ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
無料
ブラウザよりも高速アクセス!
 

ヒルベルト曲線

索引 ヒルベルト曲線

ヒルベルト曲線の最初の8ステップ 1次のヒルベルト曲線 1次、2次のヒルベルト曲線 1次、2次、3次のヒルベルト曲線 3次元のヒルベルト曲線。 ヒルベルト曲線(ヒルベルトきょくせん、Hilbert curve)は、フラクタル図形の一つで、空間を覆い尽くす空間充填曲線の一つ。ドイツの数学者ダフィット・ヒルベルトが1891年に考案した。 平面を充填するため、ヒルベルト曲線のハウスドルフ次元は、n\to\infty の極限で2である。 n 次のヒルベルト曲線 H_n のユークリッド距離は 2^n - となる。すなわち、 n に対して指数的に増加する。.

7 関係: ハウスドルフ次元ユークリッド距離フラクタルダフィット・ヒルベルトコッホ曲線高木曲線1891年

ハウスドルフ次元

点のハウスドルフ次元は0であり、直線のハウスドルフ次元は1、正方形のハウスドルフ次元は2、そして立方体のハウスドルフ次元は3である。コッホ曲線のようなフラクタル図形のハウスドルフ次元は、非整数になりうる。 フラクタル幾何学におけるハウスドルフ次元(ハウスドルフじげん、Hausdroff dimension)は、1918年に数学者フェリックス・ハウスドルフが導入した、が有限な値をとり消えていないという条件に適合する次元の概念の非整数値をとる一般化である。すなわち、きちんとした数学的定式化のもと、点のハウスドルフ次元は 、線分のハウスドルフ次元は 、正方形のハウスドルフ次元は 、立方体のハウスドルフ次元は である。つまり、旧来の幾何学で扱われるような、滑らかあるいは有限個の頂点を持つ点集合として定義される図形のハウスドルフ次元は、その位相的な次元に一致する整数である。しかし同じ定式化のもとで、フラクタルを含めたやや単純さの少ない図形に対してもハウスドルフ次元を計算することが許されるが、その次元は非整数値を取りうる。大幅な技術的進展がによりもたらされて高度に不規則な集合に対する次元の計算が可能となったことから、この次元の概念はハウスドルフ–ベシコヴィッチ次元としても広く知られている。 初等幾何学で用いられる通常のジョルダン測度(あるいはルベーグ測度)に関して、例えば正方形が二次元であるということは、その三次元より高次のジョルダン測度(つまり、体積および高次元体積)が であり、二次元ジョルダン測度(面積)が正の値を持つ(さらに一次元および零次元のジョルダン測度は形式的に となる)ということを本質的に表している。-次元実内積空間 の -次元ジョルダン測度は、部分集合 に対して、 の球体による充填近似が定める内測度と、球体被覆による近似の定める外測度の一致するとき、その一致する値として定義されるのであった(あるいはルベーグ測度は外測度のみを利用して構成される)が、(定数因子の違いを除けば)-次元ジョルダン測度は一次元ジョルダン測度(長さ)の 個の直積と本質的に同じであり、-次元球(あるいは立方体)の -次元体積は本質的に半径の -乗である。ハウスドルフ次元は、これらの事実を抽象化して、台となる空間を一般の距離空間とし、部分集合の一次元ハウスドルフ測度を距離球体被覆による近似の下限として定まる外測度、また非整数値の に対する -次元距離球体のハウスドルフ測度を一次元測度の -乗(の適当な定数倍)となるように定める。ジョルダン測度の場合と同じく、部分集合 の -次元ハウスドルフ測度は次元 が大きければほとんどすべてに対して零であり、零でなくなるようなギリギリ小さい値として のハウスドルフ次元を定めるのである。 ハウスドルフ次元は、ボックスカウンティング次元()のより単純だがふつうは同値な後継である。.

新しい!!: ヒルベルト曲線とハウスドルフ次元 · 続きを見る »

ユークリッド距離

数学におけるユークリッド距離(ユークリッドきょり、Euclidean distance)またはユークリッド計量(ユークリッドけいりょう、Euclidean metric; ユークリッド距離函数)とは、人が定規で測るような二点間の「通常の」距離のことであり、ピタゴラスの公式によって与えられる。この公式を距離函数として用いればユークリッド空間は距離空間となる。ユークリッド距離に付随するノルムはユークリッドノルムと呼ばれる。古い書籍などはピタゴラス計量(Pythagorean metric)と呼んでいることがある。.

新しい!!: ヒルベルト曲線とユークリッド距離 · 続きを見る »

フラクタル

フラクタル(, fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語 fractus から。 図形の部分と全体が自己相似になっているものなどをいう。.

新しい!!: ヒルベルト曲線とフラクタル · 続きを見る »

ダフィット・ヒルベルト

ーニヒスベルクにて私講師を務めていた頃(1886年) ヒルベルトの墓碑。「我々は知らねばならない、我々は知るだろう」と記されている。 ダフィット・ヒルベルト(David Hilbert,, 1862年1月23日 - 1943年2月14日)は、ドイツの数学者。「現代数学の父」と呼ばれる。名はダヴィット,ダヴィド、ダーフィットなどとも表記される。.

新しい!!: ヒルベルト曲線とダフィット・ヒルベルト · 続きを見る »

コッホ曲線

ッホ曲線(コッホきょくせん、Koch curve)はフラクタル図形の一つ。スウェーデンの数学者ヘルゲ・フォン・コッホ (Helge von Koch) が考案した。線分を3等分し、分割した2点を頂点とする正三角形の作図を無限に繰り返すことによって得られる図形である。1回の操作で線分の長さが 4/3 倍になるので、操作を無限に繰り返して得られるコッホ曲線の長さは無限大である。高木曲線などと同様に、連続でありながら至るところで微分不可能な曲線である。 コッホ曲線は相似比が1/3の4個のセグメントから成っているので、フラクタル次元(相似次元)は、3を底とする4の対数(logを必ずしも自然対数である必要はない任意の対数として、log4 / log3.

新しい!!: ヒルベルト曲線とコッホ曲線 · 続きを見る »

高木曲線

木曲線(たかぎきょくせん)は、中点を再帰的に分割してできるフラクタル曲線の一種である。高木貞治が1903年の論文で、「連続だが至る所で微分不可能な関数」(高木関数)として構成した。海外では、ブラマンジェ曲線(Blancmange curve)とも呼ばれる。ブラマンジェという名前は、同名のプディングとの類似から来ている。また、高木曲線を一般化した高木‐ランズバーグ曲線(Takagi–Landsberg curve)という名前でも知られている。さらに、一般化されたドラム曲線(:en:de Rham curve)の一種でもある。.

新しい!!: ヒルベルト曲線と高木曲線 · 続きを見る »

1891年

記載なし。

新しい!!: ヒルベルト曲線と1891年 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »