ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ラクタム

索引 ラクタム

ラクタム(lactam)は、カルボキシル基とアミノ基が脱水縮合した形を持って環を成している化合物の総称で、環の一部に-CO-NR-(Rは水素でもよい)を含む。語源はラクトンとアミドの合成。アミノカルボン酸の分子内環状アミド、と言い換えることもできる。 ε-カプロラクタムやラウロラクタムなどは、ナイロンの原料として重要な化合物である。ラクタムからナイロンを作るにはラクタムを開環重合によってポリアミドの形を取らせればよい。 環を構成する炭素数によってα-ラクタム(三員環)、β-ラクタム(四員環)、γ-ラクタム(五員環)、δ-ラクタム(六員環)、…、と呼ぶ。β-ラクタムは、β-ラクタム系抗生物質の主要構造として知られる。.

16 関係: 互変異性ペニシリンナイロンヨウ素ラクトンニトロンベックマン転位アミノ酸アミンアミドアルケンイミニウムイサチンカルボン酸シュミット反応開環重合

互変異性

互変異性(ごへんいせい、tautomerism)は互変異性体(ごへんいせいたい、tautomer)を生じる現象である。互変異性体とは、それらの異性体同士が互いに変換する異性化の速度が速く、どちらの異性体も共存する平衡状態に達しうるものを指す。異性化の速度や平衡比は温度やpH、液相か固相か、また溶液の場合には溶媒の種類によっても変化する。平衡に達するのが数時間から数日の場合でも互変異性と呼ぶことが多い。 互変異性と共鳴は表現は良く似ているもののまったく別の概念である。互変異性は化学反応であり、 の表現で、2つの異なる化学種AとBが存在して、相互に変換されるのを表しているのに対し、共鳴は量子力学的な電子の配置の重ね合わせを表しており、 の表現で、ある物質の真の構造がAとBの中間的な構造(共鳴混成体)であることを表している。 互変異性はその異性化反応の形式からプロトン互変異性、核内互変異性、原子価互変異性、環鎖互変異性といくつかに分類される。代表的なものにケト-エノール異性がある。これはプロトン互変異性の一種である。.

新しい!!: ラクタムと互変異性 · 続きを見る »

ペニシリン

ペニシリン(penicillin、)とは、1928年にイギリスのアレクサンダー・フレミング博士によって発見された、世界初の抗生物質である。抗菌剤の分類上ではβ-ラクタム系抗生物質に分類される。博士はこの功績によりノーベル生理学・医学賞を受賞した。 発見後、医療用として実用化されるまでには10年以上の歳月を要したが、1942年にベンジルペニシリン(ペニシリンG、PCG)が単離されて実用化され、第二次世界大戦中に多くの負傷兵や戦傷者を感染症から救った。以降、種々の誘導体(ペニシリン系抗生物質)が開発され、医療現場に提供されてきた。 1980年代以降、日本国内においては主力抗菌剤の座をセファロスポリン系抗生物質やニューキノロンに明け渡した感があるが、ペニシリンの発見はこれらの抗菌剤が開発される礎を築いたものであり、しばしば「20世紀における偉大な発見」の中でも特筆すべき1つとして数え上げられる。.

新しい!!: ラクタムとペニシリン · 続きを見る »

ナイロン

ナイロン6とナイロン6,6の分子構造 ナイロン(nylon)は、ポリアミド合成樹脂の種類である。当初は主に繊維として使われた。世界初の合成繊維のナイロン6,6(6,6-ナイロンなどとも)が含まれる。 1935年、アメリカのデュポン社のウォーレス・カロザースが合成に成功した。ナイロンは本来、インビスタ社(旧デュポン・テキスタイル・アンド・インテリア社)の商品名だが、現在ではポリアミド系繊維(単量体がアミド結合(-CO-NH-)により次々に縮合した高分子)の総称として定着している。 ナイロン(nylon)の名称は、「伝線(run)しないパンティストッキング用の繊維」を意図した「norun」に由来する。 また、ナイロン登場前に絹の圧倒的シェアを誇っていた日本に対して「Now You Lousy Old Nipponese」(古い日本製品はもうダメだ)の頭文字をとったという説もある 種類としては、ナイロン6、ナイロン6,6、ナイロン4,6などがある。これらの数字は、合成原料の炭素原子の数に由来す 構造(右図)は、.

新しい!!: ラクタムとナイロン · 続きを見る »

ヨウ素

ヨウ素(ヨウそ、沃素、iodine)は、原子番号 53、原子量 126.9 の元素である。元素記号は I。あるいは分子式が I2 と表される二原子分子であるヨウ素の単体の呼称。 ハロゲン元素の一つ。ヨード(沃度)ともいう。分子量は253.8。融点は113.6 ℃で、常温、常圧では固体であるが、昇華性がある。固体の結晶系は紫黒色の斜方晶系で、反応性は塩素、臭素より小さい。水にはあまり溶けないが、ヨウ化カリウム水溶液にはよく溶ける。これは下式のように、ヨウ化物イオンとの反応が起こることによる。 単体のヨウ素は、毒物及び劇物取締法により医薬用外劇物に指定されている。.

新しい!!: ラクタムとヨウ素 · 続きを見る »

ラクトン

ε-カプロラクトン ラクトン (lactone) は、環状エステルのことで、同分子内のヒドロキシル基(-OH)とカルボキシル基(-COOH)が脱水縮合することにより生成する。炭素原子が2個以上、酸素原子が1個からなる複素環式化合物で、環を形成する酸素原子に隣接した炭素原子にカルボニル基(.

新しい!!: ラクタムとラクトン · 続きを見る »

ニトロン

ニトロン (nitrone) とは、有機化学において次の共鳴構造式 により表される官能基(ニトロン基)、またはニトロン基を含む化合物群のこと。ナイトロンとも呼ばれる。イミンから誘導される''N''-オキシドにあたる。右図の R3 が水素の場合、速やかにオキシムへと互変異性化する。 ニトロンは 1,3-双極子付加反応の基質として、不飽和化合物と-環化付加反応を起こす。例えば、アルケンに 1,3-付加してイソオキサゾリジン環を与える。この反応には不斉反応も知られる。 1 is phenyl, R2 is hydrogen and R3 is a methyl group.--> 1972年に衣笠と橋本は、ニトロンが銅(I)アセチリドと環化付加していったんジヒドロイソオキサゾール環を生成した後、転位反応により β-ラクタムへと変わる反応を報告した。このように銅化合物を媒介としたニトロンと末端アセチレンの付加環化から始まる β-ラクタムの合成法は衣笠反応 (Kinugasa reaction) と呼ばれている。 衣笠反応の応用例を示す。 この反応の最初の段階は、系中で発生した銅アセチリドとニトロンとの分子内付加環化で、続く転位反応により生成物が得られる。.

新しい!!: ラクタムとニトロン · 続きを見る »

ベックマン転位

ベックマン転位(—てんい、Beckmann rearrangement)は、ケトンから作られたオキシムからN-置換アミドが得られる転位反応のことである。 エルンスト・オットー・ベックマンによって1886年に報告された。.

新しい!!: ラクタムとベックマン転位 · 続きを見る »

アミノ酸

リシンの構造式。最も構造が単純なアミノ酸 トリプトファンの構造式。最も構造が複雑なアミノ酸の1つ。 アミノ酸(アミノさん、amino acid)とは、広義には(特に化学の分野では)、アミノ基とカルボキシル基の両方の官能基を持つ有機化合物の総称である。一方、狭義には(特に生化学の分野やその他より一般的な場合には)、生体のタンパク質の構成ユニットとなる「α-アミノ酸」を指す。分子生物学など、生体分子をあつかう生命科学分野においては、遺伝暗号表に含まれるプロリン(イミノ酸に分類される)を、便宜上アミノ酸に含めることが多い。 タンパク質を構成するアミノ酸のうち、動物が体内で合成できないアミノ酸を、その種にとっての必須アミノ酸と呼ぶ。必須アミノ酸は動物種によって異なる。.

新しい!!: ラクタムとアミノ酸 · 続きを見る »

アミン

アミン(amine)とは、アンモニアの水素原子を炭化水素基または芳香族原子団で置換した化合物の総称である。 置換した数が1つであれば第一級アミン、2つであれば第二級アミン、3つであれば第三級アミンという。また、アルキル基が第三級アミンに結合して第四級アンモニウムカチオンとなる。一方アンモニアもアミンに属する。 塩基、配位子として広く利用される。.

新しい!!: ラクタムとアミン · 続きを見る »

アミド

ルボン酸アミドの一般式 酸アミド(さんアミド)は化合物、特に有機化合物の分類のひとつで、オキソ酸とアンモニアあるいは 1級、2級アミンとが脱水縮合した構造を持つものを指す。例えば、カルボン酸アミドは R-C(.

新しい!!: ラクタムとアミド · 続きを見る »

アルケン

アルケン(、)は化学式 CnH2n (n≧2) で表される有機化合物で、C-C間の二重結合を1つ持つ。すなわち、不飽和炭化水素の一種。エチレン系炭化水素、オレフィン (olefin)、オレフィン系炭化水素とも呼ばれる。C-C二重結合を構成している2つπ結合1つとσ結合1つから成り立っており、このうちπ結合の結合エネルギーはC-H結合のものよりも小さく、付加反応が起こりやすい。例えばエテン(エチレン)と塩素の混合物に熱を与えると 1,2-ジクロロエタンが生成する。.

新しい!!: ラクタムとアルケン · 続きを見る »

イミニウム

イミニウムイオンの一般構造 イミニウム(Iminium)は、有機化学において、の一般構造+を取る塩や陽イオンである。これ自体がプロトン化または置換基の結合したイミンである。ベックマン転位やビルスマイヤー・ハック反応、スチーブン合成、ダフ反応等の様々な有機反応の中間体である。イモニウム(imonium)またはインモニウム(immonium)と呼ぶ場合もあるが、推奨されない。.

新しい!!: ラクタムとイミニウム · 続きを見る »

イサチン

イサチン(Isatin)または1H-インドール-2,3-ジオン(1H-indole-2,3-dione)は、多くの植物で見られるインドール誘導体の一つ。1841年にErdmanとLaurentによって硝酸とクロム酸によるインディゴの酸化によって初めて合成された。 イサチンのシッフ塩基はその薬学特性が研究されている。 イサチンに硫酸と未精製のベンゼンを混ぜると青色の染料ができることが観察される。これはベンゼンとの反応で青色のインドフェニンが形成すると長く考えられていたが、ヴィクトル・マイヤーはこの未精製のベンゼンからインドフェニンの形成反応の正体であるチオフェンを初めて単離した。.

新しい!!: ラクタムとイサチン · 続きを見る »

カルボン酸

ルボン酸(カルボンさん、carboxylic acid)とは、少なくとも一つのカルボキシ基(−COOH)を有する有機酸である。カルボン酸の一般式はR−COOHと表すことができ、Rは一価の官能基である。カルボキシ基(carboxy group)は、カルボニル基(RR'C.

新しい!!: ラクタムとカルボン酸 · 続きを見る »

シュミット反応

ュミット反応(シュミットはんのう、Schmidt reaction)は化合物を酸性条件下においてアジ化水素で処理した際に起こる化学反応のことである。いずれも転位反応であるため、シュミット転位(シュミットてんい、Schmidt rearrangement)とも呼ばれる。 この反応には多くのパターンがある。 カルボン酸とアジ化水素を反応させるとカルボン酸アジドを経てイソシアン酸エステルが得られる。シュミット反応と言った場合には、この反応を指すことがもっとも多い。クルチウス転位と関連する反応であるが、カルボン酸から直接イソシアン酸エステルが得られる点が異なる。この点でジフェニルリン酸アジドを用いるクルチウス転位の変法は、シュミット反応に近い。 ケトンとアジ化水素を反応させるとカルボニル基の隣りにNHが挿入されたカルボン酸アミドが得られる。この反応はベックマン転位と類似している。反応機構はカルボニル基にアジ化水素が求核付加した後、ヒドロキシ基が脱離することでベックマン転位でのオキシムに対応するR2C.

新しい!!: ラクタムとシュミット反応 · 続きを見る »

開環重合

開環重合(かいかんじゅうごう)は環状化合物の環構造を解き、環の解かれた化合物の端同士が結合することで重合体とする反応である。合成繊維の6-ナイロンやナイロン-12はラクタムの開環重合により製造される。 開環重合は環状化合物の立体的なひずみをドライビングフォースとして進行するため、その原料となる環状化合物は三員環、四員環、および七員環以上であることが多く、立体的にひずみの小さい五員環および六員環化合物は重合しにくい傾向にある。.

新しい!!: ラクタムと開環重合 · 続きを見る »

ここにリダイレクトされます:

ラクチムラクティム

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »