ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

宇宙重力波望遠鏡

索引 宇宙重力波望遠鏡

宇宙重力波望遠鏡(うちゅうじゅうりょくはぼうえんきょう)、正式名称レーザー干渉計宇宙アンテナ は、欧州宇宙機関 (ESA) が進めている、重力波天体観測惑星である。 元はアメリカ航空宇宙局ジェット推進研究所 (NASA-JPL) とESAの共同プロジェクトだったが、2011年にNASAが撤退し、残されたESAは計画の縮小を余儀なくされた。この縮小された計画は、当初、新重力波天文台 と名づけられ、のちに発展型LISA と改名された。 現在の計画では、打上は2015年から2034年に大幅に計画は延期になっている。地球・太陽軌道系(黄道面)に対して20度の傾きを持った人工惑星軌道に投入され、観測を行う予定。 重力波望遠鏡の構造は、3つの衛星からなる。各々の衛星は、500万km離れた位置を周回し、衛星間にてレーザー光による干渉計として動作させる計画である。基線長が500万kmに達するため、地上では実現の難しい、MHz帯の波長を持つ重力波を捉えることが可能である。 2015年12月3日に搭載する機器の実証としてLISA パスファインダーが打ち上げられた。.

42 関係: 原子時計おとめ座銀河団いて座A*可視光線天体太陽中性子星干渉法人工惑星ハッブルの法則ハッブル宇宙望遠鏡レーザーブラックホールビッグバンビッグバンオブザーバーアメリカ航空宇宙局アリアンガンマ線キロメートルクエーサーシュワルツシルト半径ジェット推進研究所紫外線銀河系質量黄道赤外線赤方偏移重力崩壊重力波重力波 (相対論)重力波天文学重力波検出器電波LIGOLISA パスファインダーTAMA300X線恒星欧州宇宙機関2015年2034年

原子時計

原子時計(げんしどけい、atomic clock)は、原子や分子のスペクトル線の高精度な周波数標準に基づき極めて正確な時間を刻む時計である。高精度のものは10-15(3000万年に1秒)程度、小型化された精度の低いものでも10-11(3000年に1秒)程度の誤差である。 原子時計に基づく時刻系を原子時と呼ぶ。現在のSI秒および国際原子時(International Atomic Time)は原子時計に基づく。.

新しい!!: 宇宙重力波望遠鏡と原子時計 · 続きを見る »

おとめ座銀河団

おとめ座銀河団(おとめざぎんがだん、Virgo cluster )は、銀河系の近傍にある銀河団。.

新しい!!: 宇宙重力波望遠鏡とおとめ座銀河団 · 続きを見る »

いて座A*

いて座A*(いてざエー・スター、略号Sgr A*)は、我々銀河系の中心にある明るくコンパクトな天文電波源。より大規模な構造の電波源領域であるいて座Aの一部である。いて座A*の位置には超大質量ブラックホールが存在すると考えられ、多くの渦巻銀河や楕円銀河の中心にも同じように超大質量ブラックホールがあるというのが定説となっている。いて座A*の周囲を公転している恒星S2の観測によって、銀河系中心に超大質量ブラックホールが存在する証拠と、ブラックホールに関するデータがもたらされ、いて座A*がその存在位置であるという結論になっている。.

新しい!!: 宇宙重力波望遠鏡といて座A* · 続きを見る »

可視光線

可視光線(かしこうせん 英:Visible light)とは、電磁波のうち、ヒトの目で見える波長のもの。いわゆる光のこと。JIS Z8120の定義によれば、可視光線に相当する電磁波の波長は下界はおおよそ360-400 nm、上界はおおよそ760-830 nmである。可視光線より波長が短くなっても長くなっても、ヒトの目には見ることができなくなる。可視光線より波長の短いものを紫外線、長いものを赤外線と呼ぶ。可視光線に対し、赤外線と紫外線を指して、不可視光線(ふかしこうせん)と呼ぶ場合もある。 可視光線は、太陽やそのほか様々な照明から発せられる。通常は、様々な波長の可視光線が混ざった状態であり、この場合、光は白に近い色に見える。プリズムなどを用いて、可視光線をその波長によって分離してみると、それぞれの波長の可視光線が、ヒトの目には異なった色を持った光として認識されることがわかる。各波長の可視光線の色は、日本語では波長の短い側から順に、紫、青紫、青、青緑、緑、黄緑、黄、黄赤(橙)、赤で、俗に七色といわれるが、これは連続的な移り変わりであり、文化によって分類の仕方は異なる(虹の色数を参照のこと)。波長ごとに色が順に移り変わること、あるいはその色の並ぶ様を、スペクトルと呼ぶ。 もちろん、可視光線という区分は、あくまでヒトの視覚を主体とした分類である。紫外線領域の視覚を持つ動物は多数ある(一部の昆虫類や鳥類など)。太陽光をスペクトル分解するとその多くは可視光線であるが、これは偶然ではない。太陽光の多くを占める波長域がこの領域だったからこそ、人間の目がこの領域の光を捉えるように進化したと解釈できる。 可視光線は、通常はヒトの体に害はないが、例えば核爆発などの強い可視光線が目に入ると網膜の火傷の危険性がある。.

新しい!!: 宇宙重力波望遠鏡と可視光線 · 続きを見る »

天体

天体(てんたい、、)とは、宇宙空間にある物体のことである。宇宙に存在する岩石、ガス、塵などの様々な物質が、重力的に束縛されて凝縮状態になっているものを指す呼称として用いられる。.

新しい!!: 宇宙重力波望遠鏡と天体 · 続きを見る »

太陽

太陽(たいよう、Sun、Sol)は、銀河系(天の川銀河)の恒星の一つである。人類が住む地球を含む太陽系の物理的中心尾崎、第2章太陽と太陽系、pp. 9–10であり、太陽系の全質量の99.86%を占め、太陽系の全天体に重力の影響を与えるニュートン (別2009)、2章 太陽と地球、そして月、pp. 30–31 太陽とは何か。 太陽は属している銀河系の中ではありふれた主系列星の一つで、スペクトル型はG2V(金色)である。推測年齢は約46億年で、中心部に存在する水素の50%程度を熱核融合で使用し、主系列星として存在できる期間の半分を経過しているものと考えられている尾崎、第2章太陽と太陽系、2.1太陽 2.1.1太陽の概観 pp. 10–11。 また、太陽が太陽系の中心の恒星であることから、任意の惑星系の中心の恒星を比喩的に「太陽」と呼ぶことがある。.

新しい!!: 宇宙重力波望遠鏡と太陽 · 続きを見る »

中性子星

'''中性子星''' 右上方向にジェットを放出するほ座のベラ・パルサー。中性子星自体は内部に存在し、ガスに遮蔽されて見えない 中性子星(ちゅうせいしせい、)とは、質量の大きな恒星が進化した最晩年の天体の一種である。.

新しい!!: 宇宙重力波望遠鏡と中性子星 · 続きを見る »

干渉法

2波干渉 単色光源による波面を距離を変えてぶつけてやると、こうなる。 干渉法(かんしょうほう)は複数の波を重ね合わせるとき、それぞれの波の位相が一致した部分では波が強め合い、位相が逆転している部分では弱めあうことを利用して、波長(周波数)や位相差を測定する技術のこと。この原理を利用した機器を主に干渉計とよぶ。 ガンマ線から可視光線、電波・音波領域に及ぶ電磁波工学の研究・製品の製造管理(および較正)・動作原理においては基礎的技術であり、この原理を利用する機器・分野は極めて多岐に渡る。.

新しい!!: 宇宙重力波望遠鏡と干渉法 · 続きを見る »

人工惑星

人工惑星(じんこうわくせい)とは、人工天体・人工衛星の一種。人工衛星が惑星周回軌道を廻る衛星軌道にあるのに対して、太陽・恒星を周回する公転軌道上にあるものを指す。太陽系空間の観測調査を目的とする宇宙探査機や、太陽などを観測する宇宙機に、この軌道を利用するものがある。その他に、フライバイ観測を終了した(あるいは周回軌道投入に失敗した)惑星探査機がそのまま人工惑星となる例も多い。.

新しい!!: 宇宙重力波望遠鏡と人工惑星 · 続きを見る »

ハッブルの法則

ハッブルの法則(ハッブルのほうそく)とは、天体が我々から遠ざかる速さとその距離が正比例することを表す法則である。1929年、エドウィン・ハッブルとミルトン・ヒューメイソンによって発表された。この発見は、宇宙は膨張しているものであるとする説を強力に支持するものとなった。 v を天体が我々から遠ざかる速さ(後退速度)、D を我々からその天体までの距離とすると、 となる。ここで比例定数 H_0 はハッブル定数 (Hubble constant) と呼ばれ、現在の宇宙の膨張速度を決める。 ハッブル定数は時間の逆数の次元 T をもち、通常はキロメートル毎秒毎メガパーセク(記号: km/s/Mpc)が単位として用いられる。2014年現在最も正確な値は、プランクの観測による である。換言すれば、銀河は実視等級20等程度までスペクトル観測が可能であるが、いずれの銀河もそのスペクトルは赤のほうにずれている、これを赤方偏移という。これがドップラー効果とすれば銀河までの距離と後退速度の間に一定の法則性を発見したものといえる。 1927年にジョルジュ・ルメートルもハッブルと同等の法則を提唱していたが、フランス語のマイナーな雑誌に掲載されたためそのときは注目されなかった。ルメートルはスライファーとハッブルの観測データを用いている。.

新しい!!: 宇宙重力波望遠鏡とハッブルの法則 · 続きを見る »

ハッブル宇宙望遠鏡

ハッブル宇宙望遠鏡(ハッブルうちゅうぼうえんきょう、Hubble Space Telescope、略称:HST)は、地上約600km上空の軌道上を周回する宇宙望遠鏡であり、グレートオブザバトリー計画の一環として打ち上げられた。名称は宇宙の膨張を発見した天文学者・エドウィン・ハッブルに因む。長さ13.1メートル、重さ11トンの筒型で、内側に反射望遠鏡を収めており、主鏡の直径2.4メートルのいわば宇宙の天文台である。大気や天候による影響を受けないため、地上からでは困難な高い精度での天体観測が可能。.

新しい!!: 宇宙重力波望遠鏡とハッブル宇宙望遠鏡 · 続きを見る »

レーザー

レーザー(赤色、緑色、青色) クラシックコンサートの演出で用いられた緑色レーザー He-Ne レーザー レーザー(laser)とは、光を増幅して放射するレーザー装置を指す。レーザとも呼ばれる。レーザー光は指向性や収束性に優れており、また、発生する電磁波の波長を一定に保つことができる。レーザーの名は、Light Amplification by Stimulated Emission of Radiation(輻射の誘導放出による光増幅)の頭字語(アクロニム)から名付けられた。 レーザーの発明により非線形光学という学問が生まれた。 レーザー光は可視光領域の電磁波であるとは限らない。紫外線やX線などのより短い波長、また赤外線のようなより長い波長のレーザー光を発生させる装置もある。ミリ波より波長の長い電磁波のものはメーザーと呼ぶ。.

新しい!!: 宇宙重力波望遠鏡とレーザー · 続きを見る »

ブラックホール

ブラックホール(black hole)とは、極めて高密度かつ大質量で、強い重力のために物質だけでなく光さえ脱出することができない天体である。.

新しい!!: 宇宙重力波望遠鏡とブラックホール · 続きを見る »

ビッグバン

ビッグバン理論では、宇宙は極端な高温高密度の状態で生まれた、とし(下)、その後に空間自体が時間の経過とともに膨張し、銀河はそれに乗って互いに離れていった、としている(中、上)。 ビッグバン(Big Bang)とは、宇宙の開闢直後、時空が指数関数的に急膨張したインフレーションの終了後に相転移により生まれた超高温高密度のエネルギーの塊のことである。また、宇宙は非常に高温高密度の状態から始まり、それが大きく膨張することによって低温低密度になっていったとする膨張宇宙論のことをビッグバン理論 (Big bang theory) という。 「ビッグバン」という語は、狭義では宇宙の(ハッブルの法則に従う)膨張が始まった時点を指す。その時刻は今から138.2億年(13.82 × 109年)前と計算されている。より広義では、宇宙の起源や宇宙の膨張を説明する、現代的な宇宙論的パラダイムをも指す言葉である。 ビッグバン理論(ビッグバン仮説)では「宇宙は「無」の状態から誕生した」とされるが、この「無」やなぜ「無」から宇宙が生まれたのかなどの問題は未だ謎のままである。 遠方の銀河がハッブルの法則に従って遠ざかっているという観測事実を一般相対性理論を適用して解釈すれば、宇宙が膨張しているという結論が得られる。宇宙膨張を過去へと外挿すれば、宇宙の初期には全ての物質とエネルギーが一カ所に集まる高温度・高密度状態にあったことになる。この初期状態、またはこの状態からの爆発的膨張をビッグバンという。この高温・高密度の状態よりさらに以前については、一般相対性理論によれば重力的特異点になるが、物理学者たちの間でこの時点の宇宙に何が起きたかについては広く合意されているモデルはない。 20世紀前半までは、天文学者の間でも「宇宙は不変で定常的」という考え方が支配的だった。1948年にジョージ・ガモフは高温高密度の宇宙がかつて存在していたことの痕跡として宇宙マイクロ波背景放射 (CMB) が存在することを主張、その温度を5Kと推定した。このCMB が1964年になって発見されたことにより、対立仮説(対立理論)であった定常宇宙論の説得力が急速に衰えた。その後もビッグバン理論を高い精度で支持する観測結果が得られるようになり、膨張宇宙論が多数派を占めるようになった。.

新しい!!: 宇宙重力波望遠鏡とビッグバン · 続きを見る »

ビッグバンオブザーバー

ビッグバンオブザーバー(, BBO)とは現在開発中の宇宙重力波望遠鏡 (LISA) の後継機である。目的はビッグバン直後の重力波の観測であるが、そのためには binary inspirals のような、なるべく若い重力波の発生源を観測できなければならない。 BBOはLIGOやLISAや、その他のすべてより高い感度を持つことになる。より強力なレーザーを使用し、太陽の周りを周回する複数の異なる干渉計からの信号の相関で感度を上げる。 それぞれがLISAのような3角形を描く、4組の3機編隊で構成される予定である。2組の三角形は互いに重なってダビデの星形になる。他の2組の三角形は地球の軌道に沿って離れた場所に位置する。 個々の衛星はLISAよりも強力なレーザーを持つ。また個々の三角形はLISAのパターンよりずっと小さくなる。従って潮汐力による誤差も小さくなり、LIGOのように干渉計の特定の辺で対象を捉えることができる。一方、LISAは本質的には自由軌道を飛び、干渉計の辺は時間遅延干渉と称される技術においてはあまり考慮されない。.

新しい!!: 宇宙重力波望遠鏡とビッグバンオブザーバー · 続きを見る »

アメリカ航空宇宙局

アメリカ航空宇宙局(アメリカこうくううちゅうきょく、National Aeronautics and Space Administration, NASA)は、アメリカ合衆国政府内における宇宙開発に関わる計画を担当する連邦機関である。1958年7月29日、国家航空宇宙法 (National Aeronautics and Space Act) に基づき、先行の国家航空宇宙諮問委員会 (National Advisory Committee for Aeronautics, NACA) を発展的に解消する形で設立された。正式に活動を始めたのは同年10月1日のことであった。 NASAはアメリカの宇宙開発における国家的努力をそれ以前よりもさらに充実させ、アポロ計画における人類初の月面着陸、スカイラブ計画における長期宇宙滞在、さらに宇宙往還機スペースシャトルなどを実現させた。現在は国際宇宙ステーション (International Space Station, ISS) の運用支援、オリオン宇宙船、スペース・ローンチ・システム、商業乗員輸送などの開発と監督を行なっている。 宇宙開発に加えてNASAが帯びている重要な任務は、宇宙空間の平和目的あるいは軍事目的における長期間の探査である。人工衛星を使用した地球自体への探査、無人探査機を使用した太陽系の探査、進行中の冥王星探査機ニュー・ホライズンズ (New Horizons) のような太陽系外縁部の探査、さらにはハッブル宇宙望遠鏡などを使用した、ビッグ・バンを初めとする宇宙全体への探査などが主な役割となっている。2006年2月に発表されたNASAの到達目標は、「宇宙空間の開拓、科学的発見、そして最新鋭機の開発において、常に先駆者たれ」であった。.

新しい!!: 宇宙重力波望遠鏡とアメリカ航空宇宙局 · 続きを見る »

アリアン

アリアン(Ariane、アリアーヌ)は、欧州宇宙機関 (ESA) が開発した人工衛星打ち上げ用ロケットシリーズである。アリアンの名前はギリシア神話に登場するクレタ島の王ミノスの王女で、テセウスを迷宮から助けたアリアドネのフランス語読みからとられた。 ESAの前身の欧州ロケット開発機構(ELDO)が開発したヨーロッパロケットの後継ロケットシリーズにあたり、アリアンはその構成から大きく分けてアリアン1から4までの第1世代と、アリアン5からの第2世代とに分かれる。 ESAは最初のアリアン1の開発と打ち上げを1979年12月に成功させ、以後、アリアン2、アリアン3、アリアン4、アリアン5と大型化したロケットを次々と開発してきた。打ち上げは新たに設立したアリアンスペースに委託しており、アリアンロケットはおそらく商用打ち上げとしてもっとも成功したロケットということができる。打上げはフランス領ギアナに設けられたフランス国立宇宙センター (CNES) のクールー宇宙センターから行われるが、ここは北緯6度と赤道に近く静止軌道に打上げを行うには極めて適した場所である。.

新しい!!: 宇宙重力波望遠鏡とアリアン · 続きを見る »

ガンマ線

ンマ線(ガンマせん、γ線、gamma ray)は、放射線の一種。その実体は、波長がおよそ 10 pm よりも短い電磁波である。 ガンマ線.

新しい!!: 宇宙重力波望遠鏡とガンマ線 · 続きを見る »

キロメートル

メートル(kilometre、米国のみ1977年以降 kilometer、記号:km)は、国際単位系 (SI) の長さの単位で、1000 メートルに等しい。 km の記号は、長さのSI基本単位であるメートル m に 103 倍を表すSI接頭辞であるキロ k を付けたものである。 ヘクトメートル ≪ キロメートル ≪ メガメートル.

新しい!!: 宇宙重力波望遠鏡とキロメートル · 続きを見る »

クエーサー

ーサーのイメージ クエーサー(Quasar)は、非常に離れた距離に存在し極めて明るく輝いているために、光学望遠鏡では内部構造が見えず、恒星のような点光源に見える天体のこと。クエーサーという語は準恒星状(quasi-stellar)の短縮形である。 強い電波源であるQSS(準恒星状電波源) (quasi-stellar radio source)と、比較的静かなQSO(準恒星状天体) (quasi-stellar object)がある。最初に発見されたのはQSSだが、QSOの方が多く発見されている。 日本語ではかつて準星などと呼ばれていた。.

新しい!!: 宇宙重力波望遠鏡とクエーサー · 続きを見る »

シュワルツシルト半径

ュワルツシルト半径(シュワルツシルトはんけい、Schwarzschild radius)とは、ドイツの天文学者、カール・シュヴァルツシルトがアインシュタイン方程式から導出した、シュワルツシルト解を特徴づける半径である。.

新しい!!: 宇宙重力波望遠鏡とシュワルツシルト半径 · 続きを見る »

ジェット推進研究所

ェット推進研究所の外観 ジェット推進研究所のコントロール・ルーム ジェット推進研究所(ジェットすいしんけんきゅうじょ、Jet Propulsion Laboratory: JPL)は、NASAの無人探査機等の研究開発及び運用に携わる研究所。アメリカ合衆国カリフォルニア州パサデナにある。JPLの前身となったカリフォルニア工科大学のグッゲンハイム航空研究所 (GALCIT) のロケット研究プロジェクトは1936年に立ち上げられ、1943年11月にGALCITの責任者であったセオドア・フォン・カルマンによって初めてJPLと名付けられた。.

新しい!!: 宇宙重力波望遠鏡とジェット推進研究所 · 続きを見る »

紫外線

紫外線(しがいせん、ultraviolet)とは、波長が10 - 400 nm、即ち可視光線より短く軟X線より長い不可視光線の電磁波である。.

新しい!!: 宇宙重力波望遠鏡と紫外線 · 続きを見る »

銀河系

銀河系(ぎんがけい、the Galaxy)または天の川銀河(あまのがわぎんが、Milky Way Galaxy)は太陽系を含む銀河の名称である。地球から見えるその帯状の姿は天の川と呼ばれる。 1000億の恒星が含まれる棒渦巻銀河とされ、局部銀河群に属している。.

新しい!!: 宇宙重力波望遠鏡と銀河系 · 続きを見る »

質量

質量(しつりょう、massa、μᾶζα、Masse、mass)とは、物体の動かしにくさの度合いを表す量のこと。.

新しい!!: 宇宙重力波望遠鏡と質量 · 続きを見る »

黄道

上図は地動説から黄道を説明したもの。地球は太陽の周りを公転しているが、地球から見ると、太陽が天球を一周しているように見える。 黄道(こうどう、Ecliptic)とは、天球上における太陽の見かけ上の通り道(大円)をいう。.

新しい!!: 宇宙重力波望遠鏡と黄道 · 続きを見る »

赤外線

赤外線(せきがいせん)は、可視光線の赤色より波長が長く(周波数が低い)、電波より波長の短い電磁波のことである。ヒトの目では見ることができない光である。英語では infrared といい、「赤より下にある」「赤より低い」を意味する(infra は「下」を意味する接頭辞)。分光学などの分野ではIRとも略称される。対義語に、「紫より上にある」「紫より高い」を意味する紫外線(英:ultraviolet)がある。.

新しい!!: 宇宙重力波望遠鏡と赤外線 · 続きを見る »

赤方偏移

赤方偏移(せきほうへんい、redshift)とは、主に天文学において、観測対象からの光(可視光だけでなく全ての波長の電磁波を含む)のスペクトルが長波長側(可視光で言うと赤に近い方)にずれる現象を指す。 波長λのスペクトルがΔλだけずれている場合、赤方偏移の量 z を と定義する。.

新しい!!: 宇宙重力波望遠鏡と赤方偏移 · 続きを見る »

重力崩壊

重力崩壊のメカニズムのモデル 重力崩壊(じゅうりょくほうかい)は、末期の恒星が自らの重力に耐え切れずに崩壊する物理現象。 恒星は重力によって中心部に向かって凝縮している一方で、プラズマの熱運動や電気的な反発力によって一定の大きさを保っている。核融合が進むと原子量の小さい原子核が無くなることによって核融合が停止し、反発力が衰える。それによって恒星はより凝縮され、再び核融合が始まれば凝縮が止まる。しかし、中心部が鉄で占められるようになると(鉄の原子核は最も安定なため、これ以上の核融合は起こらない)、今度は鉄がガンマ線を吸収しヘリウムと中性子に分解される光崩壊が起こることになる。すると、星の中心部は空洞と同じ状態になり、今度は周りの物質が急激に中心へ落ち込み圧縮される。この圧縮により中心部にコアができ、そのコアで反射した衝撃波が外部へ広がり、星が崩壊する。これが重力崩壊であり、II型の超新星爆発である。 中心部の圧縮されたコアは、ブラックホールまたは中性子星となる。 また、理論予想としては、さらに核子が融解してクォークが剥き出しになるクォーク星の存在が考えられている。 Category:コンパクト星 Category:重力.

新しい!!: 宇宙重力波望遠鏡と重力崩壊 · 続きを見る »

重力波

重力波(じゅうりょくは) 次の2つの現象は異なるものだが、日本語ではどちらも重力波と呼ばれる。.

新しい!!: 宇宙重力波望遠鏡と重力波 · 続きを見る »

重力波 (相対論)

重力波(じゅうりょくは、)は、時空(重力場)の曲率(ゆがみ)の時間変動が波動として光速で伝播する現象。1916年に、一般相対性理論に基づいてアルベルト・アインシュタインによってその存在が予言された後、約100年に渡り、幾度と無く検出が試みられ、2016年2月に直接検出に成功したことが発表された。 重力により発生する液体表面の流体力学的な重力波()とは異なる。.

新しい!!: 宇宙重力波望遠鏡と重力波 (相対論) · 続きを見る »

重力波天文学

重力波天文学(じゅうりょくはてんもんがく)は、天文学の一分野である。アインシュタインによる一般相対性理論のアインシュタイン方程式から予言される重力波を観測しようと試みている。アメリカのグループが、2016年2月に、ブラックホール連星からの重力波信号を初めて観測することに成功した、と発表したことにより、理論が予言して100年後にようやく本格的な天文学として幕開けした。.

新しい!!: 宇宙重力波望遠鏡と重力波天文学 · 続きを見る »

重力波検出器

重力波検出器(じゅうりょくはけんしゅつき)とは重力波の検出を目的とする観測装置である。重力波と量子重力理論の研究に使用される。.

新しい!!: 宇宙重力波望遠鏡と重力波検出器 · 続きを見る »

電波

ムネイル 電波(でんぱ)とは、電磁波のうち光より周波数が低い(言い換えれば波長の長い)ものを指す。光としての性質を備える電磁波のうち最も周波数の低いものを赤外線(又は遠赤外線)と呼ぶが、それよりも周波数が低い。.

新しい!!: 宇宙重力波望遠鏡と電波 · 続きを見る »

LIGO

LIGO(ライゴ、Laser Interferometer Gravitational-Wave Observatory)は1916年にアルベルト・アインシュタインが存在を提唱した重力波の検出のための大規模な物理学実験とその施設。英名を直訳すると「レーザー干渉計重力波観測所」となる。研究は1992年にカリフォルニア工科大学のキップ・ソーンと、マサチューセッツ工科大学のレイナー・ワイスが共同設立し、両校や他の大学機関なども参加する科学者による共同研究事業である。研究計画と重力波天文学のデータの分析にかかわる研究者はという組織を作っており、世界の900人以上の科学者が参加している。LIGOは、ドイツマックス・プランク研究所、の大きな寄与を受けてアメリカ国立科学財団(NSF)に設立された。 2015年9月、5年間で2億ドルをかけた改良を行い、総額6億2000万ドルをかけた「世界最大の重力波施設」が完成した。LIGOはアメリカ国立科学財団(NSF)が設立した最大かつ最も野心的な計画である。 2016年2月11日、LIGO科学コラボレーションおよびVirgoコラボレーションは、2015年9月14日9時51分(UTC)に重力波を検出したと発表した。この重力波は地球から13億光年離れた2個のブラックホール(それぞれ太陽質量の36倍、29倍)同士の衝突合体により生じたものである。.

新しい!!: 宇宙重力波望遠鏡とLIGO · 続きを見る »

LISA パスファインダー

イド推進器 内部構造 LISA パスファインダー(別名SMART-2)は、2015年12月3日04:04 UTCにヴェガロケットでリサジュー軌道に打ち上げられた宇宙探査機で、ESAとNASAによって共同開発された。 SMARTとはSmall Missions for Advanced Research in Technology、つまり小型先進技術試験機を意味する。 LISAパスファインダーは宇宙重力波望遠鏡 LISA(Laser Interferometer Space Antenna)の実現に必要な技術を実証する事が目的でNASAとESAが共同開発した重力波検出器が搭載される。LISAの干渉計の長さは500万kmから35cmまで変えられる。 LISA パスファインダーはEADS アストリウムによって英国のスティーブニッジで製造された。慣性誘導装置、干渉計はESAのものとNASAのもので2系統ある。ESAは電界放射型電気推進 (FEEP) を使用し、NASAは「妨害低減システム」と呼ばれる、異なるセンサーとコロイド推進器を組み合わせたものを使用する。 LISA試験機はアストリウムドイツで組み立てられている。.

新しい!!: 宇宙重力波望遠鏡とLISA パスファインダー · 続きを見る »

TAMA300

TAMA300(タマ300)とは、国立天文台によって研究開発された重力波検出装置(望遠鏡、アンテナ)。またその開発・運用の計画のこと。 名称の「TAMA」は、装置の設置場所の国立天文台三鷹キャンパスがある多摩地域にちなんでいる。「300」は装置のレーザー干渉計の基線の長さが300メートルであることから。.

新しい!!: 宇宙重力波望遠鏡とTAMA300 · 続きを見る »

X線

透視画像。骨と指輪の部分が黒く写っている。 X線(エックスせん、X-ray)とは、波長が1pm - 10nm程度の電磁波のことを言う。発見者であるヴィルヘルム・レントゲンの名をとってレントゲン線と呼ばれる事もある。放射線の一種である。X線撮影、回折現象を利用した結晶構造の解析などに用いられる。.

新しい!!: 宇宙重力波望遠鏡とX線 · 続きを見る »

恒星

恒星 恒星(こうせい)は、自ら光を発し、その質量がもたらす重力による収縮に反する圧力を内部に持ち支える、ガス体の天体の総称である。人類が住む地球から一番近い恒星は、太陽系唯一の恒星である太陽である。.

新しい!!: 宇宙重力波望遠鏡と恒星 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: 宇宙重力波望遠鏡と欧州宇宙機関 · 続きを見る »

2015年

この項目では、国際的な視点に基づいた2015年について記載する。.

新しい!!: 宇宙重力波望遠鏡と2015年 · 続きを見る »

2034年

この項目では、国際的な視点に基づいた2034年について記載する。.

新しい!!: 宇宙重力波望遠鏡と2034年 · 続きを見る »

ここにリダイレクトされます:

宇宙重力波干渉計

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »