ロゴ
ユニオンペディア
コミュニケーション
Google Play で手に入れよう
新しい! あなたのAndroid™デバイスでユニオンペディアをダウンロードしてください!
ダウンロード
ブラウザよりも高速アクセス!
 

インライン展開

索引 インライン展開

インライン展開(inline expansion または inlining)とは、コンパイラによる最適化手法の1つで、関数を呼び出す側に呼び出される関数のコードを展開し、関数への制御転送をしないようにする手法。これにより関数呼び出しに伴うオーバーヘッドを削減する。特に小さくて頻繁に呼ばれる関数では効果的であり、呼び出し側にそのコードを展開することで定数畳み込みなどのさらなる最適化を施せる可能性が生じる。問題点はバイナリコードが一般に肥大化する結果を招く点であり、参照の局所性を損なうほどだったり、リソースの限界を超えると性能がかえって悪化することになる。 関数型言語の世界では、インライン展開をβ変換とも呼び、関数型言語の理論的基盤となっているラムダ計算の用語としてよく使われる。.

25 関係: 参照の局所性定数畳み込み実行ファイル中間表現引数マクロ (コンピュータ用語)ラムダ計算リンケージエディタレジスタ (コンピュータ)レジスタ割り付けデッドコード削除命令型プログラミングインライン関数オブジェクト指向キャッシュメモリコンパイラスラッシングサブルーチンC言語CPU組み込みシステム部分評価関数型言語Java抽象構文木

参照の局所性

参照の局所性(さんしょうのきょくしょせい、locality of reference)とは、1つのリソースに複数回アクセスする処理に関する情報工学上の概念である。.

新しい!!: インライン展開と参照の局所性 · 続きを見る »

定数畳み込み

定数畳み込み(ていすうたたみこみ、constant folding)および定数伝播(ていすうでんぱ、constant propagation)は、多くのコンパイラで使われている最適化技法である。定数伝播の進化したものを疎な条件分岐を考慮した定数伝播と呼び、定数伝播と同時にデッドコード削除も行って、より正確な伝播を行う。.

新しい!!: インライン展開と定数畳み込み · 続きを見る »

実行ファイル

実行ファイル(じっこうファイル、Executable、Executable file)とは、コンピュータがプログラムとして解釈実行できるファイルである。実行可能ファイル、実行形式ファイル、あるいは単に実行形式とも呼ばれる。 多くの場合、特定のCPUの機械語を格納したバイナリ形式である(この形式の実行ファイルを単に「バイナリ(ファイル)」と呼ぶこともある)。あるファイルが実行ファイルかどうかは、主に規約の問題である。オペレーティングシステムによっては実行ファイルであることを示すファイル名の規約が存在する(拡張子 ".bin" ".exe"など)。あるいはファイルのメタデータで実行ファイルかどうかを示す(例えばUNIX系オペレーティングシステムのファイルパーミッションビット)。 最近のアーキテクチャでは、実行ファイルにはプログラム自体に含まれない情報も格納される。例えば、実行に必要な環境についての情報、デバッグ情報、シンボル情報などである。 実行ファイルには特定のオペレーティングシステムのシステムコールを呼び出すコードが含まれることもある。つまり実行ファイルはプロセッサ固有であるだけでなくオペレーティングシステム固有でもある。 ソースファイルと実行ファイルの違いはあいまいである。というのもソースから実行形式への変換が暗黙のうちに行われることがあるためである。インタプリタのファイル(シェルスクリプトやバッチファイルを含む)は、厳密に言えばインタプリタプログラムが解釈する命令を与えるものである。.

新しい!!: インライン展開と実行ファイル · 続きを見る »

中間表現

中間表現(ちゅうかんひょうげん、Intermediate Representation、IR)は、コンピュータがデータをクロスプラットフォームで扱うために使用するデータ構造の表現である。 中間表現を用いたデータの抽象化はコンピューティング分野では一般的な手法である。異なるプラットフォームで同等の情報を保持するデータを異なるフォーマットで扱う場合に、データを中間表現で表現することで複数フォーマットへの変換処理を効率化することを手助けする。これは自然言語の翻訳に中間言語を用いるのと同等のメリットがある。.

新しい!!: インライン展開と中間表現 · 続きを見る »

引数

引数(ひきすう)は、数学における関数やコンピュータプログラムにおける手続きにおいて、その外部と値をやりとりするための特別な変数、あるいはその変数の値のことである。 数学や最適化問題に関するそれ(「パラメータ」とカタカナで表現されることが多い)については「媒介変数」の記事を参照のこと。以下は専らコンピュータプログラミングに関して説明する。 関数・サブルーチン・メソッド等を定義する時に、外部から値を渡される特別な変数として指定されるのが仮引数。関数(等)を呼出す式において、仮引数に対応する式(あるいはその値)が実引数である。実行時には、実引数の値を仮引数が受け取る。 「引数」を「いんすう」と読む読み方もあるが、術語としては変則的に湯桶読みして「ひきすう」としている。数学分野で因数との取違えを防ぐためといった理由もある。.

新しい!!: インライン展開と引数 · 続きを見る »

マクロ (コンピュータ用語)

マクロ (macro) は「大きい」「巨大な」といったような意味の語であるが、コンピュータ関係では、アプリケーションソフトウェアなどの操作などといった、プログラミング言語と比較して粒度が大きい操作をまとめて自動化したりする機能を指して良く使われる。マクロを記述するコンピュータ言語をマクロ言語と言う(言語の無いマクロ機能もある)。また、テキスト等の変換を記述する変換言語もマクロと呼ばれる。 この記事と、マクロ言語の記事は、それぞれに書くべき内容と書かれている内容が混乱している。また以下の内容のいくつかは変換言語についてのものである。.

新しい!!: インライン展開とマクロ (コンピュータ用語) · 続きを見る »

ラムダ計算

ラムダ計算(ラムダけいさん、lambda calculus)は、計算模型のひとつで、計算の実行を関数への引数の評価(evaluation)と適用(application)としてモデル化・抽象化した計算体系である。ラムダ算法とも言う。関数を表現する式に文字ラムダ (λ) を使うという慣習からその名がある。アロンゾ・チャーチとスティーヴン・コール・クリーネによって1930年代に考案された。1936年にチャーチはラムダ計算を用いて一階述語論理の決定可能性問題を(否定的に)解いた。ラムダ計算は「計算可能な関数」とはなにかを定義するために用いられることもある。計算の意味論や型理論など、計算機科学のいろいろなところで使われており、特にLISP、ML、Haskellといった関数型プログラミング言語の理論的基盤として、その誕生に大きな役割を果たした。 ラムダ計算は1つの変換規則(変数置換)と1つの関数定義規則のみを持つ、最小の(ユニバーサルな)プログラミング言語であるということもできる。ここでいう「ユニバーサルな」とは、全ての計算可能な関数が表現でき正しく評価されるという意味である。これは、ラムダ計算がチューリングマシンと等価な数理モデルであることを意味している。チューリングマシンがハードウェア的なモデル化であるのに対し、ラムダ計算はよりソフトウェア的なアプローチをとっている。 この記事ではチャーチが提唱した元来のいわゆる「型無しラムダ計算」について述べている。その後これを元にして「型付きラムダ計算」という体系も提唱されている。.

新しい!!: インライン展開とラムダ計算 · 続きを見る »

リンケージエディタ

リンケージエディタ(リンカ(linker)、連係編集プログラムとも)とは機械語のプログラムの断片を結合し実行可能なプログラムを作成するプログラムのことである。例として、C言語では、ソースファイルをコンパイルするとオブジェクトファイルが生成される。それに他のオブジェクトファイルやライブラリを結合して1つのプログラムが完成する。この結合(リンク)の際リンケージエディタが使われる。.

新しい!!: インライン展開とリンケージエディタ · 続きを見る »

レジスタ (コンピュータ)

レジスタ(register)はコンピュータのプロセッサなどが内蔵する記憶回路で、制御装置や演算装置や実行ユニットに直結した、操作に要する速度が最速の、比較的少量のものを指す。.

新しい!!: インライン展開とレジスタ (コンピュータ) · 続きを見る »

レジスタ割り付け

レジスタ割り付け(レジスタわりつけ、Register allocation)は、プログラム内の多数の変数を少数のCPUレジスタに多重化するコンパイラ最適化技法のひとつである。その目標は、プログラムの実行速度を最大化すべく、なるべく多くのオペランドをレジスタに保持するようにすることである。レジスタ割り付けは基本的なブロックについて行う場合(ローカルレジスタ割り付け)と関数やプロシージャ全体について行う場合(グローバルレジスタ割り付け)がある。レジスタ割り当てとも呼ぶ。 プログラムは、多数の様々なデータを処理することが多い。しかし、CPUの多くはデータを保持するのに使えるレジスタ数は限られている。機械語のオペランドとしてメモリを指定できる場合でも、なるべくレジスタを使った方が高速化される。従って、処理に必要なデータを RAMとレジスタの間で入れ替えてやる必要がある。この操作を spill(スピル、あふれ)と呼ぶ。 レジスタの spill は、マシンが持っているレジスタ数以上の変数が同時に必要とされる場合に発生する。一般にメモリはレジスタよりも遅いため、spill にはコストがかかる。.

新しい!!: インライン展開とレジスタ割り付け · 続きを見る »

デッドコード削除

デッドコード削除(デッドコードさくじょ。英: dead code elimination(デッドコード取り除き))は、コンピュータ・プログラムの最適化などの目的で行われるプログラムの変形のひとつで、到達不能コードや冗長なコードなどといった「デッドコード」を削除する操作である。効果としては、最適化として見た場合、コードサイズの削減(いわゆるフットプリントの縮小)や、それに伴うキャッシュの利用効率の向上などによる高速化も期待できるかもしれない。.

新しい!!: インライン展開とデッドコード削除 · 続きを見る »

命令型プログラミング

命令型プログラミング(めいれいがたプログラミング、Imperative Programming)とは、計算機科学において宣言型プログラミングの対となる概念であり、計算をプログラム状態を変化させる文の列で記述するプログラミングパラダイムの一種。自然言語の命令法がなすべき行動への指令を表現するのとよく似た方法で、命令型プログラムはコンピュータが実行すべき命令列で構成される。命令型プログラミングに従ったプログラミング言語を命令型(プログラミング)言語と呼ぶ。一般に命令型プログラミングは、手続き型プログラミングと同義として扱われる。 命令型プログラミングは、宣言型プログラミング(関数型や論理型言語など)と対照的である。Haskellなどの関数型プログラミング言語では、プログラムは文の並びではないし、命令型言語が持つような広域状態を持たない。Prologのような論理プログラミング言語では、命令型言語のように計算の「方法」をプログラムとして記述するのではなく、計算すべき「事物」を定義する。.

新しい!!: インライン展開と命令型プログラミング · 続きを見る »

インライン関数

インライン関数(inline function)とは、プログラミング言語の言語機能および構文の一種で、コンパイラに対して特定の関数をインライン展開するよう指示するものである。つまり、コンパイラに対して、その関数を呼び出している全ての箇所に関数の実体を挿入するよう指示する。.

新しい!!: インライン展開とインライン関数 · 続きを見る »

オブジェクト指向

ブジェクト指向(オブジェクトしこう)とは、オブジェクト同士の相互作用として、システムの振る舞いをとらえる考え方である。英語の object-oriented (直訳は、「対象物志向の」「目的重視の」という意味の形容詞) の日本語訳である。 オブジェクト指向の枠組みが持つ道具立ては、一般的で強力な記述能力を持つ。複雑なシステム記述、巨大なライブラリ(特に部品間で緊密で複雑な相互関係を持つもの)の記述においては、オブジェクト指向の考え方は必須である。.

新しい!!: インライン展開とオブジェクト指向 · 続きを見る »

キャッシュメモリ

ャッシュメモリ は、CPUなど処理装置がデータや命令などの情報を取得/更新する際に主記憶装置やバスなどの遅延/低帯域を隠蔽し、処理装置と記憶装置の性能差を埋めるために用いる高速小容量メモリのことである。略してキャッシュとも呼ぶ。コンピュータは以前から記憶装置や伝送路の性能が処理装置の性能に追いつけず、この差が全体性能に対するボトルネックとされてきた(ノイマンズ・ボトルネック)。そしてムーアの法則に基づく処理装置の加速度的な高性能化により現在ではますますこの差が拡大されている。キャッシュメモリは、記憶階層の観点からこれを解消しようとするものである。 主に、主記憶装置とCPUなど処理装置との間に構成される。この場合、処理装置がアクセスしたいデータやそのアドレス、状態、設定など属性情報をコピーし保持することで、本来アクセスすべき記憶装置に代わってデータを入出力する。通常はキャッシュメモリが自動的にデータ保存や主記憶装置の代替を行うため、基本的にCPUのプログラムなど処理装置側がキャッシュメモリを意識する必要はない。 キャッシュの一般的な概念はキャッシュ (コンピュータシステム)を参照のこと。.

新しい!!: インライン展開とキャッシュメモリ · 続きを見る »

コンパイラ

ンパイラ(英:compiler)とは、コンピュータ・プログラミング言語の処理系(言語処理系)の一種で、高水準言語によるソースコードから、機械語に(あるいは、元のプログラムよりも低い水準のコードに)変換するプログラムである。.

新しい!!: インライン展開とコンパイラ · 続きを見る »

スラッシング

ラッシング (Thrashing) とは、仮想記憶環境下において、物理メモリが不足気味で、かつ動作しているプロセスのアクセスパターンのために、ページアウトしたデータをすぐにページインするというようなことを頻繁に繰返す必要が発生していて、仮想記憶を管理しているシステム(一般にはオペレーティングシステム)のそのような動作の結果、システムの動作が極端に遅くなっている、というような状態のことである。.

新しい!!: インライン展開とスラッシング · 続きを見る »

サブルーチン

ブルーチン(subroutine)は、コンピュータプログラミングにおいて、プログラム中で意味や内容がまとまっている作業をひとつの手続きとしたものである。繰り返し利用されるルーチン作業をモジュールとしてまとめたもので、呼び出す側の「主」となるもの(メインルーチン)と対比して「サブルーチン」と呼ばれる。サブプログラム (subprogram) と呼ばれることもある。また、「サブ」をつけずに「ルーチン」と呼ぶこともある。 プログラムのソース中で、繰り返し現れる作業をサブルーチン化することで、可読性や保守性を高く保つことができる。繰り返し現れる作業でなくても、意味的なまとまりを示すためにサブルーチン化することもある。また、キャッシュのような階層的メモリの設計を持つコンピュータ(現在のパソコンやワークステーションなどほぼすべて)では、よく使われるサブルーチンがキャッシュに格納されることで高速な動作を期待できる。.

新しい!!: インライン展開とサブルーチン · 続きを見る »

C言語

C言語(シーげんご)は、1972年にAT&Tベル研究所のデニス・リッチーが主体となって開発したプログラミング言語である。英語圏では単に C と呼んでおり、日本でも文書や文脈によっては同様に C と呼ぶことがある。.

新しい!!: インライン展開とC言語 · 続きを見る »

CPU

Intel Core 2 Duo E6600) CPU(シーピーユー、Central Processing Unit)、中央処理装置(ちゅうおうしょりそうち)は、コンピュータにおける中心的な処理装置(プロセッサ)。 「CPU」と「プロセッサ」と「マイクロプロセッサ」という語は、ほぼ同義語として使われる場合も多いが、厳密には以下に述べるように若干の範囲の違いがある。大規模集積回路(LSI)の発達により1個ないしごく少数のチップに全機能が集積されたマイクロプロセッサが誕生する以前は、多数の(小規模)集積回路(さらにそれ以前はディスクリート)から成る巨大な電子回路がプロセッサであり、CPUであった。大型汎用機を指す「メインフレーム」という語は、もともとは多数の架(フレーム)から成る大型汎用機システムにおいてCPUの収まる主要部(メイン)、という所から来ている。また、パーソナルコンピュータ全体をシステムとして見た時、例えば電源部が制御用に内蔵するワンチップマイコン(マイクロコントローラ)は、システム全体として見た場合には「CPU」ではない。.

新しい!!: インライン展開とCPU · 続きを見る »

組み込みシステム

組み込みシステム(くみこみシステム、英: Embedded system)とは、特定の機能を実現するために家電製品や機械等に組み込まれるコンピュータシステムのこと。.

新しい!!: インライン展開と組み込みシステム · 続きを見る »

部分評価

部分評価(ぶぶんひょうか、partial evaluation)は、計算理論における特殊化(特化)による最適化の技法の1つ。.

新しい!!: インライン展開と部分評価 · 続きを見る »

関数型言語

関数型言語(かんすうがたげんご、functional language)は、以下に述べる関数型プログラミングを基本スタイルとして推奨する機能を持つプログラミング言語、関数型プログラミング言語の略称である。.

新しい!!: インライン展開と関数型言語 · 続きを見る »

Java

Java(ジャバ)は、狭義ではプログラミング言語Javaを指す。広義では言語仕様以外にも、仕様が与えられているJavaクラスライブラリやJava仮想マシン、さらにはJDKやJREなどの公式のものをはじめとする、場合によってはサードパーティのものなどを含め曖昧にJavaプラットフォームと総称されるようなものなどのエコシステムなどを指すこともある。構文についてはJavaの文法の記事を参照。.

新しい!!: インライン展開とJava · 続きを見る »

抽象構文木

抽象構文木(abstract syntax tree、AST)とは、通常の構文木(具象構文木あるいは解析木とも言う)から、言語の意味に関係ない情報を取り除き、意味に関係ある情報のみを取り出した(抽象した)木構造のデータ構造である。 理論的には、有限なラベル付き有向木であり、分岐点に演算子、葉にそのオペランドを対応させたものである。つまり、葉は変数や定数に対応する。 抽象構文木は構文解析で構文木とデータ構造の中間的なものとして使用される。さらにコンパイラやインタプリタなど(プログラミング言語処理系)でのプログラムの中間表現として使われ、コンパイラ最適化やコード生成はその上で行われる。抽象構文木のとりうる構造は抽象構文で記述されている。 抽象構文木は(具象)構文木とは異なり、プログラムの意味に関係ない部分を省略する。そのような省略の例としては括弧の省略があげられる。抽象構文木では、オペランドのグループ化が自明な木構造とするのが普通であり、グループ化のための括弧などは意味的に不要である。 大多数のプログラミング言語のような文脈自由言語の構文解析で抽象構文木を作るのは簡単である。構文規則ごとに新たな節点を作成し、葉はその規則における記号に対応する。グループ化規則のような抽象構文木に関わらない規則は無視される。そのようにいきなり抽象構文木を生成することもあるし、完全な具象構文木を作り、その後そこから冗長な部分(プログラムの意味に関係しない部分)を除いて抽象構文木に変換することもある。 理論的な観点からは、たとえばソースコード上の位置(何行目の何カラム目など)といった具象の情報は言語処理系には不要であり、抽象構文木には無くてもよいのだが、実践的には、エラーを見つけた時にプログラマに親切なエラーメッセージを出力するためなど、重要な情報であり、時には処理系のフロントエンドではなくバックエンドでも必要なこともある。.

新しい!!: インライン展開と抽象構文木 · 続きを見る »

出ていきます入ってきます
ヘイ!私たちは今、Facebook上です! »