ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ローレンツ変換

索引 ローレンツ変換

ーレンツ変換(ローレンツへんかん、Lorentz transformation)は、2 つの慣性系の間の座標(時間座標と空間座標)を結びつける線形変換で、電磁気学と古典力学間の矛盾を回避するために、アイルランドのジョセフ・ラーモア(1897年)とオランダのヘンドリック・ローレンツ(1899年、1904年)により提案された。 アルベルト・アインシュタインが特殊相対性理論(1905年)を構築したときには、慣性系間に許される変換公式として、理論の基礎を形成した。特殊相対性理論では全ての慣性系は同等なので、物理法則はローレンツ変換に対して不変な形、すなわち同じ変換性をもつ量の間のテンソル方程式として与えられなければならない。このことをローレンツ不変性(共変性)をもつという。 幾何学的には、ミンコフスキー空間における 2 点間の世界間隔を不変に保つような、原点を中心にした回転変換を表す(ミンコフスキー空間でみたローレンツ変換節参照)。.

48 関係: 単位行列古典力学対称性 (物理学)対角行列不変量一般相対性原理幾何学ミンコフスキー空間マイケルソン・モーリーの実験マクスウェルの方程式ポアンカレ群ヘンドリック・ローレンツパリティ対称性の破れテンソルニュートンの運動方程式アルベルト・アインシュタインアンリ・ポアンカレアイルランドアインシュタインの縮約記法ウィック回転エーテル (物理)オランダガリレイ変換ジョゼフ・ラーモア光速固有時CP対称性の破れCPT対称性線型写像群 (数学)群作用物理学者特殊相対性理論相対性理論運動の第1法則行列行列式計量テンソル転置行列電磁気学連結空間虚時間数学者慣性系時空1900年1904年4元ベクトル

単位行列

数学、特に線型代数学において、単位行列(たんいぎょうれつ、identity matrix)とは、単位的環上で定義される同じ型の正方行列同士の、積演算における単位元のことである。.

新しい!!: ローレンツ変換と単位行列 · 続きを見る »

古典力学

古典力学(こてんりきがく、英語:classical mechanics)は、量子力学が出現する以前のニュートン力学や相対論的力学。物理学における力学に関する研究、つまり適当な境界の下に幾何学的表現された物質やその集合体の運動を支配し、数学的に記述する物理法則群に関する研究のうち、量子論以降の量子に関するそれを「量子力学」とするのに対し、レトロニム的に、量子論以前のもの(現代でもさかんに研究されている分野だが)を指してそう呼ぶ。 古典力学は、マクロな物質の運動つまり、弾道計算から部分的には機械動作、天体力学、例えば宇宙船、衛星の運動、銀河に関する研究に使われている。そして、それらの領域に対して、とても精度の高い結果をもたらす、最も古く最も広範な科学、工学における領域のうちの一つである。古典力学以外の領域としては気体、液体、固体などを扱う多くの分野が存在している。加えて、古典力学は光速に近い場合には特殊相対性理論を用いることによってより一般な形式を与えることとなる。同様に、一般相対性理論は、より深いレベルで重力を扱うこととなり、量子力学では、分子や原子における、粒子と波動の二重性について扱うこととなる。.

新しい!!: ローレンツ変換と古典力学 · 続きを見る »

対称性 (物理学)

対称性ラベルを示す面心立方格子構造の第一ブリュアンゾーン 物理学における対称性(たいしょうせい、symmetry)とは、物理系の持つ対称性 — すなわち、ある特定の変換の下での、系の様相の「不変性」である。.

新しい!!: ローレンツ変換と対称性 (物理学) · 続きを見る »

対角行列

数学、特に線型代数学において、対角行列(たいかくぎょうれつ、diagonal matrix)とは、正方行列であって、その対角成分(-要素)以外が零であるような行列のことである。 \end この対角行列は、クロネッカーのデルタを用いて (ci δij) と表現できる。また、しばしば のようにも書かれる。 単位行列やスカラー行列は対角行列の特殊例である。.

新しい!!: ローレンツ変換と対角行列 · 続きを見る »

不変量

不変量(ふへんりょう、invariant)とは、数学的対象を特徴付ける別種の数学的対象のことである。一般に、不変量は数や多項式など、不変量同士の同型性判定がもとの対象の同型性判定より簡単であるものをとる。良い不変量とは、簡単に計算でき、かつなるべく強い同型性判別能力をもつものである。.

新しい!!: ローレンツ変換と不変量 · 続きを見る »

一般相対性原理

一般相対性原理(いっぱんそうたいせいげんり、general principle of relativity)とは、一般相対性理論を築くときにアルベルト・アインシュタインが原理として仮定したもののうちの1つで、「いかなる座標系においても物理法則は不変である」という原理。 特殊相対性原理は慣性系についてのみ成立する物理法則であったが、これを拡張し、加速度系についても成り立つような物理法則を構築するにあたって、一般相対性原理を定めた。一般相対性理論は、(重力加速度系についても成り立つので)重力も含めた理論としてまとめられた。 ちなみに、同じく、アインシュタインが仮定した原理に一般共変性原理(いっぱんきょうへんせいげんり、principle of general covariance)がある。これは、「物理法則は、すべての座標系において同じ形式でなければならない」あるいは「一般座標変換によって物理法則は不変である」という原理であり、数学的には、「全ての物理法則はテンソル形式(と共変微分)を用いて記述されねばならない」ということになる。.

新しい!!: ローレンツ変換と一般相対性原理 · 続きを見る »

幾何学

最先端の物理学でも用いられるカラビ-ヤウ多様体の一種。現代幾何学では図も書けないような抽象的な分野も存在する。 幾何学(きかがく、)は、図形や空間の性質について研究する数学の分野である広辞苑第六版「幾何学」より。イエズス会マテオ・リッチによる geometria の中国語訳である。以前は geometria の冒頭の geo- を音訳したものであるという説が広く流布していたが、近年の研究により否定されている。 もともと測量の必要上からエジプトで生まれたものだが、人間に認識できる図形に関する様々な性質を研究する数学の分野としてとくに古代ギリシャにて独自に発達しブリタニカ国際大百科事典2013小項目版「幾何学」より。、これらのおもな成果は紀元前300年ごろユークリッドによってユークリッド原論にまとめられた。その後中世以降のヨーロッパにてユークリッド幾何学を発端とする様々な幾何学が登場することとなる。 幾何学というとユークリッド幾何学のような具体的な平面や空間の図形を扱う幾何学が一般には馴染みが深いであろうが、対象や方法、公理系などが異なる多くの種類の幾何学が存在し、現代においては微分幾何学や代数幾何学、位相幾何学などの高度に抽象的な理論に発達・分化している。 現代の日本の教育では、体系的な初等幾何学はほぼ根絶されかけたが、近年、中・高の数学教育で線型幾何/代数幾何を用いない立体を含む、本格的な綜合幾何は見直されつつある。.

新しい!!: ローレンツ変換と幾何学 · 続きを見る »

ミンコフスキー空間

ミンコフスキー空間(ミンコフスキーくうかん、Minkowski space)とは、非退化で対称な双線型形式を持つ実ベクトル空間である。ドイツの数学者のヘルマン・ミンコフスキーに因んで名付けられている。アルベルト・アインシュタインによる特殊相対性理論を定式化する枠組みとして用いられる。この特定の設定の下では空間に時間を組み合わせた時空を表現するため、物理学の文脈ではミンコフスキー時空とも呼ばれる。.

新しい!!: ローレンツ変換とミンコフスキー空間 · 続きを見る »

マイケルソン・モーリーの実験

マイケルソン・モーリーの実験(マイケルソン・モーリーのじっけん、Michelson-Morley experiment)とは、1887年にアルバート・マイケルソンとエドワード・モーリーによって行なわれた光速に対する地球の速さの比 の二乗 を検出することを目的とした実験であるなお、この実験は現在のケース・ウェスタン・リザーブ大学で行なわれた。。 マイケルソンは、この業績により1907年にノーベル賞を受賞したこの実験は、エーテル理論を初めて否定した物理学史における重要な役割を果たしたものとして知られている。同時に、「第二次科学革命の理論面の端緒」ともされている。 Earl R. Hoover, Cradle of Greatness: National and World Achievements of Ohio’s Western Reserve (Cleveland: Shaker Savings Association, 1977).

新しい!!: ローレンツ変換とマイケルソン・モーリーの実験 · 続きを見る »

マクスウェルの方程式

マクスウェルの方程式(マクスウェルのほうていしき、Maxwell's equations)は、電磁場のふるまいを記述する古典電磁気学の基礎方程式である。マイケル・ファラデーが幾何学的考察から見出した電磁力に関する法則が1864年にジェームズ・クラーク・マクスウェルによって数学的形式として整理された。マクスウェル-ヘルツの電磁方程式、電磁方程式などとも呼ばれ、マクスウェルはマックスウェルとも表記される。 真空中の電磁気学に限れば、マクスウェルの方程式の一般解は、ジェフィメンコ方程式として与えられる。 なお、電磁気学の単位系は、国際単位系に発展したMKSA単位系のほか、ガウス単位系などがあるが、以下では原則として、国際単位系を用いることとする。.

新しい!!: ローレンツ変換とマクスウェルの方程式 · 続きを見る »

ポアンカレ群

ポアンカレ群(ポアンカレぐん、Poincaré group)とは、ポアンカレ変換の為す変換群。10次元のノンコンパクトリー群である。.

新しい!!: ローレンツ変換とポアンカレ群 · 続きを見る »

ヘンドリック・ローレンツ

ヘンドリック・アントーン・ローレンツ(Hendrik Antoon Lorentz、1853年7月18日 - 1928年2月4日)は、オランダの物理学者。ゼーマン効果の発見とその理論的解釈により、ピーター・ゼーマンとともに1902年のノーベル物理学賞を受賞した。ローレンツ力、ローレンツ変換などに名を残し、特に後者はアルベルト・アインシュタインが時空間を記述するのに利用した。.

新しい!!: ローレンツ変換とヘンドリック・ローレンツ · 続きを見る »

パリティ対称性の破れ

パリティ対称性の破れ(パリティたいしょうせいのやぶれ、Parity violation)とは、空間反転した(鏡に映した)ときに物理法則が同じにならないこと、または、その様な状態を言う。弱い相互作用が関与する物理現象で起こる。 P対称性の破れ、あるいは、パリティ非保存とも。.

新しい!!: ローレンツ変換とパリティ対称性の破れ · 続きを見る »

テンソル

テンソル(tensor, Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。しかし、テンソル自身は、特定の座標系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。 例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。 物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。.

新しい!!: ローレンツ変換とテンソル · 続きを見る »

ニュートンの運動方程式

ニュートンの運動方程式(ニュートンのうんどうほうていしき、英語:Newtonian Equation of motion)は、非相対論的古典力学における一質点の運動を記述する運動方程式のひとつであり、以下のような形の2階微分方程式である。 ここで、mは質点の質量、\boldsymbol は質点の位置ベクトル、\boldsymbol は質点の加速度、\boldsymbol は質点にかかる力、t は時間である。\boldsymbol, \boldsymbolはベクトル量、mはスカラー量。.

新しい!!: ローレンツ変換とニュートンの運動方程式 · 続きを見る »

アルベルト・アインシュタイン

アルベルト・アインシュタイン日本語における表記には、他に「アルト・アインシュタイン」(現代ドイツ語の発音由来)、「アルト・アインタイン」(英語の発音由来)がある。(Albert Einstein アルベルト・アインシュタイン、アルバート・アインシュタイン アルバ(ー)ト・アインスタイン、アルバ(ー)タインスタイン、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。 特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績などにより、世界的に知られている偉人である。 「20世紀最高の物理学者」や「現代物理学の父」等と評され、それまでの物理学の認識を根本から変えるという偉業を成し遂げた。(光量子仮説に基づく光電効果の理論的解明によって)1921年のノーベル物理学賞を受賞。.

新しい!!: ローレンツ変換とアルベルト・アインシュタイン · 続きを見る »

アンリ・ポアンカレ

ュール=アンリ・ポアンカレ(、1854年4月29日 – 1912年7月17日)はナンシー生まれのフランスの数学者。数学、数理物理学、天体力学などの重要な基本原理を確立し、功績を残した。フランス第三共和制大統領・レーモン・ポアンカレはアンリの従弟(いとこ)。.

新しい!!: ローレンツ変換とアンリ・ポアンカレ · 続きを見る »

アイルランド

アイルランド、またはアイルランド共和国(-きょうわこく)は、北西ヨーロッパ、北大西洋のアイルランド島の大部分を領土とする立憲共和制国家。首都はダブリン。島の北東部はイギリスのカントリーの一つである北アイルランドと接している。 独立前より北アイルランドも自国の領土であると主張し、イギリスとの対立と抗争を繰り返してきたが、1998年のベルファスト合意により領有権を放棄した。 2005年、『エコノミスト』の調査では最も住みやすい国に選出されている。.

新しい!!: ローレンツ変換とアイルランド · 続きを見る »

アインシュタインの縮約記法

アインシュタインの縮約記法(アインシュタインのしゅくやくきほう、Einstein summation convention)またはアインシュタインの記法(アインシュタインのきほう、Einstein notation)は、アインシュタインが 1916 年に用いた添字 の和の記法である 。アインシュタインの規約(アインシュタインのきやく、Einstein convention)とも呼ばれる。 同じ項で添字が重なる場合は、その添字について和を取る、というルールである。この重なる指標を擬標(またはダミーの添字、)、重ならない指標を自由標(またはフリーの添字、)と呼ぶ。 このルールは一般相対性理論、量子力学、連続体力学、有限要素法などで重宝する。 アインシュタインはこの記法を自分の「数学における最大の発見」と(冗談めかして)言ったという。.

新しい!!: ローレンツ変換とアインシュタインの縮約記法 · 続きを見る »

ウィック回転

論物理学において、ウィック回転(ウィックかいてん、Wick rotation)とは、ミンコフスキー空間で発生する問題を回避するために、ミンコフスキー空間上の実変数を虚数に置き換えて、ユークリッド空間上の変数へ変換する操作である。この変換は量子力学における問題を他の分野と関連付ける際にも用いられる。この変換が回転(rotation)と呼ばれるのは、複素平面上で実軸から虚軸へ位相π/2回転させることを意味している。1954年にイタリアの物理学者、ジャンカルロ・ウィックによって初めて導入された。.

新しい!!: ローレンツ変換とウィック回転 · 続きを見る »

エーテル (物理)

ーテル は、主に19世紀までの物理学で、光が伝播するために必要だと思われた媒質を表す術語である。現代では特殊相対性理論などの理論がエーテルの概念を用いずに確立されており、エーテルは廃れた物理学理論の一部であると考えられている。 このエーテルの語源はギリシア語のアイテール であり、ラテン語を経由して英語になった。アイテールの原義は「燃やす」または「輝く」であり、古代ギリシア以来、天空を満たす物質を指して用いられた。英語ではイーサーのように読まれる。.

新しい!!: ローレンツ変換とエーテル (物理) · 続きを見る »

オランダ

ランダ(Nederland 、; Nederlân; Hulanda)は、西ヨーロッパに位置する立憲君主制国家。東はドイツ、南はベルギーおよびルクセンブルクと国境を接し、北と西は北海に面する。ベルギー、ルクセンブルクと合わせてベネルクスと呼ばれる。憲法上の首都はアムステルダム(事実上の首都はデン・ハーグ)。 カリブ海のアルバ、キュラソー、シント・マールテンと共にオランダ王国を構成している。他、カリブ海に海外特別自治領としてボネール島、シント・ユースタティウス島、サバ島(BES諸島)がある。.

新しい!!: ローレンツ変換とオランダ · 続きを見る »

ガリレイ変換

リレイ変換(ガリレイへんかん、)とはある慣性系における物理現象の記述を別の慣性系での記述に変換するための座標変換の方法の一つである。ニュートンの運動方程式を不変に保つため、ガリレイ変換の前後でニュートン力学の法則は不変に保たれる。対して相対論的運動方程式やマクスウェルの方程式は不変に保たないため、光速に近い速度の関わる物理現象に適用すると現実の物理法則と乖離する。なお相対論的効果も考慮した変換はローレンツ変換を参照。.

新しい!!: ローレンツ変換とガリレイ変換 · 続きを見る »

ジョゼフ・ラーモア

ョゼフ・ラーモア(Joseph Larmor, 1857年7月11日 - 1942年5月19日)は、アイルランド出身の物理学者、数学者。 ベルファストのクィーンズ・カレッジとケンブリッジ大学で学び、1880年から1885年までクィーンズ・カレッジで教え、その後ケンブリッジの講師になる。1903年にストークスの後を継いでケンブリッジ大学数学教授(ルーカス講座主任教授)になる。 1892年王立協会フェロー選出。1900年の著書『エーテルと物質』が有名。新しい物理学の誕生する前の世代の物理学者としてとらえられることが多い。磁場中の電子の歳差運動(Larmor Precession)などに名を残している。 1911年から1922年まで選出の庶民院議員を務めた。.

新しい!!: ローレンツ変換とジョゼフ・ラーモア · 続きを見る »

光速

光速(こうそく、speed of light)、あるいは光速度(こうそくど)とは、光が伝播する速さのことであるニュートン (2011-12)、pp. 24–25.。真空中における光速の値は (≒30万キロメートル毎秒)と定義されている。つまり、太陽から地球まで約8分20秒(8分19秒とする場合もある)、月から地球は、2秒もかからない。俗に「1秒間に地球を7回半回ることができる速さ」とも表現される。 光速は宇宙における最大速度であり、物理学において時間と空間の基準となる特別な意味を持つ値でもある。 現代の国際単位系では長さの単位メートルは光速と秒により定義されている。光速度は電磁波の伝播速度でもあり、マクスウェルの方程式で媒質を真空にすると光速が一定となるということが相対性理論の根本原理になっている。 重力作用も光速で伝播することが相対性理論で予言され、2002年に観測により確認された。.

新しい!!: ローレンツ変換と光速 · 続きを見る »

固有時

固有時(こゆうじ)とは、物理現象・物理法則を支配する時間を言う。特殊相対性理論・一般相対性理論により,ある観測者から見て移動する座標系若しくは重力等で歪んだ時空座標系の下でも,(時空点ごとに固有・不変となる)固有時を用いることにより物理法則は普遍形・不変形を示す。 本稿では特殊相対性理論に基づく観点の下で固有時の説明を行う。 ---- 固有時(こゆうじ)とは、注目する物体に伴って移動する座標系で計測した時間のことである。一般に記号はτを用いる。ニュートン力学まで用いられた全宇宙で一意な絶対時間に代わり、注目すべき物体の固有時が物理法則の記述に用いられるようになった。 アインシュタインは一般相対性理論に基づく観点から、「私は全宇宙に時計を置いた」と述べている。.

新しい!!: ローレンツ変換と固有時 · 続きを見る »

CP対称性の破れ

CP対称性の破れとは、物理学、特に素粒子物理学において、CP対称性に従わない事象のことである。 CP対称性の破れは1964年に中性K中間子の崩壊の観測から発見され、ジェイムズ・クローニンとヴァル・フィッチはその功績により1980年にノーベル物理学賞を受賞した。現在も、理論物理及び実験物理で積極的な研究が行なわれている分野の一つとなっている。 現在の宇宙では、物質が反物質よりもはるかに多い。 宇宙の歴史の中でこの非対称性を生成するためにはCP対称性の破れが必要条件であり、 サハロフの三条件のひとつとして知られている。.

新しい!!: ローレンツ変換とCP対称性の破れ · 続きを見る »

CPT対称性

CPT対称性 (CPTたいしょうせい) は、物理法則のチャージ、パリティ、および時間を同時に反転させる変換に対する基本的な対称性である。.

新しい!!: ローレンツ変換とCPT対称性 · 続きを見る »

線型写像

数学の特に線型代数学における線型変換(せんけいへんかん、linear transformation、一次変換)あるいは線型写像(せんけいしゃぞう、linear mapping)は、ベクトルの加法とスカラー乗法を保つ特別の写像である。特に任意の(零写像でない)線型写像は「直線を直線に移す」。 抽象代数学の言葉を用いれば、線型写像とは(体上の加群としての)ベクトル空間の構造を保つ準同型のことであり、また一つの固定された体上のベクトル空間の全体は線型写像を射とする圏を成す。 「線型変換」は線型写像とまったく同義と扱われる場合もあるが、始域と終域を同じくする線型写像(自己準同型)の意味で用いていることも少なくない。また函数解析学の分野では、(特に無限次元空間上の)線型写像のことを「線型作用素」(せんけいさようそ、linear operator)と呼ぶことも多い。スカラー値の線型写像はしばしば「線型汎函数」もしくは「一次形式」(いちじけいしき、linear form, one-form; 線型形式; 1-形式)とも呼ばれる一次の微分形式(一次微分形式もしくは微分一次形式; differential one-form)を単に「一次形式」または「1-形式」(one-form) と呼ぶこともある。これとの対照のため、本項に云う意味での一次形式を「代数一次形式」(albegraic one-form) と呼ぶ場合がある。。 線形等の用字・表記の揺れについては線型性を参照。.

新しい!!: ローレンツ変換と線型写像 · 続きを見る »

群 (数学)

数学における群(ぐん、group)とは最も基本的と見なされる代数的構造の一つである。群はそれ自体興味深い考察対象であり、群論における主要な研究対象となっているが、数学や物理学全般にわたってさまざまな構成に対する基礎的な枠組みを与えている。.

新しい!!: ローレンツ変換と群 (数学) · 続きを見る »

群作用

数学における群作用(ぐんさよう、group action)は、群を用いて物体の対称性を記述する方法である。.

新しい!!: ローレンツ変換と群作用 · 続きを見る »

物理学者

物理学者(ぶつりがくしゃ)は、物理学に携わる研究者のことである。.

新しい!!: ローレンツ変換と物理学者 · 続きを見る »

特殊相対性理論

特殊相対性理論(とくしゅそうたいせいりろん、Spezielle Relativitätstheorie、Special relativity)とは、慣性運動する観測者が電磁気学的現象および力学的現象をどのように観測するかを記述する、物理学上の理論である。アルベルト・アインシュタインが1905年に発表した論文に端を発する。特殊相対論と呼ばれる事もある。.

新しい!!: ローレンツ変換と特殊相対性理論 · 続きを見る »

相対性理論

一般相対性理論によって記述される、2次元空間と時間の作る曲面。地球の質量によって空間が歪むとして記述して、重力を特殊相対性理論に取り入れる。実際の空間は3次元であることに注意すべし。 相対性理論(そうたいせいりろん、Relativitätstheorie, theory of relativity)または相対論は特殊相対性理論と一般相対性理論の総称である。量子論に対し古典論に分類される物理の分野としては、物理史的には最後の「大物」であった。量子力学と並び、いわゆる現代物理の基本的な理論である。 特殊と一般の、いずれもアルベルト・アインシュタインにより記述された。まず、等速運動する慣性系の間において物理法則は互いに不変であるはずという原理(相対性原理)と光速度不変の原理から導かれたのが、特殊相対性理論である(1905年)。特殊相対性理論は、時間と空間に関する相互間の変換が、相対速度が光速に近づくと、従来のいわゆる「ニュートン時空」的に信じられていたガリレイ変換の結果とは違ったものになること、そういった場合にはローレンツ変換が正しい変換であることを示した(「ミンコフスキー時空」)。 続いて、等価原理により加速度によるいわゆる「見かけの重力」と重力場を「等価」として、慣性系以外にも一般化したのが一般相対性理論である(1915〜1916年)。.

新しい!!: ローレンツ変換と相対性理論 · 続きを見る »

運動の第1法則

運動の第1法則(うんどうのだい1ほうそく、) は、慣性系における力を受けていない質点の運動を記述する経験則であり、慣性の法則とも呼ばれる。ガリレイやデカルトによってほぼ同じ形で提唱されていたものをニュートンが基本法則として整理した。 「すべての物体は、外部から力を加えられない限り、静止している物体は静止状態を続け、運動している物体は等速直線運動を続ける」 慣性の法則は、どのような座標系でも成立するわけではない。例えば加速中の電車内に固定された座標系では、力を受けていない空き缶がひとりでに動きだすことがある。慣性の法則が成立するような座標系を慣性系という。.

新しい!!: ローレンツ変換と運動の第1法則 · 続きを見る »

行列

数学の線型代数学周辺分野における行列(ぎょうれつ、matrix)は、数や記号や式などを行と列に沿って矩形状に配列したものである。行の数と列の数が同じ行列はが成分ごとの計算によって与えられる。行列の積の計算はもっと複雑で、2 つの行列がかけ合わせられるためには、積の左因子の列の数と右因子の行の数が一致していなければならない。 行列の応用として顕著なものは一次変換の表現である。一次変換は のような一次関数の一般化で、例えば三次元空間におけるベクトルの回転などは一次変換であり、 が回転行列で が空間の点の位置を表す列ベクトル(1 列しかない行列)のとき、積 は回転後の点の位置を表す列ベクトルになる。また 2 つの行列の積は、2 つの一次変換の合成を表現するものとなる。行列の別な応用としては、連立一次方程式の解法におけるものである。行列が正方行列であるならば、そのいくつかの性質は、行列式を計算することによって演繹することができる。例えば、正方行列が正則であるための必要十分条件は、その行列式の値が非零となることである。固有値や固有ベクトルは一次変換の幾何学に対する洞察を与える。行列の応用は科学的な分野の大半に及び、特に物理学において行列は、電気回路、光学、量子力学などの研究に利用される。コンピュータ・グラフィックスでは三次元画像の二次元スクリーンへの投影や realistic-seeming motion を作るのに行列が用いられる。は、古典的な解析学における微分や指数関数の概念を高次元へ一般化するものである。 主要な数値解析の分野は、行列計算の効果的なアルゴリズムの開発を扱っており、主題は何百年にもわたって今日では研究領域も広がっている。行列の分解は、理論的にも実用的にも計算を単純化するもので、アルゴリズムは正方行列や対角行列などといった行列の特定の構造に合わせて仕立てられており、有限要素法やそのほかの計が効率的に処理される。惑星運動論や原子論では無限次行列が現れる。関数のテイラー級数に対して作用する微分の表現行列は、無限次行列の簡単な例である。.

新しい!!: ローレンツ変換と行列 · 続きを見る »

行列式

数学における行列式(ぎょうれつしき、)とは、正方行列に対して定義される量で、歴史的には行列が表す一次方程式の可解性を判定する指標として導入された。幾何的には線型空間またはより一般の有限生成自由加群上の自己準同型に対して定義され、線型変換によって空間の体積要素が何倍に変わるかという概念を抽象化したものと見なすことができる。行列の可逆性を判定する指標として線型代数学における最も重要な指標の一つと見なされている。.

新しい!!: ローレンツ変換と行列式 · 続きを見る »

計量テンソル

計量テンソル(けいりょうテンソル、metric tensor)は、リーマン幾何学において、空間内の距離と角度を定義する、階数()が2のテンソルである。多様体が与えられたとき、多様体の接空間で、滑らかに変化する非負の2次関数を選ぶことができる場合、その多様体をリーマン多様体と呼ぶ。そのため、計量テンソルは、リーマン計量()と呼ばれることもある。 ひとたび、ある座標系 が選ばれると、計量テンソルは行列形式で定義される。通常、 として表記され、各成分は と表される。以下では、添え字の和に関してアインシュタインの縮約記法を用いる。 点 から までの曲線の長さは、 をパラメータとして、 と定義される。2つの接ベクトル()U.

新しい!!: ローレンツ変換と計量テンソル · 続きを見る »

転置行列

転置行列(てんちぎょうれつ、transpose, transposed matrix)とは 行 列の行列 に対して の 要素と 要素を入れ替えた 行 列の行列、つまり対角線で成分を折り返した行列のことである。転置行列は などと示される。行列の転置行列を与える操作のことを転置(てんち、transpose)といい、「 を転置する」などと表現する。.

新しい!!: ローレンツ変換と転置行列 · 続きを見る »

電磁気学

電磁気学(でんじきがく、)は、物理学の分野の1つであり、電気と磁気に関する現象を扱う学問である。工学分野では、電気磁気学と呼ばれることもある。.

新しい!!: ローレンツ変換と電磁気学 · 続きを見る »

連結空間

位相幾何学や関連する数学の分野において、連結空間(れんけつくうかん、connected space)とは、2つ以上の互いに素な空でない開部分集合の和集合として表すことのできない位相空間のことである。空間の連結性は主要なの1つであり、位相空間の区別をつけることに利用できる。より強い意味での連結性として、弧状連結 (path-connected) という概念があり、これは任意の2点が道によって結べることをいう。 位相空間 X の部分集合が連結であるとは、X の相対位相によってそれ自身を位相空間と見たときに連結であることをいう。 連結でない空間の例は、平面から直線を取り除いたものがある。非連結空間(すなわち連結でない空間)の他の例には、平面からアニュラスを取り除いたものや、2つの交わりを持たない閉円板の和集合がある。ただし、これら3つの例はいずれも、2次元ユークリッド空間から誘導される相対位相を考えている。.

新しい!!: ローレンツ変換と連結空間 · 続きを見る »

虚時間

虚時間(きょじかん、)は、虚の時間、つまり、単位時間の虚数(純虚数)倍で表される時間である。.

新しい!!: ローレンツ変換と虚時間 · 続きを見る »

数学者

数学者(すうがくしゃ、mathematician)とは、数学に属する分野の事柄を第一に、調査および研究する者を指していう呼称である。.

新しい!!: ローレンツ変換と数学者 · 続きを見る »

慣性系

慣性系(かんせいけい、ガリレイ系とも、inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。 例えば、等速運動する座標系では、物体は外力を受けない限り等速直線運動を行うので、慣性系の1つである。 次に減速している車での座標系では、物体は外力を受けていないのに、前向きに運動を行う。よって慣性の法則が成立しないので、減速している車の座標系は慣性系ではない。.

新しい!!: ローレンツ変換と慣性系 · 続きを見る »

時空

時空(じくう、spacetime)は、時間と空間を合わせて表現する物理学の用語、または、時間と空間を同時に、場合によっては相互に関連したものとして扱う概念である。時空間()とも。.

新しい!!: ローレンツ変換と時空 · 続きを見る »

1900年

19世紀最後の年である。100で割り切れるが400では割り切れない年であるため、閏年ではなく、4で割り切れる平年となる。.

新しい!!: ローレンツ変換と1900年 · 続きを見る »

1904年

記載なし。

新しい!!: ローレンツ変換と1904年 · 続きを見る »

4元ベクトル

物理学の、特に相対性理論における4元ベクトル(よんげんべくとる、four–vector )とは、ミンコフスキー空間またはローレンツ多様体上の 4 次元のベクトルである。より具体的には、時間に対応する物理量と空間に対応する 3 次元ベクトルをまとめて 4 次元時空上のベクトルとして表示したものである。 ベクトルということで太字で表されたり、3次元のベクトルと区別するため細字のままのこともある。4元ベクトルの添え字は などギリシャ文字を使用することが多い。 などラテン文字の添え字は、しばしば空間成分のみを表す意図で用いられる。添え字の上付き・下付きによって、後述する共変ベクトルと反変ベクトルを区別する。.

新しい!!: ローレンツ変換と4元ベクトル · 続きを見る »

ここにリダイレクトされます:

ローレンツブーストローレンツ不変ローレンツ不変性ローレンツ収縮ローレンツ共変ローレンツ共変性ローレンツ短縮ローレンツ=フィッツジェラルド収縮フィッツジェラルド=ローレンツ収縮

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »