ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

三中心四電子結合

索引 三中心四電子結合

三中心四電子結合(さんちゅうしんよんでんしけつごう)とは三中心結合の一種で、超原子価化合物の結合を説明するために用いられる結合様式モデルである。1951年に (George C. Pimentel) が提唱した三中心四電子結合モデルは、以前に電子不足の化合物についてRobert E. Rundleが研究した三中心結合モデルを発展させたものであった。そこからPimentel-Rundle三中心モデルとも呼ばれる。3c-4eと略記される。 三中心四電子結合モデルは、同一直線状に並んだ3個の原子の間に考えられる。直線分子の二フッ化キセノン (XeF2) を例にすると、まずF-Xe-F構造の上に、それぞれの原子上のp軌道の線形結合によって作られる3個の分子軌道 (MO) があるとする。ふたつは3個の原子上に分布を持つ結合性軌道と反結合性軌道、もうひとつは2個のF上に分布を持つ非結合性軌道である。ここに4個の電子が入り、安定な2軌道、すなわち結合性軌道と非結合性軌道が電子2個ずつで満たされ、反結合性軌道は空のまま残る。結合性軌道に電子が入るのでF-Xe-F構造の間に結合力が生じる。ここでHOMOにあたる非結合性軌道は両端にある2個のF上に分布するため、電子の分布はF上に偏ることになる。一般に超原子価化合物において配位原子の電子密度が高いのはこのような理由によって説明される。 原子価結合理論では、XeF2の結合は下のような共鳴式で描かれる。 \rm \bigg この共鳴式も、Xe-Fの結合次数が 1/2 でありオクテット則が破られていないこと、 F上に負電荷が分布していることを表しており、上の分子軌道理論による説明と合う。 ただし、XeF2はその結合が(上記の共鳴から考えられるより)非常に安定であることから、実際の結合様式に関しては現在でも議論が続いている。2013年には、上記のF-Xe+F-という状態に加え、F-Xe2+F-という完全にイオン的な結合も同程度の寄与をしている、という計算結果が発表されている。 他の超原子価化合物、五フッ化リン (PF5) や四フッ化硫黄 (SF4) では3個のP-F結合または2個のS-F共有結合とともに1個の三中心四電子結合F-P-FまたはF-S-Fがあるとする。六フッ化硫黄 (SF6) やキセノンの他のフッ化物 (XeF4、XeF6) では全ての結合は三中心四電子結合で表される。 古いモデルではd軌道の寄与で超原子価化合物が説明されていた。しかし電子が満たされたp軌道と空のd軌道とのエネルギー差は大きく、量子化学計算の結果はd軌道の寄与はほぼ無視できると示している。三中心四電子結合モデルは、d軌道を考慮する必要がない利点により受け入れられている。.

22 関係: 原子価結合法反結合性軌道三中心二電子結合三中心結合二フッ化キセノン五フッ化リンフッ化硫黄分子軌道分子軌道法オクテット則六フッ化キセノン六フッ化硫黄共鳴理論四フッ化キセノン米国化学会誌D軌道非結合性軌道計算化学超原子価電子不足HOMO/LUMOLCAO法

原子価結合法

量子化学において原子価結合法(げんしかけつごうほう、valence bond theory、略称: VB法)とは、化学結合を各原子の原子価軌道に属する電子の相互作用によって説明する手法である。.

新しい!!: 三中心四電子結合と原子価結合法 · 続きを見る »

反結合性軌道

H2 1sσ* 反結合性分子軌道 化学結合理論において、反結合性軌道(はんけつごうせいきどう、antibonding orbital)は、電子によって占有された場合に2つの原子間の結合を弱め、分かれた原子の状態よりも分子のエネルギーを上昇させる分子軌道の一種である。このような軌道は核間の結合領域に1つ以上の節を持つ。この軌道における電子の密度は結合領域の外側に集中し、核を互いに遠ざけ、2つの原子間に相互反発を生じさせる。.

新しい!!: 三中心四電子結合と反結合性軌道 · 続きを見る »

三中心二電子結合

三中心二電子結合(さんちゅうしんにでんしけつごう、three-center two-electron bond)とは、電子不足な化合物に現れる化学結合の様式のひとつで、3個の原子が2個の電子を共有しながら結びついている状態である。3c-2e と略記される。 三中心結合の考え方では、3個の原子がそれぞれ1個ずつ原子軌道を与え、3個の分子軌道、つまり結合性軌道と非結合性軌道と反結合性軌道を形成する。2個の電子がその結合性軌道へ入ると、3個の原子を結びつける結合力を生み出す。多くの場合、結合性軌道は3個の原子に均等に配置するのではなく、2個の原子の上に偏っている。また、3個の原子の並びはバナナのように曲がっており、バナナ型結合と称される。.

新しい!!: 三中心四電子結合と三中心二電子結合 · 続きを見る »

三中心結合

三中心結合(さんちゅうしんけつごう)とは化学結合の概念のひとつで、ジボランや超原子価化合物など、伝統的な結合の考え方(二中心二電子結合、2c-2e)では構造を説明できない化合物について説明するために提案されたもの。3個の原子がそれぞれ1つずつの原子軌道を供給して3つの分子軌道、すなわち結合性軌道、非結合性軌道、反結合性軌道を作るとする。そのうち結合性軌道に電子が2個入ることで結合力が生じると考える。.

新しい!!: 三中心四電子結合と三中心結合 · 続きを見る »

二フッ化キセノン

二フッ化キセノン(にフッかキセノン、Xenon difluoride、XeF2)は、キセノン化合物でもっとも安定なものの1つであり、強力なフッ化剤である。大部分の共有結合性無機フッ化物のように水分に敏感である。高密度の白色結晶で、光や水に接すると分解する。不快臭を持つが、蒸気圧は低い (Weeks, 1966)。分子構造は直線形である。 550 cm-1 と 556 cm-1 に特徴的な赤外線吸収のダブレットを示す。市販品が入手可能。.

新しい!!: 三中心四電子結合と二フッ化キセノン · 続きを見る »

五フッ化リン

五フッ化リン(五弗化燐、ごふっかりん、)は、リンとフッ素からなる無機化合物である。分子式はPF5であり、に分類される。標準状態では強い毒性を持つ不燃性の無色気体で、刺激臭がある。湿った空気中もしくは水と接触すると激しく反応してフッ化水素 (HF) およびリン酸 (H3PO4) を生じる。.

新しい!!: 三中心四電子結合と五フッ化リン · 続きを見る »

フッ化硫黄

フッ化硫黄(フッかいおう、sulfur fluoride)はフッ素と硫黄とから構成される無機化合物で、異性体を含めて以下の6種類が知られている。十フッ化二硫黄のみが常温常圧で液体であり、他は気体の化合物である。.

新しい!!: 三中心四電子結合とフッ化硫黄 · 続きを見る »

分子軌道

アセチレン (H–C≡C–H) の完全な分子軌道群。左欄は基底状態で占有されているMOを示し、最上部が最もエネルギーの低い軌道である。1部のMOで見られる白色と灰色の線はアセチレン分子の球棒モデルによる表示である。オービタル波動関数は赤色の領域で正、青色の領域で負である。右欄は基底状態では空のMOを示しているが、励起状態ではこれらの軌道は占有され得る。 ベンゼンの最低空軌道 分子軌道(ぶんしきどう、molecular orbital、略称MO)は分子中の各電子の空間分布を記述する一電子波動関数のことである。分子軌道法において中心的な役割を果たし、電子に対するシュレーディンガー方程式を、一電子近似を用いて解くことによって得られる。 1個の電子の位置ベクトル \boldsymbol の関数であり、 \phi_i(\boldsymbol) と表される。一般に複素数である。原子に対する原子軌道に対応するものである。 この関数は、特定の領域に電子を見い出す確率といった化学的、物理学的性質を計算するために使うことができる。「オービタル」(orbital)という用語は、「one-electron orbital wave function: 1電子オービタル(軌道〔orbit〕のような)波動関数」の略称として1932年にロバート・マリケンによって導入された。初歩レベルでは、分子軌道は関数が顕著な振幅を持つ空間の「領域」を描写するために使われる。分子軌道は大抵、分子のそれぞれの原子の原子軌道あるいは混成軌道や原子群の分子軌道を結合させて構築される。分子軌道はハートリー-フォック法や自己無撞着場(SCF)法を用いて定量的に計算することができる。.

新しい!!: 三中心四電子結合と分子軌道 · 続きを見る »

分子軌道法

水素分子の分子軌道ダイアグラム。 量子化学において、分子軌道法(ぶんしきどうほう、Molecular Orbital method)、通称「MO法」とは、原子に対する原子軌道の考え方を、そのまま分子に対して適用したものである。 分子軌道法では、分子中の電子が原子間結合として存在しているのではなく、原子核や他の電子の影響を受けて分子全体を動きまわるとして、分子の構造を決定する。 分子軌道法では、分子は分子軌道を持ち、分子軌道波動関数 \psi_j^\mathrmは、既知のn個の原子軌道\chi_i^\mathrmの線形結合(重ね合わせ)で表せると仮定する。 ここで展開係数 c_について、基底状態については、時間依存しないシュレーディンガー方程式にこの式を代入し、変分原理を適用することで決定できる。この方法はLCAO近似と呼ばれる。もし\chi_i^\mathrmが完全系を成すならば、任意の分子軌道を\chi_i^\mathrmで表せる。 またユニタリ変換することで、量子化学計算における収束を速くすることができる。分子軌道法はしばしば原子価結合法と比較されることがある。.

新しい!!: 三中心四電子結合と分子軌道法 · 続きを見る »

オクテット則

テット則(-そく、Octet rule)は原子の最外殻電子の数が8個あると化合物やイオンが安定に存在するという経験則。オクテット説(-せつ)、八隅説(はちぐうせつ)ともいう。 第二周期の元素や第三周期のアルカリ金属、アルカリ土類金属までにしか適用できないが、多くの有機化合物に適用できる便利な規則である(→18電子則)。ただし、カルボカチオンや無機化合物を中心とする多くの例外も存在する。.

新しい!!: 三中心四電子結合とオクテット則 · 続きを見る »

六フッ化キセノン

六フッ化キセノン(ろくフッかキセノン、xenon hexafluoride)は、化学式が XeF6 と表されるキセノンの六フッ化物で、無色の結晶である。この化合物は、3種類あるキセノンのフッ化物のうちの1つである。(他2つは二フッ化キセノンと四フッ化キセノン)これらは全て標準温度で安定で、六フッ化キセノンはこれらの中で最も強力なフッ素化剤である。水に対して非常に敏感なため、痕跡量の水でさえ取り除かなければならない。 約300℃、6 MPa の下で二フッ化キセノンを加熱し続けることで得られる。.

新しい!!: 三中心四電子結合と六フッ化キセノン · 続きを見る »

六フッ化硫黄

六フッ化硫黄(ろくフッかいおう、sulfur hexafluoride)は、化学式 SF で表される硫黄の六フッ化物である。硫黄原子を中心にフッ素原子が正八面体構造をとっている。 常温常圧においては化学的に安定度の高い無毒、無臭、無色、不燃性の気体で、大気中での寿命は 3,200年である。1960年代から電気および電子機器の分野で絶縁材などとして広く使用されている化学物質で、人工的な温室効果ガスとされる。使用量はそれほど多くないが、近年新たな用途開発の進展に伴い需要量が増加している。100年間の地球温暖化係数は二酸化炭素の23,900倍と大きくかつ大気中の寿命が長いため、HFCs、PFCsと共に京都議定書で地球温暖化防止排出抑制対象ガスの1つに指定された。大気への放出はほぼ全て人為的なものと考えられている。 2007年に気象庁気象研究所が海水中の六フッ化硫黄濃度を高精度かつ低検出限界で測定できる手法を開発した。.

新しい!!: 三中心四電子結合と六フッ化硫黄 · 続きを見る »

共鳴理論

二酸化窒素の寄与構造の内の2種類 化学における共鳴理論(きょうめいりろん)とは、量子力学的共鳴の概念により、共有結合を説明しようとする理論である。.

新しい!!: 三中心四電子結合と共鳴理論 · 続きを見る »

四フッ化キセノン

四フッ化キセノン(しフッかキセノン、Xenon tetrafluoride)は、分子式がXeF4と表されるキセノンのフッ化物である。二種類の元素からのみ成る希ガス化合物の中では最初に発見された化合物であり、1molのXeと2molのF2により生成する。この反応は251kJ/molの発熱反応である。 この物質の構造は、1963年に核磁気共鳴分光法とX線結晶構造解析により平面四角形であると報告されている。キセノンが2対の孤立電子対をもっているため、この構造はVSEPR理論により説明される。 四フッ化キセノンは、無色の結晶として発生する。115.7℃で昇華する。 キセノンのフッ化物は標準温度で全て熱力学的に安定であるが、空気中の水分とさえ反応するので、乾燥状態で保存しなければならない。 この物質とフッ化テトラメチルアンモニウムを反応させると、ペンタフルオロキセノン酸テトラメチルアンモニウムが得られる。.

新しい!!: 三中心四電子結合と四フッ化キセノン · 続きを見る »

米国化学会誌

米国化学会誌 (べいこくかがくかいし、Journal of the American Chemical Society) はアメリカ化学会により発行されている学術雑誌である。略記はJ.

新しい!!: 三中心四電子結合と米国化学会誌 · 続きを見る »

D軌道

配位子場によるd軌道の分裂 d軌道(ディーきどう)とは、原子を構成している電子軌道の1種である。 方位量子数は2であり、M殻以降の電子殻(3以上の主量子数)についてdxy軌道、dyz軌道、dzx軌道、dx2-y2軌道、dz2軌道という5つの異なる配位の軌道が存在する。各電子殻(主量子数)のd軌道は主量子数の大きさから「3d軌道」(M殻)、「4d軌道」(N殻)、、、のように呼ばれ、ひとつの電子殻(主量子数)のd軌道にはスピン角運動量の自由度と合わせて最大で10個の電子が存在する。 d軌道のdは「diffuse」に由来し、電子配置や軌道の変化分裂によるスペクトルの放散、広がりを持つことから意味づけられた。.

新しい!!: 三中心四電子結合とD軌道 · 続きを見る »

非結合性軌道

非結合性軌道(ひけつごうせいきどう、non-bonding orbital)は、電子による占有が、関与する原子間の結合次数を増加も減少もさせない分子軌道である。非結合性軌道は分子軌道ダイアグラムおよび電子遷移表記法においてしばしば文字nで表される。分子軌道法における非結合性軌道はルイス構造における孤立電子対に相当する。非結合性軌道のエネルギー準位は典型的には、より低いエネルギーの原子価殻結合性軌道とそれに対応するより高いエネルギーの反結合性軌道との間にある。そのため、電子によって占有された非結合性軌道は通常はHOMO(最高被占分子軌道)となる。 分子軌道法では、分子軌道は原子軌道の線形結合から形成される。フッ化水素(HF)といった単純な二原子分子において、ある原子はその他の原子よりもより多くの電子を持ちうる。HFではσ結合性軌道は同じ対称性を持つ水素の1s軌道とフッ素の2pz軌道の線型結合により作られる。残ったフッ素の2pxおよび2py軌道は変化していないが、分子軌道として見た時には非結合性軌道となる。これらの非結合性軌道のエネルギーは分子内のいかなる結合の長さにも依存しない。これらの軌道が電子によって占有されても分子の安定性を上昇も低下もさせない。 非結合性軌道は構成原子の原子軌道としばしば似ているが、それらが似ている必要はない。似ていない一例はアリルアニオンの非結合性軌道である。アリルアニオンのHOMOは両端の原子の2px軌道(分子平面に対して垂直)が逆の位相で合わさったものであるため(中央の原子は節でありこの分子軌道には関与しない)、両端の原子軌道はほぼ重なり合わず、そのエネルギーは個々の2px軌道のエネルギーと同じと見なせる。.

新しい!!: 三中心四電子結合と非結合性軌道 · 続きを見る »

計算化学

計算化学(けいさんかがく、computational chemistry)とは、計算によって理論化学の問題を取り扱う、化学の一分野である。複雑系である化学の問題は計算機の力を利用しなければ解けない問題が多いため、計算機化学と呼ばれることもあるが、両者はその言葉の適用範囲が異なっている。 近年のコンピュータの処理能力の発達に伴い、実験、理論と並ぶ第三の研究手段と考えられるまでに発展した。主に以下の手法を用いて化学の問題を取り扱う。.

新しい!!: 三中心四電子結合と計算化学 · 続きを見る »

超原子価

超原子価化合物もしくは超原子価分子(ちょうげんしかぶんし、hypervalent molecule)とは、形式的に原子価殻に8つ以上の電子を持つ典型元素を含有する化合物、分子のことである。また、このような状態の典型元素は超原子価状態である、超原子価を取る、などと言われる。五塩化リン (PCl5)、六フッ化硫黄 (SF6)、リン酸イオン (PO4^)、三ヨウ化物イオン (I3^-) は超原子価化合物の例である。超原子価化合物はJeremy I. Musherによって、酸化数の最も低い状態でない15-18族の元素を持つ化合物として、1969年に初めて定義された (Errata)。 いくつかの特殊な超原子価化合物が存在する。.

新しい!!: 三中心四電子結合と超原子価 · 続きを見る »

電子不足

電子不足(でんしぶそく、Electron deficiency)は、共有結合として描写される原子間の連結に対して化合物が過度に少ない価電子を持つ時に起こる。電子不足結合は三中心二電子結合としてしばしばよく表現される。電子不足である化合物の例としてボラン類がある。 「電子不足」という用語は、有機化学においてはより一般的に、ニトロベンゼンやアクリルニトリル中で見られる電子求引性基を持つアルケンやアレーンといったπ系を示すためにも使われる。単純なC.

新しい!!: 三中心四電子結合と電子不足 · 続きを見る »

HOMO/LUMO

HOMO(ホモ、Highest Occupied Molecular Orbital)または最高被占軌道は電子に占有されている最もエネルギーの高い分子軌道で、LUMO(ルモ、Lowest Unoccupied Molecular Orbital)または最低空軌道は電子に占有されていない最もエネルギーの低い分子軌道である。合わせてフロンティア軌道と呼ばれることもある。HOMO と LUMO の間のエネルギー差は HOMO-LUMO エネルギーギャップと呼ばれる。 基本的に有機半導体においては、HOMO準位と真空準位のエネルギー差がイオン化エネルギー、LUMO準位と真空準位のエネルギー差が電子親和力となる。 有機半導体における「HOMOレベル」の対応関係は、無機半導体または量子ドットにおける「価電子バンド」の関係と同じである。伝導体と LUMO レベルとの間にも似た関係がある。.

新しい!!: 三中心四電子結合とHOMO/LUMO · 続きを見る »

LCAO法

LCAO法(LCAOほう、Linear combination of atomic orbitals method)あるいは原子軌道による線形結合法とは、原子軌道の線形結合(量子力学的重ね合わせ)によって電子の波動関数を記述し、その電子状態(分子軌道)を求める計算手法のことである。 この場合、原子軌道が基底関数となっている。原子軌道はその原子に強く束縛された局在された軌道であり、隣合う軌道間の重なりは通常小さい。この意味で、LCAO法はタイトバインディング法とほぼ等価として扱われることがある。比較的扱い易い計算手法であるが、原子軌道同士の重なりの部分(重なり積分)の扱いが計算の負担となることがある。 LCAO法は、ジョン・レナード=ジョーンズによって周期表の第2周期の2原子分子における結合の描写と共に1929年に導入されたが、それより前にライナス・ポーリングによってH2+に対して用いられていた。 数学的記述は以下の通りである。 最初の仮定は、分子軌道の数は線形展開に含まれる原子軌道の数に等しい、というものである。つまり、n個の原子軌道が組み合わさり、n個の分子軌道(i.

新しい!!: 三中心四電子結合とLCAO法 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »