ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ホールスラスタ

索引 ホールスラスタ

ホールスラスタ (Hall thruster) とは、イオンに対しては外部陰極が作る軸方向の電場勾配が主に働く一方、電子に対してはホール効果による閉じ込め効果が利く程度の磁場をかけて推進剤の電離を促進する電気推進機。「ホール」はホール効果を発見した19世紀の科学者、エドウィン・ホールに由来。 ホールスラスタはリニア型とシース型の2タイプに大きく分けられる。リニア型は旧ソ連が実際に多くの人工衛星に搭載した。 イオンエンジンがChild-Langmuir則により推力密度を著しく制限されるのに対して、ホールスラスタには制限がなく、大電力化が容易である。近年では日本でもさかんに研究が進められているが、いまだ日本の衛星への採用例はない。 比推力は千数百秒から高くとも3000秒程度に限られる。主な推進剤はキセノン、クリプトンである。大きい推力電力比が特長で、イオンエンジン、MPDアークジェットの20〜30 mN/kWに対して、50 mN/kWを誇る。ただし、DCアークジェットの100 mN/kWには及ばない。 ESA(欧州宇宙機関)では2003年に打ち上げられた月探査機SMART-1にホールスラスタが使われた。 米国ではエアロジェット・ロケットダイン社がAEHF軍事通信衛星用にXR-5ホールスラスタ(4.5kW)を供給しており、同社はさらに12kWクラスのXR-12と20kWクラスのXR-20も開発中である。.

21 関係: 宇宙機の推進方法人工衛星ホール効果イオンイオンエンジンエドウィン・ホールエアロジェット・ロケットダインキセノンクリプトンスマート1ソビエト連邦先進EHF通信衛星DCアークジェット電気推進MPDアークジェットSPT-100欧州宇宙機関比推力日本19世紀2003年

宇宙機の推進方法

宇宙機の推進方法(うちゅうきのすいしんほうほう)では宇宙機を加速させる方法を扱う。多数の異なる手段があり、それぞれに長所と短所がある。エンジンに関してはロケットエンジンを参照。 最近の宇宙機はすべて化学ロケットで打ち上げられる。大半の人工衛星は単純な化学ロケットによる反動で軌道に投入される。宇宙空間においては電気推進のイオンエンジンも使用され、主に人工衛星の軌道制御や宇宙探査機の航行に用いられる。.

新しい!!: ホールスラスタと宇宙機の推進方法 · 続きを見る »

人工衛星

GPS衛星の軌道アニメーション 人工衛星(じんこうえいせい)とは、惑星、主に地球の軌道上に存在し、具体的な目的を持つ人工天体。地球では、ある物体をロケットに載せて第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s.

新しい!!: ホールスラスタと人工衛星 · 続きを見る »

ホール効果

ホール効果(ホールこうか、Hall effect)とは、電流の流れているものに対し、電流に垂直に磁場をかけると、電流と磁場の両方に直交する方向に起電力が現れる現象。主に半導体素子で応用される。1879年、米国の物理学者エドウィン・ホール(Edwin Herbert Hall, 1855-1938)によって発見されたことから、このように呼ばれる。.

新しい!!: ホールスラスタとホール効果 · 続きを見る »

イオン

イオン(Ion、ion)とは、電子の過剰あるいは欠損により電荷を帯びた原子または原子団のことである。電離層などのプラズマ、電解質の水溶液、イオン結晶などのイオン結合性を持つ物質内などに存在する。 陰極や陽極に引かれて動くことから、ギリシャ語のἰόνイオン, ローマ字表記でion("going")より、 ion(移動)の名が付けられた。.

新しい!!: ホールスラスタとイオン · 続きを見る »

イオンエンジン

ェット推進研究所(JPL)のキセノンイオンエンジン イオンエンジン (Ion engine) は、電気推進とよばれる方式を採用したロケットエンジンの一種で、マイクロ波を使って生成したプラズマ状イオンを静電場で加速・噴射することで推力を得る。イオン推進、イオンロケット、イオンスラスタなどともいう。最大推力は小さいが、比較的少ない燃料で長時間動作させられる特徴をもち、打ち上げられた後の人工衛星や宇宙探査機の軌道制御に用いられることが多い。 以前は実証試験として搭載される例が多かったが、近年では、従来のヒドラジン系推進器に替わる標準装備となりつつある。比推力が化学ロケットよりも格段に高いため、静止衛星の長寿命化に貢献している。.

新しい!!: ホールスラスタとイオンエンジン · 続きを見る »

エドウィン・ホール

ドウィン・ハーバート・ホール(Edwin Herbert Hall、1855年11月7日 – 1938年11月20日)は ホール効果を発見したアメリカ合衆国の物理学者 。ホールはハーバード大学で熱電効果の研究グループを率い、また多くの物理学教科書や実験法についての著作がある。.

新しい!!: ホールスラスタとエドウィン・ホール · 続きを見る »

エアロジェット・ロケットダイン

アロジェット ロケットダインはアメリカのロケットとミサイルの推進器の製造会社である。カリフォルニア州サクラメントに本社があり、GenCorpによって所有される。エアロジェット ロケットダインは2013年にGenCorpがプラット & ホイットニーから株式を購入してエアロジェット (既にGenCorpによって所有) とプラット & ホイットニー ロケットダインが合併して出来た。.

新しい!!: ホールスラスタとエアロジェット・ロケットダイン · 続きを見る »

キセノン

ノン(xenon)は原子番号54の元素。元素記号は Xe。希ガス元素の一つ。ラムゼー (W. Ramsay) と (M. W. Travers) によって1898年に発見された。ギリシャ語で「奇妙な」「なじみにくいもの」を意味する ξένος (xenos) の中性単数形の ξένον (xenon) が語源。英語圏ではゼノン と発音されることが多い。 常温常圧では無色無臭の気体。融点-111.9 、沸点-108.1 。空気中にもごく僅かに(約0.087 ppm)含まれる。固体では安定な面心立方構造をとる。 一般に希ガスは最外殻電子が閉殻構造をとるため、反応性はほとんど見られない。しかし、キセノンの最外殻 (5s25p6) は原子核からの距離が離れているため、他の電子による遮蔽効果によって束縛が弱まっており、比較的イオン化しやすい(イオン化エネルギーが他の希ガス元素に比べて相対的に低い)。このため、反応性の強いフッ素や酸素と反応して、フッ化物や酸化物を形成する。.

新しい!!: ホールスラスタとキセノン · 続きを見る »

クリプトン

リプトン(krypton)は原子番号36の元素。元素記号は Kr。希ガス元素の一つ。 常温、常圧で無色、無臭の気体。融点は-157.2 、沸点は-152.9 (-153.4)、比重は2.82 (-157)。重い気体であるため、吸引すると声が低くなる。空気中には1.14 ppmの割合で含まれている。空気を液化、分留することにより得られる。不活性であるがフッ素とは酸化数が+2の不安定な化合物を作る。また、水やヒドロキノンと包接化合物を作る。.

新しい!!: ホールスラスタとクリプトン · 続きを見る »

スマート1

マート1(SMART-1; Small Missions for Advanced Research Technology)とは欧州宇宙機関(ESA)が2003年9月27日に打ち上げた月探査用の技術試験衛星。主目的は、主推進システムとして搭載したイオンエンジンを使って月軌道までの移動を試験することであり、二次的な目的として月の探査を実施した。.

新しい!!: ホールスラスタとスマート1 · 続きを見る »

ソビエト連邦

ビエト社会主義共和国連邦(ソビエトしゃかいしゅぎきょうわこくれんぽう、Союз Советских Социалистических Республик)は、1922年から1991年までの間に存在したユーラシア大陸における共和制国家である。複数のソビエト共和国により構成された連邦国家であり、マルクス・レーニン主義を掲げたソビエト連邦共産党による一党制の社会主義国家でもある。首都はモスクワ。 多数ある地方のソビエト共和国の政治および経済の統合は、高度に中央集権化されていた。.

新しい!!: ホールスラスタとソビエト連邦 · 続きを見る »

先進EHF通信衛星

先進EHF通信衛星AEHF(Advanced Extremely High Frequency)衛星はアメリカ空軍が整備を進めている新型の軍用通信衛星システムである。.

新しい!!: ホールスラスタと先進EHF通信衛星 · 続きを見る »

DCアークジェット

DCアークジェット(DC arcjet)とは電気推進の一種であり、電熱加速型に分類される。DCはDirect Current(直流)を表す。単にアークジェットと呼ばれる場合もある。同軸状に配された中心軸上のカソードそれを囲うアノードとの間に直流電源によりアーク放電柱を生成し、それにより推進剤を加熱する。加熱され一部が電離した高エンタルピの推進剤は、ノズルの役割も兼ねる陽極により空気力学的に加速され、推力が生み出される。始動は一般に数kVの高電圧のパルス放電により行われ、その後数百Vの直流アーク放電による定常モードに移行する。 一液/二液推進系と推進剤を共有できるため、推進剤としてヒドラジンを用いることが一般的であるが、アンモニア、水素についても研究・開発が進められている。米エアロジェット製のMR-508、MR-509、MR-510(ヒドラジン推進剤)は主に南北軌道制御を目的としてLMAS(Lockheed Martin Astro Space)社の人工衛星7000シリーズ、A-2100シリーズに1993年から搭載されている。 1999年に打ち上げられたアメリカの人工衛星ARGOSには、アメリカ空軍により設計された26kWのアンモニア推進剤の大電力アークジェットが搭載された。それを用いた大電力アークジェットの宇宙実験(ESEX: The Electric Propulsion Space Experiment)が行われ、アークジェットによる宇宙機の軌道変換が実証された。 日本においてはJAXAの人工衛星こだま(データ中継技術衛星)に、南北姿勢制御用スラスタとしてエアロジェット製のMR-509AおよびMR-509B(ともにMR-509の電力制御器をこだま向けに変更、加えてMR-509Bは推力を増強)が各2機、計4機搭載されている。これらのうち1本で動作不良が確認されたが、冗長系に切り替えることで対処された。ただしスラスタの噴射回数制限に達する2010年11月以降に使用が中止されることになった。 その後開発された人工衛星きずな(超高速インターネット衛星)へも同社スラスタMR-512が搭載されている。 国内の大学や研究機関での意欲的な研究開発が進行中であるが、いまだ実用国産品は実現していない。.

新しい!!: ホールスラスタとDCアークジェット · 続きを見る »

電気推進

イオン推進の概念図 静電荷電粒子推進器の構造 電気推進(でんきすいしん、英語:electrically powered spacecraft propulsion)は宇宙空間で用いられるロケットエンジンシステムの一種。現在一般的な化学ロケットと違い、電気エネルギーを用いて推力を得る。 電気推進の推力は化学推進に比べて著しく小さいが、比推力が非常に高いのが特徴。 歴史は古く、1906年にロバート・ゴダードが実現性を検討したノートが残っている。またコンスタンチン・ツィオルコフスキーにより、1911年に概念が発表された。.

新しい!!: ホールスラスタと電気推進 · 続きを見る »

MPDアークジェット

MPDアークジェット(Magnetoplasmadynamic thruster)は主に同軸構造を持つ陰極(カソード)、陽極(アノード)間に数kAの大電流を流すことにより、推進剤を電離し高密度のプラズマを生成すると同時に、電極間に流れる放電電流とアンペールの法則によってその電流周りに生み出される磁力との相互作用(ローレンツ力)により、生成したプラズマを強制排気するというコンセプトの推進機である。 放電電流が小さく推進剤流量が大きい場合には気体力学的な加速も無視することができず、DCアークジェットと同様に末広がりノズルやノズルスロートを備えた構造となることが多い。よって、放電電流および推進剤流量の値によりMPDアークジェットの推進性能は、DCアークジェットとイオンスラスタとの中間に位置する。 数百kW~MW級の大電力を必要とするため、現在までに実用化された例は無いが、地上での定常作動試験及びコンデンサに充放電する形でのパルス作動試験は1960年代から行われており、宇宙空間においては1970年代に旧ソ連が、1980年(昭和55年)、1983年(昭和58年)、1996年(平成8年)には日本がパルス作動での軌道上飛行試験を行っている。 主な推進剤はアルゴン、水素、ヒドラジン等であり、比推力は1000秒~8000秒、1機当りの推力は数N~数十Nと大きい。電気推進機の中では100 kN/m2という圧倒的な推力密度と、0.1 kg/kWというコンパクトな機体構造を持ち、火星有人ミッションを始めとする次世代の大規模惑星間輸送を担う宇宙機においては本命と考えられる航行用エンジンである。.

新しい!!: ホールスラスタとMPDアークジェット · 続きを見る »

SPT-100

SPTシリーズ。左上がSPT-100。 SPT-100は旧ソビエト連邦のファケル実験設計局が開発・製造するホールスラスタである。.

新しい!!: ホールスラスタとSPT-100 · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: ホールスラスタと欧州宇宙機関 · 続きを見る »

比推力

比推力(ひすいりょく、、I)は、ロケットエンジン(ジェットエンジンに対しても定義できる)の推進剤効率を示す尺度であり、推進剤の質量流量に対する推力の大きさを示す。 定義は「推力/(推進剤質量流量・地球の重力加速度)」で、単位は秒である。ノズルの適正膨張を仮定すれば、「噴射速度を重力加速度で割った物」という物理的な意味を持つ。言葉を換えれば、 となり、これは例えば「地球の地表の場合であれば、1トンの燃料を燃やすことで1トンの物を、その重量に抗して空中に支えるだけの垂直推力を維持できる秒数」といえる。この場合、推進剤以外のロケットの質量は全く関係が無く、燃焼に伴って推進剤が減ることも考慮しない。(力の基準として地球の重力加速度を使っているため「地球の地表の場合」や「重量」という表現が使われる数字になってしまうが、ロケットエンジンの性能の指標的な意味としては、前述の「噴射速度」として、地球と無関係に成立する。直感的に説明すると、噴射速度が速ければ速いほど、単位時間当たりの推進剤質量流量が小さくても、同じだけの推力を発生させることができる、という意味で、ある種の「燃費」のような指針と言える) ロケットエンジンやロケットモーターの質量も関係せず、少量で軽い燃料を高速で噴射するほど比推力は向上する。推進器が燃料を消費する効率について、多種多様な推進器同士の比推力を比べることは意味を持つが、推進器や燃料タンクの質量は考慮されていないため燃料効率以外の性能や経済性は示していない。 推進器の性能は、比推力ばかりでなく補機類を含む推進器の質量をふまえた推力重量比も重要であり、総合的には、信頼性、安全性、さらには製造コストといった経済性も総合的な性能に含まれることがある。.

新しい!!: ホールスラスタと比推力 · 続きを見る »

日本

日本国(にっぽんこく、にほんこく、ひのもとのくに)、または日本(にっぽん、にほん、ひのもと)は、東アジアに位置する日本列島(北海道・本州・四国・九州の主要四島およびそれに付随する島々)及び、南西諸島・伊豆諸島・小笠原諸島などから成る島国広辞苑第5版。.

新しい!!: ホールスラスタと日本 · 続きを見る »

19世紀

19世紀に君臨した大英帝国。 19世紀(じゅうきゅうせいき)は、西暦1801年から西暦1900年までの100年間を指す世紀。.

新しい!!: ホールスラスタと19世紀 · 続きを見る »

2003年

この項目では、国際的な視点に基づいた2003年について記載する。.

新しい!!: ホールスラスタと2003年 · 続きを見る »

ここにリダイレクトされます:

ホールスラスターホール効果推進器

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »