周波数が変わらずに進む速度が変わるため進行方向が変わる(エネルギー保存の法則や運動量保存の法則による)。観測されやすい屈折は、波が0度以外の角度で媒質を変えるものである。 光の屈折がもっとも身近な例であるが、例えば音波や水の波動も屈折する。波が進行方向を変える度合いとしてはホイヘンスの原理を使ったスネルの法則が成り立つ。部分的に反射する振る舞いはフレネルの式で表される。なぜ光が屈折するかについては、量子力学的にファインマンの経路積分によって説明される。.

新しい!!: エバネッセント場と屈折 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: エバネッセント場と屈折率 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: エバネッセント場とマクスウェルの方程式 · 続きを見る »

メタマテリアル

メタマテリアル(meta-material)とは、光を含む電磁波に対して、自然界の物質には無い振る舞いをする人工物質のことである。「メタマテリアル」という語句自体は「人間の手で創生された物質」を示すが、特に負の屈折率を持った物質を指して用いられることがあり、「電磁メタマテリアル」という表現も認められる。メタマテリアルの人工的構成要素はメタ原子と呼ばれる。.

新しい!!: エバネッセント場とメタマテリアル · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: エバネッセント場とレーザー · 続きを見る »

トンネル効果

トンネル効果 (トンネルこうか) 、量子トンネル(りょうしトンネル )、または単にトンネリングとは、古典力学的には乗り越えられないはずのを粒子があたかも障壁にあいたトンネルを抜けたかのように通過する量子力学的現象である。太陽のような主系列星で起こっている核融合など、いくつかの物理的現象において欠かせない役割を果たしている。トンネルダイオード、量子コンピュータ、走査型トンネル顕微鏡などの装置において応用されているという意味でも重要である。この効果は20世紀初頭に予言され、20世紀半ばには一般的な物理現象として受け入れられた。 トンネリングはハイゼンベルクの不確定性原理と物質における粒子と波動の二重性を用いて説明されることが多い。この現象の中心は純粋に量子力学的な概念であり、量子トンネルは量子力学によって得られた新たな知見である。.

新しい!!: エバネッセント場とトンネル効果 · 続きを見る »

プラズモン

プラズモン()とは、プラズマ振動の量子であり、金属中の自由電子が集団的に振動して擬似的な粒子として振る舞っている状態をいう。.

新しい!!: エバネッセント場とプラズモン · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: エバネッセント場とフーリエ変換 · 続きを見る »

分解能

分解能(ぶんかいのう、Optical resolution)は、装置などで対象を測定または識別できる能力。顕微鏡、望遠鏡、回折格子などにおける能力の指標のひとつである。.

新しい!!: エバネッセント場と分解能 · 続きを見る »

分散関係

分散関係(ぶんさんかんけい、)は、波において、角周波数(角振動数)と波数の間の関係。特に角周波数 を波数 の関数で表した式のことを言う。量子力学においては、波動関数の波数は粒子の運動量に、周波数はエネルギーに相当するので、運動量とエネルギーの間の関係式を粒子の分散関係と呼ぶことも多い。.

新しい!!: エバネッセント場と分散関係 · 続きを見る »

スーパーレンズ

1.

新しい!!: エバネッセント場とスーパーレンズ · 続きを見る »

全反射

全反射 全反射(ぜんはんしゃ、)は、物理学(光学)でいう反射の一例。屈折率が大きい媒質から小さい媒質に光が入るときに、入射光が境界面を透過せず、すべて反射する現象を指す。 ただし、エバネッセント光は低屈折率の媒質に浸透するが、1波長程度の距離で指数関数的に減少するため肉眼では確認できない。 入射角がある一定の角度以上の場合、全反射がおこる。この角度のことを臨界角という。.

新しい!!: エバネッセント場と全反射 · 続きを見る »

全反射照明蛍光顕微鏡

全反射照明蛍光顕微鏡、TIRF(Total Internal Reflection Fluorescence)顕微鏡、エバネッセント場顕微鏡とは、カバーガラスなどの全反射面の裏側にトンネル効果によりしみだすエバネッセント光を励起光源とした顕微鏡である。 拡散しない光源が必要なため、通常レーザー光源が用いられる(オリンパス社には楔形プリズムを使用した、アーク光源のシステムも存在する)。.

新しい!!: エバネッセント場と全反射照明蛍光顕微鏡 · 続きを見る »

上方から入ってきた光の道筋が、散乱によって見えている様子。(米国のアンテロープ・キャニオンにて) 光(ひかり)とは、基本的には、人間の目を刺激して明るさを感じさせるものである。 現代の自然科学の分野では、光を「可視光線」と、異なった名称で呼ぶことも行われている。つまり「光」は電磁波の一種と位置付けつつ説明されており、同分野では「光」という言葉で赤外線・紫外線まで含めて指していることも多い。 光は宗教や、哲学、自然科学、物理などの考察の対象とされている。.

新しい!!: エバネッセント場と光 · 続きを見る »

光導波路

光導波路(ひかりどうはろ,こうどうはろ,Optical Waveguide)とは、光学的な特性をもつ物質を用いて作成された、通信に光を用いる伝送路のこと。 既存の光ファイバーを包摂する概念であるが、「光導波路」という語句は主にシート状または板状の構造をもつものを指す傾向にある。また、単に光を伝送するだけではなく、通信に必要な電気素子や、光路の分岐・結合構造が組み込まれたものもある。 従来の金属性通信ケーブルと比較して超高速伝送が可能であること、一般に電波障害(EMI)に対する耐性が高いことからFTTHなどの超高速通信・次世代の情報処理基盤として期待されており、光ファイバーの接合などに用いられている。また、分光分析への応用も実用化段階に達している。現在(2008年)段階では今なお発展中の技術である。.

新しい!!: エバネッセント場と光導波路 · 続きを見る »

回折

平面波がスリットから回折する様子を波面で表わした模式図 回折(かいせつ、英語:diffraction)とは媒質中を伝わる波(または波動)に対し障害物が存在する時、波がその障害物の背後など、つまり一見すると幾何学的には到達できない領域に回り込んで伝わっていく現象のことを言う。1665年にイタリアの数学者・物理学者であったフランチェスコ・マリア・グリマルディにより初めて報告された。障害物に対して波長が大きいほど回折角(障害物の背後に回り込む角度)は大きい。 回折は音波、水の波、電磁波(可視光やX線など)を含むあらゆる波について起こる。単色光を十分に狭いスリットに通しスクリーンに当てると回折によって光のあたる範囲が広がる。また、スリットが複数の場合や単一でも波長より広い場合、干渉によって縞模様ができる。この現象は、量子性が顕著となる粒子のビーム(例:電子線、中性子線など)でも起こる(参照:物質波)。.

新しい!!: エバネッセント場と回折 · 続きを見る »

走査型近接場光顕微鏡

走査型近接場光顕微鏡(そうさがたきんせつばこうけんびきょう、; )は、近接場光という特殊な光を利用した走査型の顕微鏡のことである。しばしば ()とも呼ばれる。 細いプローブで試料を走査するという点では走査型トンネル顕微鏡()や原子間力顕微鏡()などと同様の仕組みであり、 も走査型プローブ顕微鏡()の一種類といえる。.

新しい!!: エバネッセント場と走査型近接場光顕微鏡 · 続きを見る »

臨界角

臨界角(りんかいかく、Critical angle)は、屈折率が大きいところから小さいところに光が向かうとき、全反射が起きる最も小さな入射角のことである。臨界角 θc は以下のように表される。 |n1 |: |入射元の物質の屈折率 |- |n2 |: |進行先の物質の屈折率 | この式からもわかるように、n1 2 のとき、全反射は起きないので臨界角をもたない。.

新しい!!: エバネッセント場と臨界角 · 続きを見る »

電磁場

電磁場(でんじば,, EMF)、あるいは電磁界(でんじかい)は、電場(電界)と磁場(磁界)の総称。 電場と磁場は時間的に変化する場合には、互いに誘起しあいながらさらにまた変化していくので、まとめて呼ばれる。 電磁場の変動が波動として空間中を伝播するとき、これを電磁波という。 電場、磁場が時間的に一定で 0 でない場合は、それぞれは分離され静電場、静磁場として別々に扱われる。 電磁場という用語を単なる概念として用いる場合と、物理量として用いる場合がある。 概念として用いる場合は電場の強度と電束密度、あるいは磁場の強度と磁束密度を明確に区別せずに用いるが、物理量として用いる場合は電場の強度と磁束密度の組であることが多い。 また、これらの物理量は電磁ポテンシャルによっても記述され、ラグランジュ形式などで扱う場合は電磁ポテンシャルが基本的な物理量として扱われる。このような場合には電磁ポテンシャルを指して電磁場という事もある。 電磁場のふるまいは、マクスウェルの方程式、あるいは量子電磁力学(QED)によって記述される。マクスウェルの方程式を解いて、電磁場のふるまいについて解析することを電磁場解析と言う。.

新しい!!: エバネッセント場と電磁場 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: エバネッセント場と電磁波 · 続きを見る »

波動方程式

波動方程式(はどうほうていしき、wave equation)とは、 で表される定数係数二階線型偏微分方程式の事を言う。 は波動の位相速度 (phase velocity) を表す係数である。波動方程式は振動、音、光、電磁波など振動・波動現象を記述するにあたって基本となる方程式である。.

新しい!!: エバネッセント場と波動方程式 · 続きを見る »

波長

波長(はちょう、Wellenlänge、wavelength)とは、空間を伝わる波(波動)の持つ周期的な長さのこと。空間は3次元と限る必要はない。 正弦波を考えると(つまり波形が時間や、空間の位置によって変わらない状態)、波長λには、 の関係がある。 \begin k \end は波数、 \begin \omega \end は角振動数、 \begin v \end は波の位相速度、 \begin f \end は振動数(周波数)である。波数 \begin k \end は k.

新しい!!: エバネッセント場と波長 · 続きを見る »

波数

波数(はすう、wavenumber, wave-number)とは、波の個数のことで、物理化学および分光学の分野では が、波動力学では が記号として用いられる。 国際単位系における単位は毎メートルであるが、電磁波の波数の場合はCGS単位系の毎センチメートルを使う場合があり、カイザーという固有名称もある。.

新しい!!: エバネッセント場と波数 · 続きを見る »

波数ベクトル

物理学における波数ベクトルとは、波動を記述するのに用いられるベクトルである。 全てのベクトルのように大きさと方向を持ち、これら両方が重要である。 その大きさは波の波数または角波数であり、波長に反比例する。 その方向は通常、の方向であるが、いつもそうとは限らない(以下を参照)。 特殊相対論の文脈では、波数ベクトルは4元ベクトルとしても定義できる。.

新しい!!: エバネッセント場と波数ベクトル · 続きを見る »

ここにリダイレクトされます:

エバネッセント光エバネッセント波近接場近接場光

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »