ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

電気推進

索引 電気推進

イオン推進の概念図 静電荷電粒子推進器の構造 電気推進(でんきすいしん、英語:electrically powered spacecraft propulsion)は宇宙空間で用いられるロケットエンジンシステムの一種。現在一般的な化学ロケットと違い、電気エネルギーを用いて推力を得る。 電気推進の推力は化学推進に比べて著しく小さいが、比推力が非常に高いのが特徴。 歴史は古く、1906年にロバート・ゴダードが実現性を検討したノートが残っている。またコンスタンチン・ツィオルコフスキーにより、1911年に概念が発表された。.

26 関係: 原子力推進太陽帆宇宙空間宇宙機の推進方法マグネティックセイルレーザー推進レジストジェット・ロケットロバート・ゴダードローレンツ力ロケットロケットエンジンロケットエンジンの推進剤ホールスラスタイオンエンジンクーロンの法則コンスタンチン・ツィオルコフスキーDCアークジェット英語電力量電場MPDアークジェット欧州宇宙機関比推力比推力可変型プラズマ推進機1906年1911年

原子力推進

原子力推進(げんしりょくすいしん、Nuclear propulsion)とは、原子力をエネルギー源とする推進のこと。各種の方式がある。乗り物(無人ヴィークル含む、むしろ、放射線のことを考えるとそちらの応用のほうが有力かもしれない)としては、原子力船、原子力飛行機、各種の原子力ロケットや宇宙船などが考察されており、一部は実用化されているものもある。.

新しい!!: 電気推進と原子力推進 · 続きを見る »

太陽帆

太陽帆の構想図 太陽帆(たいようほ・たいようはん)はソーラー帆、ソーラーセイル、光帆(こうはん・ひかりほ)とも呼ばれ、薄膜鏡を巨大な帆として、太陽などの恒星から発せられる光やイオンなどを反射することで宇宙船の推力に変える器具のこと。これを主な推進装置として用いる宇宙機は太陽帆船、宇宙ヨットなどと呼ばれる。 化学ロケットや電気推進と比べ発生する推力は小さいものの、燃料を消費せずに加速が得られるという利点がある。現在は研究段階だが、実用化すれば惑星間などの超長距離の移動が容易になる。また、将来的な構想として、出発地から照射された強力なレーザーを帆に当てて推進力とする宇宙船も考案されている(レーザー推進を参照)。 20世紀初頭の起想より、長らく「SFに描かれる未来の技術」という存在であったが、2010年7月9日、日本の宇宙開発機関JAXAの打ち上げた小型ソーラー電力セイル実証機「IKAROS」において、史上初の太陽帆航行が確認された。.

新しい!!: 電気推進と太陽帆 · 続きを見る »

宇宙空間

地球大気の鉛直構造(縮尺は正しくない) 宇宙空間(うちゅうくうかん、)は、地球およびその他の天体(それぞれの大気圏を含む)に属さない空間領域を指す。また別義では、地球以外の天体を含み、したがって、地球の大気圏よりも外に広がる空間領域を指す。なお英語では を省いて単に と呼ぶ場合も多い。 狭義の宇宙空間には星間ガスと呼ばれる水素 (H) やヘリウム (He) や星間物質と呼ばれるものが存在している。それらによって恒星などが構成されていく。.

新しい!!: 電気推進と宇宙空間 · 続きを見る »

宇宙機の推進方法

宇宙機の推進方法(うちゅうきのすいしんほうほう)では宇宙機を加速させる方法を扱う。多数の異なる手段があり、それぞれに長所と短所がある。エンジンに関してはロケットエンジンを参照。 最近の宇宙機はすべて化学ロケットで打ち上げられる。大半の人工衛星は単純な化学ロケットによる反動で軌道に投入される。宇宙空間においては電気推進のイオンエンジンも使用され、主に人工衛星の軌道制御や宇宙探査機の航行に用いられる。.

新しい!!: 電気推進と宇宙機の推進方法 · 続きを見る »

マグネティックセイル

マグネティックセイル (magnetic sail) とは、提案されている宇宙船の推進方法の一つ。マグセイル (magsail) とも呼ばれ、磁気帆や磁気セイルと訳されることもある。宇宙船は磁場を生成するため超伝導ワイヤの大きな輪と、おそらく操舵または荷電粒子からの放射線の危険を下げるための補助の輪を展開する。計算上、超伝導のマグネティックセイルは質量に対する推力の割合がソーラーセイルよりも良いため、魅力的な推進技術だと考えられている。.

新しい!!: 電気推進とマグネティックセイル · 続きを見る »

レーザー推進

レーザー推進(レーザーすいしん)とは、そのエネルギー源として外部からのレーザーまたはメーザーによるエネルギー供給を用いる、航空機あるいは宇宙船の推進方法。また、同様の発想で、外部からの荷電粒子等のビームを用いるビーム推進というアイデアもある。 宇宙船本体にエネルギー源を搭載しないため、船の軽量化や、燃料の量に依存しない飛行も可能となる。だが、実用化には大出力レーザーの開発や、精度の高いポインティング技術が必要となる。.

新しい!!: 電気推進とレーザー推進 · 続きを見る »

レジストジェット・ロケット

レジストジェットは(通常は不活性の)液体を加熱して推力を生みだす宇宙機の推進方法 (電気推進)である。サーマル式インクジェットプリンターと同じ原理で、加熱は一般的にフィラメントで構成される抵抗器に電流を供給して気化膨張したガスを通常のノズルから噴射する。 レジストジェットは軍用のヴェラ人工衛星に搭載された1965年以降使用された。しかしながら商業用での使用は1980年に打ち上げられた最初のインテルサット5号である。レジストジェットの推進は、姿勢制御、イリジウム衛星コンステレーションを含む低軌道衛星の軌道離脱に使用され、 質量よりもエネルギーがはるかに豊富に必要だが手軽に高い推進効率で低推力が許容できる状況で使用される。 比推力は投入される電気エネルギーの量や推進剤にもよるが、概ね200秒未満である。.

新しい!!: 電気推進とレジストジェット・ロケット · 続きを見る »

ロバート・ゴダード

バート・ゴダードと彼が開発した最初の液体燃料ロケット ロバート・ハッチングズ・ゴダード(Robert Hutchings Goddard, 1882年10月5日 – 1945年8月10日)は、アメリカの発明家・ロケット研究者。「ロケットの父」と呼ばれる。ロケット工学草創期における重要な開拓者の一人だが、彼自身の非社交的な性格もあって、生前に業績が評価されることはなかった。.

新しい!!: 電気推進とロバート・ゴダード · 続きを見る »

ローレンツ力

ーレンツ力(ローレンツりょく、Lorentz force)は、電磁場中で運動する荷電粒子が受ける力のことである。 名前はヘンドリック・ローレンツに由来する。.

新しい!!: 電気推進とローレンツ力 · 続きを見る »

ロケット

ット(rocket)は、自らの質量の一部を後方に射出し、その反作用で進む力(推力)を得る装置(ロケットエンジン)、もしくはその推力を利用して移動する装置である。外気から酸化剤を取り込む物(ジェットエンジン)は除く。 狭義にはロケットエンジン自体をいうが、先端部に人工衛星や宇宙探査機などのペイロードを搭載して宇宙空間の特定の軌道に投入させる手段として使われる、ロケットエンジンを推進力とするローンチ・ヴィークル(打ち上げ機)全体をロケットということも多い。 また、ロケットの先端部に核弾頭や爆発物などの軍事用のペイロードを搭載して標的や目的地に着弾させる場合にはミサイルとして区別され、弾道飛行をして目的地に着弾させるものを特に弾道ミサイルとして区別している。なお、北朝鮮による人工衛星の打ち上げは国際社会から事実上の弾道ミサイル発射実験と見なされており国際連合安全保障理事会決議1718と1874と2087でも禁止されているため、特に日本国内においては人工衛星打ち上げであってもロケットではなくミサイルと報道されている。 なお、推力を得るために射出される質量(推進剤、プロペラント)が何か、それらを動かすエネルギーは何から得るかにより、ロケットは様々な方式に分類されるが、ここでは最も一般的に使われている化学ロケット(化学燃料ロケット)を中心に述べる。 ロケットの語源は、1379年にイタリアの芸術家兼技術者であるムラトーリが西欧で初めて火薬推進式のロケットを作り、それを形状にちなんで『ロッケッタ』と名づけたことによる。.

新しい!!: 電気推進とロケット · 続きを見る »

ロケットエンジン

ットエンジンとは推進剤を噴射する事によってその反動で推力を得るエンジンである。ニュートンの第3法則に基づく。 同義語としてロケットモータがある。こちらは固体燃料ロケットエンジンの場合に用いられるのが一般的である。.

新しい!!: 電気推進とロケットエンジン · 続きを見る »

ロケットエンジンの推進剤

ットエンジンの推進剤(ロケットエンジンのすいしんざい)の記事では、ロケットエンジンないしロケットによる打上げのシステムにおける推進剤(プロペラント)に関する事項について述べる。.

新しい!!: 電気推進とロケットエンジンの推進剤 · 続きを見る »

ホールスラスタ

ホールスラスタ (Hall thruster) とは、イオンに対しては外部陰極が作る軸方向の電場勾配が主に働く一方、電子に対してはホール効果による閉じ込め効果が利く程度の磁場をかけて推進剤の電離を促進する電気推進機。「ホール」はホール効果を発見した19世紀の科学者、エドウィン・ホールに由来。 ホールスラスタはリニア型とシース型の2タイプに大きく分けられる。リニア型は旧ソ連が実際に多くの人工衛星に搭載した。 イオンエンジンがChild-Langmuir則により推力密度を著しく制限されるのに対して、ホールスラスタには制限がなく、大電力化が容易である。近年では日本でもさかんに研究が進められているが、いまだ日本の衛星への採用例はない。 比推力は千数百秒から高くとも3000秒程度に限られる。主な推進剤はキセノン、クリプトンである。大きい推力電力比が特長で、イオンエンジン、MPDアークジェットの20〜30 mN/kWに対して、50 mN/kWを誇る。ただし、DCアークジェットの100 mN/kWには及ばない。 ESA(欧州宇宙機関)では2003年に打ち上げられた月探査機SMART-1にホールスラスタが使われた。 米国ではエアロジェット・ロケットダイン社がAEHF軍事通信衛星用にXR-5ホールスラスタ(4.5kW)を供給しており、同社はさらに12kWクラスのXR-12と20kWクラスのXR-20も開発中である。.

新しい!!: 電気推進とホールスラスタ · 続きを見る »

イオンエンジン

ェット推進研究所(JPL)のキセノンイオンエンジン イオンエンジン (Ion engine) は、電気推進とよばれる方式を採用したロケットエンジンの一種で、マイクロ波を使って生成したプラズマ状イオンを静電場で加速・噴射することで推力を得る。イオン推進、イオンロケット、イオンスラスタなどともいう。最大推力は小さいが、比較的少ない燃料で長時間動作させられる特徴をもち、打ち上げられた後の人工衛星や宇宙探査機の軌道制御に用いられることが多い。 以前は実証試験として搭載される例が多かったが、近年では、従来のヒドラジン系推進器に替わる標準装備となりつつある。比推力が化学ロケットよりも格段に高いため、静止衛星の長寿命化に貢献している。.

新しい!!: 電気推進とイオンエンジン · 続きを見る »

クーロンの法則

ーロンの法則(クーロンのほうそく、Coulomb's law)とは、荷電粒子間に働く反発し、または引き合う力がそれぞれの電荷の積に比例し、距離の2乗に反比例すること(逆2乗の法則)を示した電磁気学の基本法則。 ヘンリー・キャヴェンディッシュにより1773年に実験的に確かめられ、シャルル・ド・クーロンが1785年に法則として再発見した。磁荷に関しても同様の現象が成り立ち、これもクーロンの法則と呼ばれる。一般的にクーロンの法則と言えば、通常前者の荷電粒子間の相互作用を指す。クーロンの法則は、マクスウェルの方程式から導くことができる。 また、導体表面上の電場はその場所の電荷密度に比例するという法則も「クーロンの法則」と呼ばれる。こちらは「クーロンの電荷分布の法則」といい区別する。.

新しい!!: 電気推進とクーロンの法則 · 続きを見る »

コンスタンチン・ツィオルコフスキー

ンスタンチン・ツィオルコフスキー ツィオルコフスキーが描かれた1ルーブル記念硬貨(1987年) ツィオルコフスキーが考案した宇宙船 コンスタンチン・エドゥアルドヴィチ・ツィオルコフスキー(ロシア語:Константин Эдуардович Циолковский、ラテン文字表記例:Konstantin Eduardovich Tsiolkovsky、1857年9月17日(新暦では9月5日) - 1935年9月19日)は、ロシア帝国生まれのロケット研究者、物理学者、数学者、SF作家。 1867年、ツィオルコフスキーが10歳の時に猩紅熱に罹り、耳が聴こえなくなってしまう病に侵されながらも独学で数学や天文学を学び、1903年に発表した彼の代表的な論文である『反作用利用装置による宇宙探検(Исследование мировых пространств реактивными приборами)』の中で人工衛星や宇宙船の示唆、多段式ロケットツィオルコフスキー自身は「多段式ロケット」を「ロケット列車」と呼んでいた。、軌道エレベータなどの考案や、宇宙旅行の可能性としてロケットで宇宙に行けることを証明した業績から「宇宙旅行の父」と呼ばれる。 また1897年には「ロケット噴射による、増速度の合計と噴射速度と質量比の関係を示す式」である「ツィオルコフスキーの公式」を発表し - JAXA、2016年9月9日閲覧。、今日におけるロケット工学の基礎を築いたが生涯の大半はカルーガで孤独に暮らしていたため、存命中にツィオルコフスキーの業績が評価されることはなかった。なお同国の化学者で「周期律表」の基礎を築いたドミトリ・メンデレーエフは若い頃のツィオルコフスキーの業績を評価していたが、時折ケチをつけていたため、必ずしも絶賛していたわけではなかった。 ツィオルコフスキーは晩年、「スプートニク計画」の主導者となったセルゲイ・コロリョフらによってようやく評価されるようになり、1957年10月4日にバイコヌール宇宙基地から打ち上げられた世界初の人工衛星である「スプートニク1号」は、ツィオルコフスキーの生誕100週年記念と国際地球観測年に合わせて打ち上げられたものである。工学者のみならずSF作家としても『月世界到着!』などの小説を著しており、随筆家としても『月の上で』や『地球と宇宙に関する幻想』などのエッセイも残している。 「地球は人類のゆりかごである。しかし人類はゆりかごにいつまでも留まっていないだろう(Планета есть колыбель разума, но нельзя вечно жить в колыбели)」という名言でも知られる。 少年時代はモスクワの図書館に通い、好物の黒パンを食べながら勉強に励んだという逸話も残っている。.

新しい!!: 電気推進とコンスタンチン・ツィオルコフスキー · 続きを見る »

DCアークジェット

DCアークジェット(DC arcjet)とは電気推進の一種であり、電熱加速型に分類される。DCはDirect Current(直流)を表す。単にアークジェットと呼ばれる場合もある。同軸状に配された中心軸上のカソードそれを囲うアノードとの間に直流電源によりアーク放電柱を生成し、それにより推進剤を加熱する。加熱され一部が電離した高エンタルピの推進剤は、ノズルの役割も兼ねる陽極により空気力学的に加速され、推力が生み出される。始動は一般に数kVの高電圧のパルス放電により行われ、その後数百Vの直流アーク放電による定常モードに移行する。 一液/二液推進系と推進剤を共有できるため、推進剤としてヒドラジンを用いることが一般的であるが、アンモニア、水素についても研究・開発が進められている。米エアロジェット製のMR-508、MR-509、MR-510(ヒドラジン推進剤)は主に南北軌道制御を目的としてLMAS(Lockheed Martin Astro Space)社の人工衛星7000シリーズ、A-2100シリーズに1993年から搭載されている。 1999年に打ち上げられたアメリカの人工衛星ARGOSには、アメリカ空軍により設計された26kWのアンモニア推進剤の大電力アークジェットが搭載された。それを用いた大電力アークジェットの宇宙実験(ESEX: The Electric Propulsion Space Experiment)が行われ、アークジェットによる宇宙機の軌道変換が実証された。 日本においてはJAXAの人工衛星こだま(データ中継技術衛星)に、南北姿勢制御用スラスタとしてエアロジェット製のMR-509AおよびMR-509B(ともにMR-509の電力制御器をこだま向けに変更、加えてMR-509Bは推力を増強)が各2機、計4機搭載されている。これらのうち1本で動作不良が確認されたが、冗長系に切り替えることで対処された。ただしスラスタの噴射回数制限に達する2010年11月以降に使用が中止されることになった。 その後開発された人工衛星きずな(超高速インターネット衛星)へも同社スラスタMR-512が搭載されている。 国内の大学や研究機関での意欲的な研究開発が進行中であるが、いまだ実用国産品は実現していない。.

新しい!!: 電気推進とDCアークジェット · 続きを見る »

英語

アメリカ英語とイギリス英語は特徴がある 英語(えいご、)は、イ・ヨーロッパ語族のゲルマン語派に属し、イギリス・イングランド地方を発祥とする言語である。.

新しい!!: 電気推進と英語 · 続きを見る »

電力量

電力量(でんりょくりょう、electric(al) energy)は、電力 (electric power) を時間積分したものである。.

新しい!!: 電気推進と電力量 · 続きを見る »

電場

電場(でんば)または電界(でんかい)(electric field)は、電荷に力を及ぼす空間(自由電子が存在しない空間。絶縁空間)の性質の一つ。E の文字を使って表されることが多い。おもに理学系では「電場」、工学系では「電界」ということが多い。また、電束密度と明確に区別するために「電場の強さ」ともいう。時間によって変化しない電場を静電場(せいでんば)または静電界(せいでんかい)とよぶ。また、電場の強さ(電界強度)の単位はニュートン毎クーロンなので、アンテナの実効長または実効高を掛けると、アンテナの誘起電圧 になる。.

新しい!!: 電気推進と電場 · 続きを見る »

MPDアークジェット

MPDアークジェット(Magnetoplasmadynamic thruster)は主に同軸構造を持つ陰極(カソード)、陽極(アノード)間に数kAの大電流を流すことにより、推進剤を電離し高密度のプラズマを生成すると同時に、電極間に流れる放電電流とアンペールの法則によってその電流周りに生み出される磁力との相互作用(ローレンツ力)により、生成したプラズマを強制排気するというコンセプトの推進機である。 放電電流が小さく推進剤流量が大きい場合には気体力学的な加速も無視することができず、DCアークジェットと同様に末広がりノズルやノズルスロートを備えた構造となることが多い。よって、放電電流および推進剤流量の値によりMPDアークジェットの推進性能は、DCアークジェットとイオンスラスタとの中間に位置する。 数百kW~MW級の大電力を必要とするため、現在までに実用化された例は無いが、地上での定常作動試験及びコンデンサに充放電する形でのパルス作動試験は1960年代から行われており、宇宙空間においては1970年代に旧ソ連が、1980年(昭和55年)、1983年(昭和58年)、1996年(平成8年)には日本がパルス作動での軌道上飛行試験を行っている。 主な推進剤はアルゴン、水素、ヒドラジン等であり、比推力は1000秒~8000秒、1機当りの推力は数N~数十Nと大きい。電気推進機の中では100 kN/m2という圧倒的な推力密度と、0.1 kg/kWというコンパクトな機体構造を持ち、火星有人ミッションを始めとする次世代の大規模惑星間輸送を担う宇宙機においては本命と考えられる航行用エンジンである。.

新しい!!: 電気推進とMPDアークジェット · 続きを見る »

欧州宇宙機関

欧州宇宙機関(おうしゅううちゅうきかん、, ASE、, ESA)は、1975年5月30日にヨーロッパ各国が共同で設立した、宇宙開発・研究機関である。設立参加国は当初10か国、現在は19か国が参加し、2000人を超えるスタッフがいる。 本部はフランスに置かれ、その活動でもフランス国立宇宙センター (CNES) が重要な役割を果たし、ドイツ・イタリアがそれに次ぐ地位を占める。主な射場としてフランス領ギアナのギアナ宇宙センターを用いている。 人工衛星打上げロケットのアリアンシリーズを開発し、アリアンスペース社(商用打上げを実施)を通じて世界の民間衛星打ち上げ実績を述ばしている。2010年には契約残数ベースで過去に宇宙開発などで存在感を放ったソビエト連邦の後継国のロシア、スペースシャトル、デルタ、アトラスといった有力な打ち上げ手段を持つアメリカに匹敵するシェアを占めるにおよび、2014年には受注数ベースで60%のシェアを占めるにいたった。 ESA は欧州連合と密接な協力関係を有しているが、欧州連合の専門機関ではない。加盟各国の主権を制限する超国家機関ではなく、加盟国の裁量が大きい政府間機構として形成された。リスボン条約によって修正された欧州連合の機能に関する条約の第189条第3項では、「欧州連合は欧州宇宙機関とのあいだにあらゆる適切な関係を築く」と規定されている。.

新しい!!: 電気推進と欧州宇宙機関 · 続きを見る »

比推力

比推力(ひすいりょく、、I)は、ロケットエンジン(ジェットエンジンに対しても定義できる)の推進剤効率を示す尺度であり、推進剤の質量流量に対する推力の大きさを示す。 定義は「推力/(推進剤質量流量・地球の重力加速度)」で、単位は秒である。ノズルの適正膨張を仮定すれば、「噴射速度を重力加速度で割った物」という物理的な意味を持つ。言葉を換えれば、 となり、これは例えば「地球の地表の場合であれば、1トンの燃料を燃やすことで1トンの物を、その重量に抗して空中に支えるだけの垂直推力を維持できる秒数」といえる。この場合、推進剤以外のロケットの質量は全く関係が無く、燃焼に伴って推進剤が減ることも考慮しない。(力の基準として地球の重力加速度を使っているため「地球の地表の場合」や「重量」という表現が使われる数字になってしまうが、ロケットエンジンの性能の指標的な意味としては、前述の「噴射速度」として、地球と無関係に成立する。直感的に説明すると、噴射速度が速ければ速いほど、単位時間当たりの推進剤質量流量が小さくても、同じだけの推力を発生させることができる、という意味で、ある種の「燃費」のような指針と言える) ロケットエンジンやロケットモーターの質量も関係せず、少量で軽い燃料を高速で噴射するほど比推力は向上する。推進器が燃料を消費する効率について、多種多様な推進器同士の比推力を比べることは意味を持つが、推進器や燃料タンクの質量は考慮されていないため燃料効率以外の性能や経済性は示していない。 推進器の性能は、比推力ばかりでなく補機類を含む推進器の質量をふまえた推力重量比も重要であり、総合的には、信頼性、安全性、さらには製造コストといった経済性も総合的な性能に含まれることがある。.

新しい!!: 電気推進と比推力 · 続きを見る »

比推力可変型プラズマ推進機

VASIMRを搭載した宇宙機のイメージ図。 比推力可変型プラズマ推進機(ひすいりょくかへんがたプラズマすいしんき、)とは、宇宙空間用電気推進の一種である。本来は核融合研究のひとつとして開発された。1977年にフランクリン・チャン=ディアスにより基本的なコンセプトが固められ、惑星間航行用のエンジンとして研究が続けられている。 英語の略称であるVASIMRは「ヴァシミール」と発音する。.

新しい!!: 電気推進と比推力可変型プラズマ推進機 · 続きを見る »

1906年

記載なし。

新しい!!: 電気推進と1906年 · 続きを見る »

1911年

記載なし。

新しい!!: 電気推進と1911年 · 続きを見る »

ここにリダイレクトされます:

パルスプラズマスラスター電気ロケット

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »