ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
インストール
ブラウザよりも高速アクセス!
 

クラマース・クローニッヒの関係式

索引 クラマース・クローニッヒの関係式

ラマース・クローニッヒの関係式(—かんけいしき、Kramers-Kronig relation)とは線形応答における周波数応答関数の実部と虚部がで関係づけられていることを示した式である。 1926年に、1927年にヘンドリック・アントニー・クラマースによって電磁波の分散現象に対して導かれた。.

27 関係: 偶関数と奇関数反射率屈折率二次元NMR弾性率ヘンリク・アンソニー・クラマースディラックのデルタ関数フーリエ変換フーリエ変換NMR分散 (光学)インパルス応答コーシーの主値コーシーの積分定理因果性磁化率符号関数線形応答理論線積分畳み込み複素平面複素数解析接続誘電率電磁波FIDSN比正則関数

偶関数と奇関数

数学において、偶関数(ぐうかんすう、even function)および奇関数(きかんすう、odd function)は、変数の符号を反転させる変換に関してそれぞれ、特定の対称性を満足する関数である。これらは解析学の多くの分野、殊に冪級数やフーリエ級数に関する理論において重要である。名称は、この性質を満足する冪函数の冪指数の(整数としての)偶奇に由来する(すなわち、函数 は が偶数のとき偶函数であり、 が奇数のとき奇函数である)。 この、函数の偶奇性 (parity of function) の概念は、始域および終域がともに加法逆元(マイナス元)を持つような場合であれば常に意味を成す。加法逆元を持つような代数系には、例えば任意のアーベル群、(必ずしも可換でない)環や体、あるいはベクトル空間などが挙げられるから、従って例えば実変数実数値の函数やベクトル変数複素数値の函数といったようなものに対して、その偶奇性を定めることができる。 以下では特に断らない限り、それら函数のグラフの対称性を詳らかにするために、実変数実数値函数に関して述べる。 y 軸対称 奇関数の例:正弦関数は原点対称 正弦関数と余弦関数 偶関数の例:絶対値関数 偶関数の例:双曲線余弦関数 奇関数の例:双曲線正弦関数 1.

新しい!!: クラマース・クローニッヒの関係式と偶関数と奇関数 · 続きを見る »

反射率

記載なし。

新しい!!: クラマース・クローニッヒの関係式と反射率 · 続きを見る »

屈折率

屈折率(くっせつりつ、)とは、真空中の光速を物質中の光速(より正確には位相速度)で割った値であり、物質中での光の進み方を記述する上での指標である。真空を1とした物質固有の値を絶対屈折率、2つの物質の絶対屈折率の比を相対屈折率と呼んで区別する場合もある。.

新しい!!: クラマース・クローニッヒの関係式と屈折率 · 続きを見る »

二次元NMR

二次元NMR(にじげんエヌエムアール)は核磁気共鳴 (NMR) 分光法のひとつの手法であり、2D-NMRとも略称する。測定結果であるスペクトルは横軸を被測定核の化学シフトとし縦軸を測定法による種々のパラメーターとした2次元平面の各点の強度として示される。二次元NMRスペクトルのピークは両パラメータ軸への平行線の交点に現れるという意味から交差ピークまたはクロスピークと呼ばれる。縦軸のパラメータの種類とクロスピークの出現機構により非常にたくさんの二次元NMR測定の種類が考えられ実際に使用されている。普通は後述の対角ピークは交差ピークには含まない。 さらにパラメーター軸を追加した3次元NMRや多次元NMRも開発され使用されている。通常のNMRを多次元NMRと特に区別したい場合には「1次元NMR (1D-NMR)」と呼ぶことがある。.

新しい!!: クラマース・クローニッヒの関係式と二次元NMR · 続きを見る »

弾性率

弾性率(だんせいりつ、elastic modulus)は、変形のしにくさを表す物性値であり、弾性変形における応力とひずみの間の比例定数の総称である。弾性係数あるいは弾性定数とも呼ばれる。 1807年にトマス・ヤングによって導入された。.

新しい!!: クラマース・クローニッヒの関係式と弾性率 · 続きを見る »

ヘンリク・アンソニー・クラマース

ヘンリク・アンソニー・クラマース(Hendrik Anthony Kramers, 1894年2月2日 - 1952年4月24日)は、オランダの物理学者である。.

新しい!!: クラマース・クローニッヒの関係式とヘンリク・アンソニー・クラマース · 続きを見る »

ディラックのデルタ関数

right 数学におけるディラックのデルタ関数(デルタかんすう、delta function)、制御工学におけるインパルス関数 (インパルスかんすう、impulse function) とは、任意の実連続関数 に対し、 を満たす実数値シュワルツ超関数 のことである。これはクロネッカーのデルタ の自然な拡張になっている。 ディラックのデルタ関数は、デルタ超関数 (delta distribution) あるいは単にディラックデルタ (Dirac's delta) とも呼ばれる。これを最初に定義して量子力学の定式化に用いた物理学者ポール・ディラックに因み、この名称が付いている。デルタ関数は古典的な意味での関数ではないシュワルツ超関数 の最初の例になっている。 ディラックのデルタの「関数」としての性質は、形式的に次のように述べることができる。まず、 として実直線上常に一定の値 をとる関数をとり、デルタ関数をデルタ関数自身と との積であると見ることにより である。一方、積分値が の での値にしかよらないことから でなければならないが、その上で積分値が でない有限の値をとるためには が満たされなければならない。.

新しい!!: クラマース・クローニッヒの関係式とディラックのデルタ関数 · 続きを見る »

フーリエ変換

数学においてフーリエ変換(フーリエへんかん、Fourier transform; FT)は、実変数の複素または実数値函数を別の同種の函数に写す変換である。変換後の函数はもとの函数に含まれる周波数を記述し、しばしばもとの函数の周波数領域表現 と呼ばれる。これは、演奏中の音楽を聴いてそれをコードに書き出すというようなことと同様な思想である。実質的に、フーリエ変換は函数を振動函数に分解する。 フーリエ変換 (FT) は他の多くの数学的な演算と同様にフーリエ解析の主題を成す。特別の場合として、もとの函数とその周波領域表現が連続かつ非有界である場合を考えることができる。「フーリエ変換」という術語は函数の周波数領域表現のことを指すこともあるし、函数を周波数領域表現へ写す変換の過程・公式を言うこともある。なおこの呼称は、19世紀フランスの数学者・物理学者で次元解析の創始者とされるジョゼフ・フーリエに由来する。.

新しい!!: クラマース・クローニッヒの関係式とフーリエ変換 · 続きを見る »

フーリエ変換NMR

フーリエ変換NMR(フーリエへんかんNMR、FT-NMR)とは、静磁場中のサンプルにパルス磁場を与え、その後観察されるインパルス応答である自由誘導減衰 (FID) をフーリエ変換することで核磁気共鳴 (NMR) の吸収スペクトルを得る手法である。.

新しい!!: クラマース・クローニッヒの関係式とフーリエ変換NMR · 続きを見る »

分散 (光学)

プリズムによる光の分散 光学において分散(ぶんさん、)とは、入射した光線が波長ごとに別々に分離される現象、またはその度合いのことをさす。媒体の屈折率が波長によって異なることによって発生する。.

新しい!!: クラマース・クローニッヒの関係式と分散 (光学) · 続きを見る »

インパルス応答

単純な音響システムのインパルス応答の例。上から、元のインパルス、高周波をブーストした場合、低周波をブーストした場合 インパルス応答()とは、インパルスと呼ばれる非常に短い信号を入力したときのシステムの出力である。インパルス反応とも。インパルスとは、時間的幅が無限小で高さが無限大のパルスである。実際のシステムではこのような信号は生成できないが、理想化としては有益な概念である。 LTIシステム(線形時不変系)と呼ばれるシステムは、そのインパルス応答によって完全に特徴付けられる。.

新しい!!: クラマース・クローニッヒの関係式とインパルス応答 · 続きを見る »

コーシーの主値

数学において、コーシーの主値(Cauchy principal value)とは、ある種の広義積分に対して定められる値のことである。.

新しい!!: クラマース・クローニッヒの関係式とコーシーの主値 · 続きを見る »

コーシーの積分定理

ーシーの積分定理(コーシーのせきぶんていり、Cauchy's integral theorem)は、コーシーの第1定理ともいわれる、オーギュスタン=ルイ・コーシーによって示された、数学、特に微分積分学において、複素平面上のある領域において正則な関数の複素積分についての定理である。.

新しい!!: クラマース・クローニッヒの関係式とコーシーの積分定理 · 続きを見る »

因果性

ここでは因果性(いんがせい、)について解説する。.

新しい!!: クラマース・クローニッヒの関係式と因果性 · 続きを見る »

磁化率

磁化率(じかりつ、英語:magnetic susceptibility)とは、磁気分極の起こりやすさを示す物性値である。帯磁率、磁気感受率などとも言う。.

新しい!!: クラマース・クローニッヒの関係式と磁化率 · 続きを見る »

符号関数

号関数 (ふごうかんすう、sign function, signum function) は、実数に対しその符号に応じて1、−1、0のいずれかを返す関数 およびそれを拡張した複素関数。 記号は のほかに、 なども使われる。 英語から「サイン関数」とも呼ぶが、この名は正弦関数 と非常に紛らわしい。区別するために sign のラテン語形の signum(シグヌム、英語読みはシグナム)から「シグナム関数」(signum function) と呼ぶことがある。英語以外でもドイツ語などいくつかの言語で signum 系の名前で呼ばれる。.

新しい!!: クラマース・クローニッヒの関係式と符号関数 · 続きを見る »

線形応答理論

線形応答理論(線型—、せんけいおうとうりろん、linear response theory)は、熱平衡状態にある系に、磁場や電場などの外場が加わった時、その外場による系の状態の変化(応答)を扱う理論である。非平衡な状態を扱うための理論として、その形成には久保亮五、森肇、冨田和久、中野藤生、中嶋貞雄ら日本人研究者が大きく貢献しており、特に久保亮五は代表者として彼らの仕事をまとめたことで有名になった(一例)。 線形応答理論を使って、磁場や電場に対する、磁化率や電気伝導などの応答を扱うことができる。結晶格子内での格子のずれ(変位)を外場として、線形応答を使って変位に対する応答としてのフォノンの振動数や状態密度などを求めることができる(→DFPT法)。 変位の応答の虚部、あるいは流れの応答の実部がエネルギー散逸(パワーロス)を与える。たとえば、電荷の分極率の虚部や電気伝導率の実部である。変位と流れの応答は互いに独立ではなく、互いに関係づけられる。応答関数は平衡状態での流れの相関関数で与えられる。変位に関する線形応答は、緩和関数を通してみるとすっきりする。.

新しい!!: クラマース・クローニッヒの関係式と線形応答理論 · 続きを見る »

線積分

数学における線積分(せんせきぶん、line integral; 稀に, )は、曲線に沿って評価された函数の値についての積分の総称。ベクトル解析や複素解析において重要な役割を演じる。閉曲線に沿う線積分を特に閉路積分(へいろせきぶん)あるいは周回積分(しゅうかいせきぶん)と呼び、専用の積分記号 \oint が使われることもある。周回積分法は複素解析における重要な手法の一つである。 線積分の対象となる函数は、スカラー場やベクトル場などとして与える。線積分の値は場の考えている曲線上での値に曲線上のあるスカラー函数(弧長、あるいはベクトル場については曲線上の微分ベクトルとの点乗積)による重み付けをしたものを「足し合わせた」ものとなる。この重み付けが、区間上で定義する積分と線積分とを分ける点である。 物理学における多くの単純な公式が、線積分で書くことによって自然に、連続的に変化させた場合についても一般化することができるようになる。例えば、力学的な仕事を表す式 から曲線 に沿っての仕事を表す式 を得る。例えば電場や重力場において運動する物体の成す仕事が計算できる。.

新しい!!: クラマース・クローニッヒの関係式と線積分 · 続きを見る »

畳み込み

畳み込み(たたみこみ、convolution)とは関数 を平行移動しながら関数 に重ね足し合わせる二項演算である。畳み込み積分、合成積、重畳積分、あるいは英語に倣いコンボリューションとも呼ばれる。.

新しい!!: クラマース・クローニッヒの関係式と畳み込み · 続きを見る »

複素平面

複素平面 数学において、数平面(すうへいめん、Zahlenebene)あるいは複素数­平面(ふくそすう­へいめん、Komplexe Zahlenebene, complex plane)は、数直線あるいは実数直線 (real line) を実軸 (real axis) として含む。 が実数であるとき、複素数 を単に実数の対とみなせば、平面の直交座標 の点に対応付けることができる。xy-平面上の y-軸は純虚数の全体に対応し、虚軸 (imaginary axis) と呼ばれる。-平面上の点 に複素数 を対応させるとき、-平面とも言う。 1811年頃にガウスによって導入されたため、ガウス平面 (Gaussian plane) とも呼ばれる。一方、それに先立つ1806年に も同様の手法を用いたため、アルガン図 (Argand Diagram) とも呼ばれている。さらに、それ以前の1797年の の書簡にも登場している。このように複素数の幾何的表示はガウス以前にも知られていたが、今日用いられているような形式で複素平面を論じたのはガウスである。三者の名前をとってガウス・アルガン平面、ガウス・ウェッセル平面などとも言われる。 英語名称 complex plane を「直訳」して複素平面と呼ぶことも少なくないが、ここにいう complex は「複素数上の—」という意味ではなく複素数そのものを意味している(複素数の全体を "the complexes" と呼んだり、" is a complex" などのような用例のあることを想起せよ)。したがって、語義に従った complex plane の直訳は「複素数平面」と考えるべきである(実数全体の成す real line についても同様であり、これは通例「実数直線」と訳され、実直線は多少異なる意味に用いられる)。.

新しい!!: クラマース・クローニッヒの関係式と複素平面 · 続きを見る »

複素数

数学における複素数(ふくそすう、complex number)は、実数の対 と と線型独立な(実数ではない)要素 の線型結合 の形に表される数(二元数: 実数体上の二次拡大環の元)で、基底元 はその平方が になるという特別な性質を持ち虚数単位と呼ばれる。 複素数全体の成す集合を太字の あるいは黒板太字で と表す。 は、実数全体の成す集合 と同様に、可換体の構造を持ち、とくに を含む代数閉体を成す。複素数体はケイリー–ディクソン代数(四元数、八元数、十六元数など)の基点となる体系であり、またさまざまな超複素数系の中で最もよく知られた例である。 複素数の概念は、一次元の実数直線を二次元の複素数平面に拡張する。複素数は自然に二次元平面上に存在すると考えることができるから、複素数全体の成す集合上に自然な大小関係(つまり全順序)をいれることはできない。すなわち は順序体でない。 ある数学的な主題や概念あるいは構成において、それが複素数体を基本の体構造として考えられているとき、そのことはしばしばそれら概念等の名称に(おおくは接頭辞「複素-」を付けることで)反映される。例えば、複素解析、複素行列、複素(係数)多項式、複素リー代数など。.

新しい!!: クラマース・クローニッヒの関係式と複素数 · 続きを見る »

解析接続

解析学において、解析接続 (かいせきせつぞく、analytic continuation, analytic prolongation) とはリーマン球面 C 上の領域で定義された有理型関数に対して定義域の拡張を行う手法の一つ、あるいは、その拡張によって得られた関数の事である。.

新しい!!: クラマース・クローニッヒの関係式と解析接続 · 続きを見る »

誘電率

誘電率(ゆうでんりつ、permittivity)は物質内で電荷とそれによって与えられる力との関係を示す係数である。電媒定数ともいう。各物質は固有の誘電率をもち、この値は外部から電場を与えたとき物質中の原子(あるいは分子)がどのように応答するか(誘電分極の仕方)によって定まる。.

新しい!!: クラマース・クローニッヒの関係式と誘電率 · 続きを見る »

電磁波

電磁波(でんじは )は、空間の電場と磁場の変化によって形成される波(波動)である。いわゆる光(赤外線、可視光線、紫外線)や電波は電磁波の一種である。電磁放射()とも呼ばれる。現代科学において電磁波は波と粒子の性質を持つとされ、波長の違いにより様々な呼称や性質を持つ。通信から医療に至るまで数多くの分野で用いられている。 電磁波は波であるので、散乱や屈折、反射、また回折や干渉などの現象を起こし、 波長によって様々な性質を示す。このことは特に観測技術で利用されている。 微視的には、電磁波は光子と呼ばれる量子力学的な粒子であり、物体が何らかの方法でエネルギーを失うと、それが光子として放出される。また、光子を吸収することで物体はエネルギーを得る。.

新しい!!: クラマース・クローニッヒの関係式と電磁波 · 続きを見る »

FID

FID.

新しい!!: クラマース・クローニッヒの関係式とFID · 続きを見る »

SN比

SN比(エスエヌひ)は、通信理論ないし情報理論あるいは電子工学などで扱われる値で、信号 (signal) と雑音 (noise) の比である。 信号雑音比 (signal-noise ratio) または 信号対雑音比 (signal-to-noise ratio) の略。S/N比、SNR、S/Nとも略す。 desired signal to undesired signal ratio、D/U ratio ともいう。 SN比が高ければ伝送における雑音の影響が小さく、SN比が小さければ影響が大きい。SN比が大きいことをSN比がよい、小さいことを悪いとも言う。.

新しい!!: クラマース・クローニッヒの関係式とSN比 · 続きを見る »

正則関数

複素解析において、正則関数(せいそくかんすう、regular analytic function)あるいは整型函数(せいけいかんすう、holomorphic function)とは、ガウス平面あるいはリーマン面上のある領域の全ての点で微分可能であるような複素変数のことである。.

新しい!!: クラマース・クローニッヒの関係式と正則関数 · 続きを見る »

ここにリダイレクトされます:

クラマース・クローニッヒの関係クラマース・クローニッヒ解析

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »