ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

双対基底

索引 双対基底

数学の線型代数学において、体 F 上のベクトル空間 V とその基底 B.

28 関係: 基底 (線型代数学)単射可換体双対ベクトル空間双直交系平面平行六面体位相同型位相体位相空間ユークリッド空間リースの表現定理ドット積ベクトル空間ベクトル空間の双対系クロネッカーのデルタ線型代数学線型位相空間線型包線型結合線型独立線型汎函数直交座標系計量テンソル転置行列連続的双対空間標準基底数学

基底 (線型代数学)

線型代数学における基底(きてい、basis)は、線型独立なベクトルから成る集合で、そのベクトルの(有限個の)線型結合として、与えられたベクトル空間の全てのベクトルを表すことができるものを言う。もう少し緩やかな言い方をすれば、基底は(基底ベクトルに決まった順番が与えられたものとして)「座標系」を定めるようなベクトルの集合である。硬い表現で言うならば、基底とは線型独立な生成系のことである。 ベクトル空間に基底が与えられれば、その空間の元は必ず基底ベクトルの線型結合としてただ一通りに表すことができる。全てのベクトル空間は必ず基底を持つ(ただし、無限次元ベクトル空間に対しては、一般には選択公理が必要である)。また、一つのベクトル空間が有するどの基底も、必ず同じ決まった個数(濃度)のベクトルからなる。この決まった数を、そのベクトル空間の次元と呼ぶ。.

新しい!!: 双対基底と基底 (線型代数学) · 続きを見る »

単射

数学において、単射あるいは単写(たんしゃ、injective function, injection)とは、その値域に属する元はすべてその定義域の元の像として唯一通りに表されるような写像のことをいう。一対一(いったいいち、)の写像ともいう。似ているが一対一対応は全単射の意味で使われるので注意が必要である。.

新しい!!: 双対基底と単射 · 続きを見る »

可換体

抽象代数学において、可換体(かかんたい、corps commutatif)あるいは単に体(たい、field)本記事において単に体と言った場合「可換」体を意味するものとする。とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、''p'' 進数体、などがある。 任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いたや円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。 代数的構造として、すべての体は環であるが、すべての環が体であるわけではない。最も重要な違いは、体は(ゼロ除算を除いて)除算ができるが、環は乗法逆元がなくてもよいということである。例えば、整数の全体は環をなすが、2x.

新しい!!: 双対基底と可換体 · 続きを見る »

双対ベクトル空間

数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、dual vector space)あるいは単に双対空間(そうついくうかん、dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。 一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。.

新しい!!: 双対基底と双対ベクトル空間 · 続きを見る »

双直交系

数学において、双対性(双線型形式 ⟨,⟩)を持つ位相線型空間の対 E, F に関する双直交系(そうちょっこうけい、; 二重直交系)とは、 を満たす(I は適当な添字集合で、δ はクロネッカーのデルタ)ベクトルの族の対 を言う。E.

新しい!!: 双対基底と双直交系 · 続きを見る »

平面

平面(へいめん、plane)とは、平らな表面のことである広辞苑 第五版、p.2395「平面」。平らな面。 一般的には曲面や立体などと対比されつつ理解されている。.

新しい!!: 双対基底と平面 · 続きを見る »

平行六面体

平行六面体(へいこうろくめんたい、parallelepiped)とは、6面の平行四辺形で構成されている立体であり、ゾーン多面体、平行多面体の一種である。.

新しい!!: 双対基底と平行六面体 · 続きを見る »

位相同型

位相同型 (いそうどうけい、homeomorphic)、あるいは同相(どうそう)とは、2つの位相空間が位相空間として等しいことを表す概念である。 例えば、球の表面と湯飲みの表面とはある「連続」な双方向の移し方で互いに移し合うことができるので同相であり、また穴が1つ開いたドーナツの表面 (トーラス) と持ち手がひとつあるマグカップの表面も同じく同相である。よって球の表面と湯のみの表面は位相幾何学的に全く同一の性質を持ち、ドーナツの表面とマグカップの表面も同一の性質を持つ。しかし、球面とトーラスとはこのような写し方が存在しないので同相とはならない。(直観的には、連続的な変形によって穴の個数が変化することはないということである。) ここで連続な写し方とは、直観的には近いところを近いところに写すような写し方を意味する。.

新しい!!: 双対基底と位相同型 · 続きを見る »

位相体

位相体(いそうたい、topological field)とは、密着位相ではない位相が入った位相空間であり、加法、乗法、および 0 以外の元に対する除法が連続となる体のことである。従って、位相体 K は加法に対する位相群であり、K× は乗法に対する位相群となる。.

新しい!!: 双対基底と位相体 · 続きを見る »

位相空間

数学における位相空間(いそうくうかん, topological space)とは、集合にある種の情報(位相、topology)を付け加えたもので、この情報により、連続性や収束性といった概念が定式化可能になる。 位相空間論は位相空間の諸性質を研究する数学の分野である。.

新しい!!: 双対基底と位相空間 · 続きを見る »

ユークリッド空間

数学におけるユークリッド空間(ユークリッドくうかん、Euclidean space)は、エウクレイデス(ユークリッド)が研究したような幾何学(ユークリッド幾何学)の場となる平面や空間、およびその高次元への一般化である。エウクレイデスが研究した平面や空間はそれぞれ、2次元ユークリッド空間、3次元ユークリッド空間に当たり、これらは通常、ユークリッド平面、ユークリッド空間などとも呼ばれる。「ユークリッド的」という修飾辞は、これらの空間が非ユークリッド幾何やアインシュタインの相対性理論に出てくるような曲がった空間ではないことを示唆している。 古典的なギリシャ数学では、ユークリッド平面や(三次元)ユークリッド空間は所定の公準によって定義され、そこからほかの性質が定理として演繹されるものであった。現代数学では、デカルト座標と解析幾何学の考え方にしたがってユークリッド空間を定義するほうが普通である。そうすれば、幾何学の問題に代数学や解析学の道具を持ち込んで調べることができるようになるし、三次元以上のユークリッド空間への一般化も容易になるといった利点が生まれる。 現代的な観点では、ユークリッド空間は各次元に本質的に一つだけ存在すると考えられる。たとえば一次元なら実数直線、二次元ならデカルト平面、より高次の場合は実数の組を座標にもつ実座標空間である。つまり、ユークリッド空間の「点」は実数からなる組であり、二点間の距離は二点間の距離の公式に従うものとして定まる。n-次元ユークリッド空間は、(標準的なモデルを与えるものという意味で)しばしば とかかれるが、(余分な構造を想起させない)ユークリッド空間固有の性質を備えたものということを強調する意味で と書かれることもある。ふつう、ユークリッド空間といえば有限次元であるものをいう。.

新しい!!: 双対基底とユークリッド空間 · 続きを見る »

リースの表現定理

リースの表現定理(リースのひょうげんていり、)とは、数学の関数解析学の分野におけるいくつかの有名な定理に対する呼称である。リース・フリジェシュの業績に敬意を表し、そのように名付けられた。.

新しい!!: 双対基底とリースの表現定理 · 続きを見る »

ドット積

数学あるいは物理学においてドット積(ドットせき、dot product)あるいは点乗積(てんじょうせき)とは、ベクトル演算の一種で、2つの同じ長さの数列から一つの数値を返す演算。代数的および幾何的に定義されている。幾何的定義では、(デカルト座標の入った)ユークリッド空間 において標準的に定義される内積のことである。.

新しい!!: 双対基底とドット積 · 続きを見る »

ベクトル空間

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、vector space)、または、線型空間(せんけいくうかん、linear space)は、ベクトルと呼ばれる元からなる集まりの成す数学的構造である。ベクトルには和が定義され、またスカラーと呼ばれる数による積(「スケール変換」)を行える。スカラーは実数とすることも多いが、複素数や有理数あるいは一般の体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの和とスカラー倍の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(後述)を満足するものでなければならない。ベクトル空間の一つの例は、力のような物理量を表現するのに用いられる幾何ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、ただしより幾何学的な意味において、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。 ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられるから、その観点からはよく知られている。ベクトル空間は、さらにノルムや内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に函数をベクトルとする無限次元の函数空間の形で自然に生じてくる。解析学的な問題では、ベクトルの列が与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相を備えており、それによって近さや連続性といったことを考えることができる。こういた位相線型空間、特にバナッハ空間やヒルベルト空間については、豊かな理論が存在する。 歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学、行列論、連立一次方程式の理論、幾何ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線や平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。 今日では、ベクトル空間は数学のみならず科学や工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な線型代数学的概念であり、例えば画像圧縮ルーチンで使われるフーリエ展開のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。 ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。.

新しい!!: 双対基底とベクトル空間 · 続きを見る »

ベクトル空間の双対系

数学の函数解析学周辺分野におけるベクトル空間の双対系(そうついけい、dual system)あるいは双対組 (dual pair; 双対対) は、付随する双線型形式(内積, pairing)を持つようなベクトル空間の対である。 ノルム線型空間の研究においてよく用いられる函数解析学的方法に、もとの空間とその連続的双対空間、すなわちもとの空間上の連続線型形式全体の成すベクトル空間との関係性を調べるというものがある。双対対はこのような双対性の概念を一般化して、素性の良い双線型形式によって「双対性」が与えられる任意のベクトル空間の対を考えるものである。付随する双線型形式を用いて、半ノルムから極位相を定めると、ベクトル空間は局所凸空間(ノルム空間の一般化)になる。.

新しい!!: 双対基底とベクトル空間の双対系 · 続きを見る »

クロネッカーのデルタ

ネッカーのデルタ()とは、集合 T(多くは自然数の部分集合)の元 i, j に対して によって定義される二変数関数 δij: T×T → のことをいう。つまり、T×T の対角成分の特性関数のことである。名称は、19世紀のドイツの数学者レオポルト・クロネッカーに因む。 アイバーソンの記法を用いると と書ける。 単純な記号だが、色々な場面で有用である。例えば、単位行列は (δij) と書けたり、n 次元直交座標の基底ベクトルの内積は、(ei, ej).

新しい!!: 双対基底とクロネッカーのデルタ · 続きを見る »

線型代数学

線型代数学(せんけいだいすうがく、linear algebra)とは、線型空間と線型変換を中心とした理論を研究する代数学の一分野である。現代数学において基礎的な役割を果たし、幅広い分野に応用されている。また、これは特に行列・行列式・連立一次方程式に関する理論を含む。線形などの用字・表記の揺れについては線型性を参照。 日本の大学においては、多くの理系学部学科で解析学(微分積分学)とともに初学年から履修する。なお、高校教育においては平成27年度からの新課程では行列の分野が除外されている。.

新しい!!: 双対基底と線型代数学 · 続きを見る »

線型位相空間

数学における線型位相空間(せんけいいそうくうかん、)とは、ベクトル空間の構造(線型演算)とその構造に両立する位相構造を持ったもののことである。係数体は実数体 R や複素数体 C などの位相体であり、ベクトルの加法やスカラー倍などの演算が連続写像になっていることが要請される。線型位相空間においては、通常のベクトル空間におけるような代数的な操作に加えて、興味のあるベクトルを他のベクトルで近似することが可能になり、関数解析学における基本的な枠組みが与えられる。 ベクトル空間の代数的な構造はその次元のみによって完全に分類されるが、特に無限次元のベクトル空間に対してその上に考えられる位相には様々なものがある。有限次元の実・複素ベクトル空間上の、意義のある位相はそれぞれの空間に対して一意的に決まってしまうことから、この多様性は無限次元に特徴的なものといえる。.

新しい!!: 双対基底と線型位相空間 · 続きを見る »

線型包

数学の特に線型代数学あるいはより一般の函数解析学において、ベクトル空間内の与えられたベクトルからなる集合の(線型に)張る部分空間 (linear span) あるいは線型包(せんけいほう、linear hull; 線型苞)もしくは生成する (generated, spanned) 部分空間は、その集合を含む線型部分空間すべての交わりである。したがって、その集合を含む最小の部分空間である。また、それはその集合に属するベクトルのすべての線型結合からなる集合として実現される。.

新しい!!: 双対基底と線型包 · 続きを見る »

線型結合

線型結合(せんけいけつごう、)は、線型代数学およびその関連分野で用いられる中心的な概念の一つで、平たく言えば、ベクトルの定数倍と加え合わせのことである。一次結合あるいは線型和とも呼ぶ。 いくつかのベクトルを組み合わせると他のベクトルを作ることができる。例えば、2次元数ベクトルを例にとれば、ベクトル v.

新しい!!: 双対基底と線型結合 · 続きを見る »

線型独立

線型代数学において、ベクトルの集合が線型独立 (せんけいどくりつ、linearly independent) または一次独立であるとは、線型従属(一次従属)でないこと、つまり集合のベクトルの線型結合によるゼロベクトルの表示が自明なものに限ることをいう(#定義)。.

新しい!!: 双対基底と線型独立 · 続きを見る »

線型汎函数

数学の特に線型代数学における線型汎函数(せんけいはんかんすう、linear functional)は、ベクトル空間からその係数体への線型写像をいう。線型形式 (linear form) 若しくは一次形式 (one-form) あるいは余ベクトル (covector) ともいう。 ユークリッド空間 Rn のベクトルを列ベクトルとして表すならば、線型汎函数は行ベクトルで表され、線型汎函数のベクトルへの作用は点乗積として、若しくは左から行ベクトルと右から列ベクトルとを行列の乗法で掛け合わせることで与えられる。 一般に、体 k 上のベクトル空間 V に対し、その上の線型汎函数とは V から k への写像 f であって、線型性 を満たすものを言う。V から k への線型汎函数全体の成す集合 Homk(V, k) はそれ自体が k 上のベクトル空間を成し、V の双対空間と呼ばれる(連続的双対空間と区別する必要がある場合には代数的双対空間とも呼ばれる)。考えている係数体 k が明らかなときは、V の双対空間はしばしば V∗ または V′ で表される。.

新しい!!: 双対基底と線型汎函数 · 続きを見る »

直交座標系

数学における直交座標系(ちょっこうざひょうけい、, )とは、互いに直交している座標軸を指定することによって定まる座標系のことである。平面上の直交座標系ではそれぞれの点に対して一意に定まる二つの実数の組によって点の位置が指定される。同様にして空間上の直交座標系では三つの実数の組によって座標が与えられる。 1637年に発表された『方法序説』において平面上の座標の概念を確立したルネ・デカルトの名を採ってデカルト座標系 (Cartesian coordinate system) とも呼ぶ。.

新しい!!: 双対基底と直交座標系 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: 双対基底と計量テンソル · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: 双対基底と転置行列 · 続きを見る »

連続的双対空間

関数解析学における位相線型空間の連続的双対空間(れんぞくてきそうついくうかん、continuous dual space)、位相的双対空間(いそうてきそうついくうかん、topological dual space)あるいは単に双対空間(そうついくうかん、dual space)は、位相線型空間を扱う際に典型的に注目される連続な線型汎関数全体の成す空間として生じる。これは位相線型空間 V の代数的双対空間 V∗ の線型部分空間で V′ で表される。 ユークリッド空間のような任意の「有限次元」ノルム空間もしくは位相線型空間に対しては、連続的双対は代数的双対に一致する。しかし任意の無限次元ノルム空間において不連続線型汎関数の例に見るように両者は一致しない。にも拘らず、位相線型空間論において不連続写像を考える必要はそれほどないので、わざわざ「連続的双対」や「位相的双対」とは言わずに単に「双対空間」と呼ぶことが多い。.

新しい!!: 双対基底と連続的双対空間 · 続きを見る »

標準基底

線型代数学における標準基底(ひょうじゅんきてい、standard basis, canonical basis)または自然基底 (natural basis) は直交座標系の各軸方向に向かう単位ベクトルからなるユークリッド空間の基底を言う。例えばユークリッド平面の標準基底は であり、三次元ユークリッド空間の標準基底は で与えられる。ここで、各ベクトル ex, ey, ez はそれぞれ x-軸方向、y-軸方向、z-軸方向を向いている。この基底を表すのによく用いられる記法として、,,, などを挙げることができる。単位ベクトルであることを強調するためにサーカムフレックス(キャレット)を載せることもある。 ここでいう基底は、それらのベクトルの線型結合として、任意のベクトルがそれぞれただ一通りに表されるという意味においていう。例えば三次元ベクトル v は必ず なる形に書くことができて、スカラー vx, vy, vz は v の座標成分になる。.

新しい!!: 双対基底と標準基底 · 続きを見る »

数学

数学(すうがく、μαθηματικά, mathematica, math)は、量(数)、構造、空間、変化について研究する学問である。数学の範囲と定義については、数学者や哲学者の間で様々な見解がある。.

新しい!!: 双対基底と数学 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »